1
|
Characterization of a novel type of glycogen-degrading amylopullulanase from Lactobacillus crispatus. Appl Microbiol Biotechnol 2022; 106:4053-4064. [PMID: 35612627 DOI: 10.1007/s00253-022-11975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Glycogen is one of the major carbohydrates utilized by the human vaginal microbiota, which is commonly dominated by Lactobacillus, especially L. crispatus. An in silico analysis predicted that a type I pullulanase was involved in glycogen degradation in L. crispatus. The biochemical and genetic properties of the pullulanase still need to be determined. Here, we de novo identified the glycogen (Glg)-utilization enzyme (named GlgU) from L. crispatus through a biochemical assay. GlgU was optimally active at acidic pH, approximately 4.0 ~ 4.5, and was able to hydrolyze glycogen into low-molecular-weight malto-oligosaccharides. Actually, GlgU was a type II pullulanase (amylopullulanase) with just one catalytic domain that possessed substrate specificity toward both α-1,4 and α-1,6-glucosidic bonds. Phylogenetically, GlgU was obviously divergent from the known amylases and pullulanases (including amylopullulanases) in lactobacilli. In addition, we confirmed the catalytic activity of glgU in a nonglycogen-utilizing lactobacilli strain, demonstrating the essential role of glgU in glycogen metabolism. Overall, this study characterized a novel type of amylopullulanases, contributing to the knowledge of the glycogen utilization mechanism of the dominant species of human vaginal microbiota. KEY POINTS: • GlgU was a type II pullulanase, not a type I pullulanase predicted before. • GlgU was able to completely hydrolyze glycogen into malto-oligosaccharides. • GlgU played a key role in the metabolism of extracellular glycogen.
Collapse
|
2
|
Cerqueira FM, Photenhauer AL, Doden HL, Brown AN, Abdel-Hamid AM, Moraïs S, Bayer EA, Wawrzak Z, Cann I, Ridlon JM, Hopkins JB, Koropatkin NM. Sas20 is a highly flexible starch-binding protein in the Ruminococcus bromii cell-surface amylosome. J Biol Chem 2022; 298:101896. [PMID: 35378131 PMCID: PMC9112005 DOI: 10.1016/j.jbc.2022.101896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/08/2023] Open
Abstract
Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal β-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 μM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.
Collapse
Affiliation(s)
- Filipe M Cerqueira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Heidi L Doden
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Aric N Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ahmed M Abdel-Hamid
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sarah Moraïs
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Edward A Bayer
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Zdzislaw Wawrzak
- Northwestern University, Synchrotron Research Center, Life Science Collaborative Access Team, Lemont, Illinois, USA
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Illinois Institute of Technology, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
3
|
Adesulu-Dahunsi AT, Dahunsi SO, Ajayeoba TA. Co-occurrence of Lactobacillus Species During Fermentation of African Indigenous Foods: Impact on Food Safety and Shelf-Life Extension. Front Microbiol 2022; 13:684730. [PMID: 35464919 PMCID: PMC9021961 DOI: 10.3389/fmicb.2022.684730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
The benefits derived from fermented foods and beverages have placed great value on their acceptability worldwide. Food fermentation technologies have been employed for thousands of years and are considered essential processes for the production and preservation of foods, with the critical roles played by the autochthonous fermenting food-grade microorganisms in ensuring food security and safety, increased shelf life, and enhanced livelihoods of many people in Africa, particularly the marginalized and vulnerable groups. Many indigenous fermented foods and beverages of Africa are of plant origin. In this review, the predominance, fermentative activities, and biopreservative role of Lactobacillus spp. during production of indigenous foods and beverages, the potential health benefit of probiotics, and the impact of these food-grade microorganisms on food safety and prolonged shelf life are discussed. During production of African indigenous foods (with emphasis on cereals and cassava-based food products), fermentation occurs in succession; the first group of microorganisms to colonize the fermenting substrates are lactic acid bacteria (LAB) with the diversity and dominance of Lactobacillus spp. The Lactobacillus spp. multiply rapidly in the fermentation matrix, by taking up nutrients from the surrounding environments, and cause rapid acidification in the fermenting system via the production of organic compounds that convert fermentable sugars into mainly lactic acid. Production of these compounds in food systems inhibits spoilage microorganisms, which has a direct effect on food quality and safety. The knowledge of microbial interaction and succession during food fermentation will assist the food industry in producing functional foods and beverages with improved nutritional profiling and technological attributes, as Lactobacillus strains isolated during fermentation of several African indigenous foods have demonstrated desirable characteristics that make them safe for use as probiotic microorganisms and even as a starter culture in small- and large-scale/industrial food production processes.
Collapse
Affiliation(s)
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
| | | |
Collapse
|
4
|
Promchai R, Visessanguan W, Luxananil P. An efficient ABC transporter signal peptide directs heterologous protein secretion in food-grade hosts. World J Microbiol Biotechnol 2020; 36:154. [PMID: 32949270 DOI: 10.1007/s11274-020-02932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
An efficient expression-secretion system for heterologous protein production in food-grade hosts, Lactobacillus plantarum and Bacillus subtilis, is still required to broaden their applications. The optimal signal peptide compatible with both the desired protein and the target host is important for the system. Here, we constructed new expression-secretion vectors to be used in both bacteria. A natural plasmid originating from food-grade L. plantarum BCC9546 was used as a core vector combined with a strong constitutive promoter, L-ldh promoter, and various signal peptides from several types of L. plantarum proteins: ABC transporter, cell wall-associated and extracellular proteins. A gene encoding 88-kDa amylase isolated from starch-related L. plantarum TBRC470 was used as a gene model to evaluate the systems. By comparing the amounts of secreted amylase from the recombinant strains to that of wild type, all signal peptides gave higher yields of secreted amylase in recombinant B. subtilis. Interestingly, two ABC transporter signal peptides from glutamine and mannose ABC transporters provided noticeably high levels of secreted amylase in recombinant L. plantarum. Moreover, these signal peptides also gave high yields of secreted amylase in recombinant B. subtilis. From the results, the signal peptide of glutamine ABC transporter, which functions in essential amino acid transportation that is a precursor for synthesis of nitrogen-containing compounds and nitrogen homeostasis, has a potential use in development of an efficient expression-secretion system for heterologous protein production in both food-grade hosts.
Collapse
Affiliation(s)
- Ruangurai Promchai
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Wonnop Visessanguan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Plearnpis Luxananil
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand.
| |
Collapse
|
5
|
Janeček Š, Mareček F, MacGregor EA, Svensson B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 2019; 37:107451. [PMID: 31536775 DOI: 10.1016/j.biotechadv.2019.107451] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023]
Abstract
The term "starch-binding domain" (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a β-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the β-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - E Ann MacGregor
- 2 Nicklaus Green, Livingston EH54 8RX, West Lothian, United Kingdom
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Behera SS, Panda SH, Mohapatra S, Kumar A. Statistical optimization of elephant foot yam (Amorphophallus paeoniifolius) lacto-pickle for maximal yield of lactic acid. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Kanpiengjai A, Nguyen TH, Haltrich D, Khanongnuch C. Expression and comparative characterization of complete and C-terminally truncated forms of saccharifying α-amylase from Lactobacillus plantarum S21. Int J Biol Macromol 2017; 103:1294-1301. [PMID: 28587961 DOI: 10.1016/j.ijbiomac.2017.05.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Lactobacillus plantarum S21 α-amylase possesses 475 amino acids at the C-terminal region identified as the starch-binding domain (SBD) and has been previously reported to play a role in raw starch degradation. To understand the specific roles of this SBD, cloning and expression of the complete (AmyL9) and C-terminally truncated (AmyL9ΔSBD) forms of α-amylase were conducted for enzyme purification and comparative characterization. AmyL9 and AmyL9ΔSBD were overproduced in Escherichia coli at approximately 10- and 20-times increased values of volumetric productivity when compared to α-amylase produced by the wild type, respectively. AmyL9ΔSBD was unable to hydrolyze raw starch and exhibited substrate specificity in a similar manner to that of AmyL9, but it was weakly active toward amylopectin and glycogen. The hydrolysis products obtained from the amylaceous substrates of both enzymes were the same. In addition, AmyL9ΔSBD showed comparatively higher Km values than AmyL9 when it reacted with starch and amylopectin, and lower values for other kinetic constants namely vmax, kcat, and kcat/Km. The results indicated that the C-terminal SBDs of L. plantarum S21 α-amylase contribute to not only substrate preference but also substrate affinity and the catalytic efficiency of the α-amylase without any changes in the degradation mechanisms of the enzyme.
Collapse
Affiliation(s)
- Apinun Kanpiengjai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Chartchai Khanongnuch
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
8
|
Ruiz-Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F. Lactic Acid Bacteria. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Luciana Ruiz-Rodríguez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Juliana Bleckwedel
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Maria Eugenia Ortiz
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Micaela Pescuma
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
9
|
Mehta D, Satyanarayana T. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications. Front Microbiol 2016; 7:1129. [PMID: 27516755 PMCID: PMC4963412 DOI: 10.3389/fmicb.2016.01129] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.
Collapse
Affiliation(s)
- Deepika Mehta
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
10
|
Jeon HY, Kim NR, Lee HW, Choi HJ, Choung WJ, Koo YS, Ko DS, Shim JH. Characterization of a Novel Maltose-Forming α-Amylase from Lactobacillus plantarum subsp. plantarum ST-III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2307-2314. [PMID: 26919577 DOI: 10.1021/acs.jafc.5b05892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel maltose (G2)-forming α-amylase from Lactobacillus plantarum subsp. plantarum ST-III was expressed in Escherichia coli and characterized. Analysis of conserved amino acid sequence alignments showed that L. plantarum maltose-producing α-amylase (LpMA) belongs to glycoside hydrolase family 13. The recombinant enzyme (LpMA) was a novel G2-producing α-amylase. The properties of purified LpMA were investigated following enzyme purification. LpMA exhibited optimal activity at 30 °C and pH 3.0. It produced only G2 from the hydrolysis of various substrates, including maltotriose (G3), maltopentaose (G5), maltosyl β-cyclodextrin (G2-β-CD), amylose, amylopectin, and starch. However, LpMA was unable to hydrolyze cyclodextrins. Reaction pattern analysis using 4-nitrophenyl-α-d-maltopentaoside (pNPG5) demonstrated that LpMA hydrolyzed pNPG5 from the nonreducing end, indicating that LpMA is an exotype α-amylase. Kinetic analysis revealed that LpMA had the highest catalytic efficiency (kcat/Km ratio) toward G2-β-CD. Compared with β-amylase, a well-known G2-producing enzyme, LpMA produced G2 more efficiently from liquefied corn starch due to its ability to hydrolyze G3.
Collapse
Affiliation(s)
- Hye-Yeon Jeon
- Department of Food Science and Nutrition, and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 200-702, Korea
| | - Na-Ri Kim
- Department of Food Science and Nutrition, and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 200-702, Korea
| | - Hye-Won Lee
- Department of Food Science and Nutrition, and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 200-702, Korea
| | - Hye-Jeong Choi
- Department of Food Science and Nutrition, and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 200-702, Korea
| | - Woo-Jae Choung
- Department of Food Science and Nutrition, and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 200-702, Korea
| | - Ye-Seul Koo
- Department of Food Science and Nutrition, and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 200-702, Korea
| | - Dam-Seul Ko
- Department of Food Science and Nutrition, and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 200-702, Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 200-702, Korea
| |
Collapse
|
11
|
Kanpiengjai A, Lumyong S, Nguyen TH, Haltrich D, Khanongnuch C. Characterization of a maltose-forming α-amylase from an amylolytic lactic acid bacterium Lactobacillus plantarum S21. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Multifunctional properties of Lactobacillus plantarum strains isolated from fermented cereal foods. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
|
14
|
Humblot C, Turpin W, Chevalier F, Picq C, Rochette I, Guyot JP. Determination of expression and activity of genes involved in starch metabolism in Lactobacillus plantarum A6 during fermentation of a cereal-based gruel. Int J Food Microbiol 2014; 185:103-11. [PMID: 24950021 DOI: 10.1016/j.ijfoodmicro.2014.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
Traditional fermented gruels prepared from cereals are widely used for complementary feeding of young children in Africa and usually have a low energy density. The amylase activity of some lactic acid bacteria (LAB) helps increase the energy content of gruels through partial hydrolysis of starch, thus enabling the incorporation of more starchy material while conserving the desired semi-liquid consistency for young children. Even if this ability is mainly related to the production of alpha-amylase (E.C. 3.2.1.1), in a recent molecular screening, genes coding for enzymes involved in starch metabolism were detected in the efficient amylolytic LAB Lactobacillus plantarum A6: alpha-glucosidase (E.C. 3.2.1.20), neopullulanase (E.C. 3.2.1.135), amylopectin phosphorylase (E.C. 2.4.1.1) and maltose phosphorylase (E.C. 2.4.1.8). The objective of this study was to investigate the expression of these genes in a model of starchy fermented food made from pearl millet (Pennisetum glaucum). Transcriptional and enzymatic analyses were performed during the 18-h fermentation period. Liquefaction was mainly caused by an extracellular alpha amylase encoded by the amyA gene specific to the A6 strain among L. plantarum species and found in both Lactobacillus amylovorus and Lactobacillus manihotivorans. The second most active enzyme was neopullulanase. Other starch metabolizing enzymes were less often detected. The dynamic detection of transcripts of gene during starch fermentation in pearl millet porridge suggests that the set of genes we investigated was not expressed continuously but transiently.
Collapse
Affiliation(s)
- Christèle Humblot
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France.
| | - Williams Turpin
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - François Chevalier
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Christian Picq
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Isabelle Rochette
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Jean-Pierre Guyot
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| |
Collapse
|
15
|
Characterization of functional, safety, and gut survival related characteristics of Lactobacillus strains isolated from farmhouse goat's milk cheeses. Int J Food Microbiol 2013; 163:136-45. [DOI: 10.1016/j.ijfoodmicro.2013.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 02/07/2023]
|
16
|
Sharma A, Satyanarayana T. Microbial acid-stable α-amylases: Characteristics, genetic engineering and applications. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Petrova P, Petrov K, Stoyancheva G. Starch-modifying enzymes of lactic acid bacteria - structures, properties, and applications. STARCH-STARKE 2012. [DOI: 10.1002/star.201200192] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Gänzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 2012; 3:340. [PMID: 23055996 PMCID: PMC3458588 DOI: 10.3389/fmicb.2012.00340] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023] Open
Abstract
Oligosaccharides, compounds that are composed of 2-10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp.
Collapse
Affiliation(s)
- Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| | - Rainer Follador
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
19
|
Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods. Food Microbiol 2012; 31:254-62. [DOI: 10.1016/j.fm.2012.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/29/2011] [Accepted: 03/06/2012] [Indexed: 11/19/2022]
|
20
|
A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microb Cell Fact 2011; 10:103. [PMID: 22145993 PMCID: PMC3247070 DOI: 10.1186/1475-2859-10-103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022] Open
Abstract
Background The gene encoding an atypical multi-modular glycoside hydrolase family 45 endoglucanase bearing five different family 1 carbohydrate binding modules (CBM1), designated PpCel45A, was identified in the Pichia pastoris GS115 genome. Results PpCel45A (full-length open reading frame), and three derived constructs comprising (i) the catalytic module with its proximal CBM1, (ii) the catalytic module only, and (iii) the five CBM1 modules without catalytic module, were successfully expressed to high yields (up to 2 grams per litre of culture) in P. pastoris X33. Although the constructs containing the catalytic module displayed similar activities towards a range of glucans, comparison of their biochemical characteristics revealed striking differences. We observed a high thermostability of PpCel45A (Half life time of 6 h at 80°C), which decreased with the removal of CBMs and glycosylated linkers. However, both binding to crystalline cellulose and hydrolysis of crystalline cellulose and cellohexaose were substantially boosted by the presence of one CBM rather than five. Conclusions The present study has revealed the specific features of the first characterized endo β-1,4 glucanase from yeast, whose thermostability is promising for biotechnological applications related to the saccharification of lignocellulosic biomass such as consolidated bioprocessing.
Collapse
|
21
|
Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 2009; 85:1241-9. [DOI: 10.1007/s00253-009-2331-y] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
|
22
|
Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VG. Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics 2009; 10:425. [PMID: 19744343 PMCID: PMC2748100 DOI: 10.1186/1471-2164-10-425] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022] Open
Abstract
Background Lactobacillus plantarum is a normal, potentially probiotic, inhabitant of the human gastrointestinal (GI) tract. The bacterium has great potential as food-grade cell factory and for in situ delivery of biomolecules. Since protein secretion is important both for probiotic activity and in biotechnological applications, we have carried out a genome-wide experimental study of signal peptide (SP) functionality. Results We have constructed a library of 76 Sec-type signal peptides from L. plantarum WCFS1 that were predicted to be cleaved by signal peptidase I. SP functionality was studied using staphylococcal nuclease (NucA) as a reporter protein. 82% of the SPs gave significant extracellular NucA activity. Levels of secreted NucA varied by a dramatic 1800-fold and this variation was shown not to be the result of different mRNA levels. For the best-performing SPs all produced NucA was detected in the culture supernatant, but the secretion efficiency decreased for the less well performing SPs. Sequence analyses of the SPs and their cognate proteins revealed four properties that correlated positively with SP performance for NucA: high hydrophobicity, the presence of a transmembrane helix predicted by TMHMM, the absence of an anchoring motif in the cognate protein, and the length of the H+C domain. Analysis of a subset of SPs with a lactobacillal amylase (AmyA) showed large variation in production levels and secretion efficiencies. Importantly, there was no correlation between SP performance with NucA and the performance with AmyA. Conclusion This is the first comprehensive experimental study showing that predicted SPs in the L. plantarum genome actually are capable of driving protein secretion. The results reveal considerable variation between the SPs that is at least in part dependent on the protein that is secreted. Several SPs stand out as promising candidates for efficient secretion of heterologous proteins in L. plantarum. The results for NucA provide some hints as to the sequence-based prediction of SP functionality, but the general conclusion is that such prediction is difficult. The vector library generated in this study is based on exchangeable cassettes and provides a powerful tool for rapid experimental screening of SPs.
Collapse
Affiliation(s)
- Geir Mathiesen
- Norwegian University of Life Sciences, Center for Molecular Microbiology, Department of Chemistry Biotechnology and Food Science, Chr. M. Falsensvei 1, P.O. Box 5003, N-1432 As, Norway.
| | | | | | | | | | | |
Collapse
|
23
|
Eom HJ, Moon JS, Seo EY, Han NS. Heterologous expression and secretion of Lactobacillus amylovorus alpha-amylase in Leuconostoc citreum. Biotechnol Lett 2009; 31:1783-8. [PMID: 19618275 DOI: 10.1007/s10529-009-0079-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022]
Abstract
To develop a gene expression system for Leuconostoc genus, construction of expression vector and expression of a heterologus protein in Leuconostoc was performed. Alpha-amylase gene from Lactobacillus amylovorus was cloned into a Leuconostoc cloning vector, pLeuCM, with its own signal peptide. pLeuCMamy was introduced into Leuconostoc citreum CB2567 and a successful expression of alpha-amy gene was confirmed by enzyme activity assays. About 90% of alpha-amylase activity was detected in the culture broth, revealing most of expressed alpha-amylase was secreted out cells. The signal sequence of alpha-amy gene is a good candidate for the secretion of heterologous protein by using Leuconostoc host-vector system.
Collapse
Affiliation(s)
- Hyun-Ju Eom
- Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University, Cheongju, 361-763, South Korea
| | | | | | | |
Collapse
|
24
|
A single residue mutation abolishes attachment of the CBM26 starch-binding domain from Lactobacillus amylovorus α-amylase. J Ind Microbiol Biotechnol 2008; 36:341-6. [DOI: 10.1007/s10295-008-0502-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
|
25
|
Ampe F, Omar NB, Guyot J‐P. Recovery of total microbial RNA from lactic acid fermented foods with a high starch content. Lett Appl Microbiol 2008. [DOI: 10.1046/j.1472-765x.1998.00435.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- F. Ampe
- Institut Français de Recherche pour le Développement en Coopération (ORSTOM), Laboratoire de Biotechnologie Microbienne Tropicale, Montpellier, France
| | - N. ben Omar
- Institut Français de Recherche pour le Développement en Coopération (ORSTOM), Laboratoire de Biotechnologie Microbienne Tropicale, Montpellier, France
| | - J. ‐P. Guyot
- Institut Français de Recherche pour le Développement en Coopération (ORSTOM), Laboratoire de Biotechnologie Microbienne Tropicale, Montpellier, France
| |
Collapse
|
26
|
Mathiesen G, Sveen A, Piard JC, Axelsson L, Eijsink VGH. Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides. J Appl Microbiol 2008; 105:215-26. [PMID: 18298538 DOI: 10.1111/j.1365-2672.2008.03734.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To test seven selected putative signal peptides from Lactobacillus plantarum WCFS1 in terms of their ability to drive secretion of two model proteins in Lact. plantarum, and to compare the functionality of these signal peptides with that of well-known heterologous signal peptides (Usp45, M6). METHODS AND RESULTS Signal peptide functionality was assessed using a series of modular derivatives of the pSIP vectors for peptide pheromone-controlled high-level gene expression in lactobacilli. Several of the constructs with homologous signal peptides yielded similar or higher reporter protein activities than constructs with heterologous signal peptides. Two of the homologous signal peptides (Lp_0373 and Lp_0600) appeared as especially promising candidates for directing secretion, as they were among the best performing with both reporter proteins. CONCLUSIONS We have identified homologous signal peptides for high-level secretion of heterologous proteins in Lact. plantarum. With the model proteins, some of these performed better than commonly used heterologous signal peptides. SIGNIFICANCE AND IMPACT OF THE STUDY The homologous signal peptides tested out, in this study, could be useful in food-grade systems for secretion of interesting proteins in Lact. plantarum. The constructed modular secretion vectors are easily accessible for rapid signal peptide screening.
Collapse
Affiliation(s)
- G Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway.
| | | | | | | | | |
Collapse
|
27
|
Guillén D, Santiago M, Linares L, Pérez R, Morlon J, Ruiz B, Sánchez S, Rodríguez-Sanoja R. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol 2007; 73:3833-7. [PMID: 17468268 PMCID: PMC1932744 DOI: 10.1128/aem.02628-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.
Collapse
Affiliation(s)
- D Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM, A.P. 70228, 04510 México D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ramsay AG, Scott KP, Martin JC, Rincon MT, Flint HJ. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon. MICROBIOLOGY-SGM 2007; 152:3281-3290. [PMID: 17074899 DOI: 10.1099/mic.0.29233-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selected butyrate-producing bacteria from the human colon that are related to Roseburia spp. and Butyrivibrio fibrisolvens showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe Bacteroides thetaiotaomicron. A major cell-associated amylase of high molecular mass (140-210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from But. fibrisolvens 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from Roseburia inulinivorans A2-194, also includes a family 13 domain, which is preceded by two repeat units of approximately 116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg2+ or Ca2+ for activity, and functioned as 1,4-alpha-glucanohydrolases (alpha-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria.
Collapse
Affiliation(s)
- Alan G Ramsay
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Karen P Scott
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Jenny C Martin
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Marco T Rincon
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Harry J Flint
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
29
|
Nguyen TTT, Guyot JP, Icard-Vernière C, Rochette I, Loiseau G. Effect of high pressure homogenisation on the capacity of Lactobacillus plantarum A6 to ferment rice/soybean slurries to prepare high energy density complementary food. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Nguyen TTT, Loiseau G, Icard-Vernière C, Rochette I, Trèche S, Guyot JP. Effect of fermentation by amylolytic lactic acid bacteria, in process combinations, on characteristics of rice/soybean slurries: A new method for preparing high energy density complementary foods for young children. Food Chem 2007. [DOI: 10.1016/j.foodchem.2005.09.080] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Rhim SL, Park MS, Ji GE. Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum. Biotechnol Lett 2006; 28:163-8. [PMID: 16489493 DOI: 10.1007/s10529-005-5330-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
Bifidobacterium adolescentis Int-57 (INT57), isolated from human feces, secretes an amylase. We have shot-gun cloned, sequence analyzed and expressed the gene encoding this amylase in B. longum. The sequenced 2477 bp fragment was homologous to other extracellular amylases. The encoded protein was predicted to be composed of 595 amino acids with a molecular weight of 64 kDa, and was designated AmyB. Highly conserved amylase domains were found in AmyB. The signal sequence and cleavage site was predicted by sequence analysis. AmyB was subcloned into pBES2, a novel E. coli-Bifidobacterium shuttle vector, to construct pYBamy59. Subsequently, B. longum, with no apparent amylase activity, was transformed with pYBamy59. More than 90% of the amylase activity was detected in the culture broth. This approach may open the way for the development of more efficient expression and secretion systems for Bifidobacterium.
Collapse
Affiliation(s)
- Seong Lyul Rhim
- Department of Genetic Engineering, Hallym University, Kangwon-Do, Chuncheon, 200-702, Korea
| | | | | |
Collapse
|
32
|
Rodríguez-Sanoja R, Oviedo N, Sánchez S. Microbial starch-binding domain. Curr Opin Microbiol 2005; 8:260-7. [PMID: 15939348 DOI: 10.1016/j.mib.2005.04.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.
Collapse
Affiliation(s)
- Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, A. P. 70228. Universidad Nacional Autónoma de México, México DF 04510, Mexico.
| | | | | |
Collapse
|
33
|
Rodríguez-Sanoja R, Ruiz B, Guyot JP, Sanchez S. Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases. Appl Environ Microbiol 2005; 71:297-302. [PMID: 15640201 PMCID: PMC544272 DOI: 10.1128/aem.71.1.297-302.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 08/28/2004] [Indexed: 11/20/2022] Open
Abstract
A new starch-binding domain (SBD) was recently described in alpha-amylases from three lactobacilli (Lactobacillus amylovorus, Lactobacillus plantarum, and Lactobacillus manihotivorans). Usually, the SBD is formed by 100 amino acids, but the SBD sequences of the mentioned lactobacillus alpha-amylases consist of almost 500 amino acids that are organized in tandem repeats. The three lactobacillus amylase genes share more than 98% sequence identity. In spite of this identity, the SBD structures seem to be quite different. To investigate whether the observed differences in the SBDs have an effect on the hydrolytic capability of the enzymes, a kinetic study of L. amylovorus and L. plantarum amylases was developed, with both enzymes acting on several starch sources in granular and gelatinized forms. Results showed that the amylolytic capacities of these enzymes are quite different; the L. amylovorus alpha-amylase is, on average, 10 times more efficient than the L. plantarum enzyme in hydrolyzing all the tested polymeric starches, with only a minor difference in the adsorption capacities.
Collapse
Affiliation(s)
- R Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM A. P. 70228, 04510 Mexico City, Mexico.
| | | | | | | |
Collapse
|
34
|
Sabathé F, Croux C, Cornillot E, Soucaille P. amyP, a reporter gene to study strain degeneration in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Lett 2002; 210:93-8. [PMID: 12023083 DOI: 10.1111/j.1574-6968.2002.tb11165.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Clostridium acetobutylicum produces an extracellular alpha-amylase when grown on glucose as the sole carbon source. This enzyme was previously characterized from a biochemical point of view but its encoding gene was never identified. The 2283-bp amyP gene encodes a 83013-Da mature protein with an N-terminal domain that exhibits strong identity to the family 13 glycosyl hydrolases such as the Bacillus alpha-amylases. Transcriptional analysis revealed that amyP is transcribed in solventogenic but not in acidogenic chemostat cultures. These results are in agreement with the extracellular alpha-amylase activities indicating that the expression of amyP is regulated at the transcriptional level. amyP is located on the pSOL1 megaplasmid that carries all the genes involved in the final steps of solvent formation. Degeneration of C. acetobutylicum has been associated to the loss of pSOL1. We demonstrate here that amyP can be used as a reporter system to quantitatively follow this phenomenon.
Collapse
Affiliation(s)
- Fabrice Sabathé
- Centre de Bioingénierie Gilbert Durand, UMR-CNRS 5504, Lab. Ass. INRA, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077 Toulouse, France
| | | | | | | |
Collapse
|
35
|
ODA Y, ICHINOSE Y, YAMAUCHI H. Utilization of Lactobacillus amylovorus as an Alternative Microorganism for Saccharifying Boiled Rice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2002. [DOI: 10.3136/fstr.8.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Morlon-Guyot J, Mucciolo-Roux F, Rodriguez Sanoja R, Guyot JP. Characterization of the L. manihotivorans alpha-amylase gene. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:27-37. [PMID: 11697143 DOI: 10.3109/10425170109042048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primers and probes were established from the sequences of the alpha-amylase genes (amyA) of L. amylovorus CIP 102989 and of L. plantarum A6 (Giraud and Cuny 1997). They were successfully used for the detection of the amyA gene in L. manihotivorans strain LMG 18010T and a 2842 bp region, containing the entire gene (2706 bp) with its putative promoter has been sequenced. More than 98% nucleotide sequence identities was found with L. amylovorus and L. plantarum amyA genes. The deduced amino acid sequence shares more than 96% amino acid sequence identities with L. amylovorus and L. plantarum alpha-amylases, and also 65% and 59% identities with the alpha-amylases of B. subtilis and S. bovis, respectively. The 3' terminal part of L. manihotivorans LMG 18010T amyA gene contained four repeated sequences (SRU). The amyA genes of the three lactobacilli species differed mainly in the number of SRU and in the size of the flanking regions of the SRU.
Collapse
Affiliation(s)
- J Morlon-Guyot
- Laboratoire de Biotechnologie Microbienne Tropicale (LBMT), Institut de Recherche pour le Développement (IRD, ex ORSTOM), 34032 Montpellier, France.
| | | | | | | |
Collapse
|
37
|
Purification and characterization of an extracellular alpha-amylase produced by Lactobacillus manihotivorans LMG 18010(T), an amylolytic lactic acid bacterium. Enzyme Microb Technol 2000; 27:406-413. [PMID: 10938420 DOI: 10.1016/s0141-0229(00)00230-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This work presents the purification and characterization of an extracellular alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) produced by a new lactic acid bacterium: Lactobacillus manihotivorans able to produce L(+) lactic acid from starch. The molecular weight was found to be 135 kDa. The temperature and pH optimum were 55 degrees C and 5.5, respectively, and pI was 3.8. The alpha-amylase had good stability at pH range from 5 to 6 and the enzyme was sensitive to temperature, losing activity within 1 h of incubation at 55 degrees C. Higher thermal stability was observed when the enzyme was incubated in presence of soluble starch. K(m) value and activation energy were 3.44 mg/ml and 32.55 kJ/mol, respectively. Amylose was found to be a better substrate than soluble starch and amylopectin. Al(3+), Fe(3+), and Hg(2+) (10 mM) almost completely inhibited the alpha-amylase.
Collapse
|
38
|
Rodriguez Sanoja R, Morlon-Guyot J, Jore J, Pintado J, Juge N, Guyot JP. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus alpha-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl Environ Microbiol 2000; 66:3350-6. [PMID: 10919790 PMCID: PMC92154 DOI: 10.1128/aem.66.8.3350-3356.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two constructs derived from the alpha-amylase gene (amyA) of Lactobacillus amylovorus were expressed in Lactobacillus plantarum, and their expression products were purified, characterized, and compared. These products correspond to the complete (AmyA) and truncated (AmyADelta) forms of alpha-amylase; AmyADelta lacks the 66-kDa carboxyl-terminal direct-repeating-unit region. AmyA and AmyADelta exhibit similar amylase activities towards a range of soluble substrates (amylose, amylopectin and alpha-cyclodextrin, and soluble starch). The specific activities of the enzymes towards soluble starch are similar, but the K(M) and V(max) values of AmyADelta were slightly higher than those of AmyA, whereas the thermal stability of AmyADelta was lower than that of AmyA. In contrast to AmyA, AmyADelta is unable to bind to beta-cyclodextrin and is only weakly active towards glycogen. More striking is the fact that AmyADelta cannot bind or hydrolyze raw starch, demonstrating that the carboxyl-terminal repeating-unit domain of AmyA is required for raw-starch binding activity.
Collapse
Affiliation(s)
- R Rodriguez Sanoja
- Laboratoire de Biotechnologie Microbienne Tropicale, Institut de Recherche pour le Développement, Montpellier, France
| | | | | | | | | | | |
Collapse
|