1
|
Saeed AU, Rahman MU, Chen HF, Zheng J. Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin. Molecules 2022; 27:molecules27196405. [PMID: 36234941 PMCID: PMC9573744 DOI: 10.3390/molecules27196405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorothricin (CHL) belongs to a spirotetronate antibiotic family produced by Streptomyces antibioticus that inhibits pyruvate carboxylase and malate dehydrogenase. For the biosynthesis of CHL, ChlB3 plays a crucial role by introducing the 6-methylsalicylic acid (6MSA) moiety to ChlB2, an acyl carrier protein (ACP). However, the structural insight and catalytic mechanism of ChlB3 was unclear. In the current study, the crystal structure of ChlB3 was solved at 3.1 Å-resolution and a catalytic mechanism was proposed on the basis of conserved residues of structurally related enzymes. ChlB3 is a dimer having the same active sites as CerJ (a structural homologous enzyme) and uses a KSIII-like fold to work as an acyltransferase. The relaxed substrate specificity of ChlB3 was defined by its catalytic efficiencies (kcat/Km) for non-ACP tethered synthetic substrates such as 6MSA-SNAC, acetyl-SNAC, and cyclohexonyl-SNAC. ChlB3 successfully detached the 6MSA moiety from 6MSA-SNAC substrate and this hydrolytic activity demonstrated that ChlB3 has the potential to catalyze non-ACP tethered substrates. Structural comparison indicated that ChlB3 belongs to FabH family and showed 0.6–2.5 Å root mean square deviation (RMSD) with structural homologous enzymes. Molecular docking and dynamics simulations were implemented to understand substrate active site and structural behavior such as the open and closed conformation of the ChlB3 protein. The resultant catalytic and substrate recognition mechanism suggested that ChlB3 has the potential to use non-native substrates and minimize the labor of expressing ACP protein. This versatile acyltransferase activity may pave the way for manufacturing CHL variants and may help to hydrolyze several thioester-based compounds.
Collapse
Affiliation(s)
- Asad Ullah Saeed
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
2
|
Li N, Chen S, Yan Z, Han J, Ta Y, Pu T, Wang Y. Antimicrobial Activity and Identification of the Biosynthetic Gene Cluster of X-14952B From Streptomyces sp. 135. Front Microbiol 2021; 12:703093. [PMID: 34408734 PMCID: PMC8365161 DOI: 10.3389/fmicb.2021.703093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
The bacterial genus Streptomyces is an important source of antibiotics, and genome mining is a valuable tool to explore the potential of microbial biosynthesis in members of this genus. This study reports an actinomycete strain 135, which was isolated from Qinghai-Tibet Plateau in China and displayed broad antimicrobial activity. The fermentation broth of strain 135 displayed strong antifungal activity (>70%) against Sclerotinia sclerotiorum, Botrytis cinerea, Valsa mali, Phytophthora capsici, Glomerella cingulata, Magnaporthe grisea, Bipolaris maydis, Exserohilum turcicum in vitro, meanwhile possessed significant preventive and curative efficacy against S. sclerotiorum, Gaeumannomyces graminis, and P. capsici on rape leaves (54.04 and 74.18%), wheat (90.66 and 67.99%), and pepper plants (79.33 and 66.67%). X-14952B showed the greatest antifungal activity against S. sclerotiorum and Fusarium graminearum which the 50% inhibition concentration (EC50) were up to 0.049 and 0.04 μg/mL, respectively. Characterization of strain 135 using a polyphasic approach revealed that the strain displayed typical features of the genus Streptomyces. 16S rRNA gene sequencing and phylogenetic analysis demonstrated that the isolate was most closely related to and formed a clade with Streptomyces huasconensis HST28T (98.96% 16S rRNA gene sequence similarity). Average nucleotide identity (ANI) and DNA-DNA hybridization (DDH) values in strain 135 and related type strains were both below the threshold of species determination (91.39 and 56.5%, respectively). OrthoANI values between strain 135 and related type strains are under the cutoff of determining species (<95%). The biosynthetic gene cluster (BGC) designated to X-14952B biosynthesis was identified through genome mining and the possible biosynthesis process was deduced.
Collapse
Affiliation(s)
- Na Li
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Xianyang, China.,Institute Vegetable, Zhangye Academy of Agricultural Sciences, Zhangye, China
| | - Simin Chen
- College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Zhiqiang Yan
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Xianyang, China
| | - Jinhua Han
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Xianyang, China
| | - Yongquan Ta
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Xianyang, China
| | - Taixun Pu
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Xianyang, China
| | - Yonghong Wang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Li H, Zhang M, Li H, Yu H, Chen S, Wu W, Sun P. Discovery of Venturicidin Congeners and Identification of the Biosynthetic Gene Cluster from Streptomyces sp. NRRL S-4. JOURNAL OF NATURAL PRODUCTS 2021; 84:110-119. [PMID: 33356258 DOI: 10.1021/acs.jnatprod.0c01177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical screening of Streptomyces sp. NRRL S-4 with liquid chromatography-mass spectrometry (LC-MS) and the following chromatographic isolation led to the discovery of four 20-membered macrolides, venturicidin A (4) and three new congeners venturicidins D-F (1-3). Genome sequencing of strain S-4 revealed the presence of a biosynthetic gene cluster (BGC) encoding glycosylated type I polyketides (PKS). The BGC designated to venturicidin biosynthesis (ven) was supported by the proposed biosynthetic pathway and confirmed by inactivation of the core PKS gene of venK. Bioinformatic analyses on the conserved motifs and known stereospecificities in PKS modules are consistent with the structure and absolute configuration. This is the first report of venturicidin BGC since the discovery of the macrolide in 1961. In the biological assays, venturicidin A (4) and E (2) displayed a high selective cytotoxicity against acute monocytic leukemia MV-4-11 cells with IC50 values of 0.09 and 0.94 μM, respectively. Venturicidin A (4) also showed a weak inhibitory activity on FMS-like-tyrosine kinase.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Mengxue Zhang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Hongji Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Hai Yu
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Shuo Chen
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
4
|
Biosynthesis of Polyketides in Streptomyces. Microorganisms 2019; 7:microorganisms7050124. [PMID: 31064143 PMCID: PMC6560455 DOI: 10.3390/microorganisms7050124] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Polyketides are a large group of secondary metabolites that have notable variety in their structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol, and anti-inflammatory activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks, and sponges. Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus is best known as one of the polyketides producers. Some examples of polyketides produced by Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin, and caprazamycin. Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases (PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces responsible for producing polyketides. This paper focuses on the biosynthesis of polyketides in Streptomyces with three structurally-different types of PKSs.
Collapse
|
5
|
Dong L, Liu Y. Comparative studies of the catalytic mechanisms of two chorismatases: CH-fkbo and CH-Hyg5. Proteins 2017; 85:1146-1158. [DOI: 10.1002/prot.25279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Lihua Dong
- School of Chemistry and Chemical Engineering; Shandong University; Jinan Shandong 250100 China
- School of Chemistry and Chemical Engineering; Qilu Normal University; Jinan Shandong 250013 China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering; Shandong University; Jinan Shandong 250100 China
| |
Collapse
|
6
|
Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus. ACTA ACUST UNITED AC 2015; 42:949-63. [DOI: 10.1007/s10295-015-1611-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/23/2015] [Indexed: 01/06/2023]
Abstract
Abstract
Rapamycin is an important natural macrolide antibiotic with antifungal, immunosuppressive and anticancer activity produced by Streptomyces hygroscopicus. In this study, a mutant strain obtained by ultraviolet mutagenesis displayed higher rapamycin production capacity compared to the wild-type S. hygroscopicus ATCC 29253. To gain insights into the mechanism of rapamycin overproduction, comparative metabolic profiling between the wild-type and mutant strain was performed. A total of 86 metabolites were identified by gas chromatography–mass spectrometry. Pattern recognition methods, including principal component analysis, partial least squares and partial least squares discriminant analysis, were employed to determine the key biomarkers. The results showed that 22 potential biomarkers were closely associated with the increase of rapamycin production and the tremendous metabolic difference was observed between the two strains. Furthermore, metabolic pathway analysis revealed that amino acids metabolism played an important role in the synthesis of rapamycin, especially lysine, valine, tryptophan, isoleucine, glutamate, arginine and ornithine. The inadequate supply of amino acids, or namely “nitrogen starvation” occurred in the mutant strain. Subsequently, the exogenous addition of amino acids into the fermentation medium of the mutant strain confirmed the above conclusion, and rapamycin production of the mutant strain increased to 426.7 mg/L after adding lysine, approximately 5.8-fold of that in the wild-type strain. Finally, the results of real-time PCR and enzyme activity assays demonstrated that dihydrodipicolinate synthase involved with lysine metabolism played vital role in the biosynthesis of rapamycin. These findings will provide a theoretical basis for further improving production of rapamycin.
Collapse
|
7
|
Juneja P, Hubrich F, Diederichs K, Welte W, Andexer JN. Mechanistic Implications for the Chorismatase FkbO Based on the Crystal Structure. J Mol Biol 2014; 426:105-15. [DOI: 10.1016/j.jmb.2013.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
|
8
|
Draft Genome Sequence of Streptomyces rapamycinicus Strain NRRL 5491, the Producer of the Immunosuppressant Rapamycin. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00581-13. [PMID: 23929477 PMCID: PMC3738893 DOI: 10.1128/genomea.00581-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces rapamycinicus strain NRRL 5491 produces the important drug rapamycin. It has a large genome of 12.7 Mb, of which over 3 Mb consists of 48 secondary metabolite biosynthesis clusters.
Collapse
|
9
|
Qu X, Jiang N, Xu F, Shao L, Tang G, Wilkinson B, Liu W. Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor. MOLECULAR BIOSYSTEMS 2011; 7:852-61. [PMID: 21416665 DOI: 10.1039/c0mb00234h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA.
Collapse
Affiliation(s)
- Xudong Qu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc Natl Acad Sci U S A 2011; 108:4776-81. [PMID: 21383123 DOI: 10.1073/pnas.1015773108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4R,5R)-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway. We show here that the first committed step in its formation is hydrolysis of chorismate to form (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. This chorismatase activity is encoded by fkbO in the FK506 and FK520 biosynthetic gene clusters, and by rapK in the rapamycin gene cluster of Streptomyces hygroscopicus. Purified recombinant FkbO (from FK520) efficiently catalyzed the chorismatase reaction in vitro, as judged by HPLC-MS and NMR analysis. Complementation using fkbO from either the FK506 or the FK520 gene cluster of a strain of S. hygroscopicus specifically deleted in rapK (BIOT-4010) restored rapamycin production, as did supplementation with (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. Although BIOT-4010 produced no rapamycin, it did produce low levels of BC325, a rapamycin analog containing a 3-hydroxybenzoate starter unit. This led us to identify the rapK homolog hyg5 as encoding a chorismatase/3-hydroxybenzoate synthase. Similar enzymes in other bacteria include the product of the bra8 gene from the pathway to the terpenoid natural product brasilicardin. Expression of either hyg5 or bra8 in BIOT-4010 led to increased levels of BC325. Also, purified Hyg5 catalyzed the predicted conversion of chorismate into 3-hydroxybenzoate. FkbO, RapK, Hyg5, and Bra8 are thus founder members of a previously unrecognized family of enzymes acting on chorismate.
Collapse
|
11
|
Zhu X, Zhang W, Chen X, Wu H, Duan Y, Xu Z. Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization. Biotechnol Bioeng 2010; 107:506-15. [DOI: 10.1002/bit.22819] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Zirkle R, Black TA, Gorlach J, Ligon JM, Molnár I. Analysis of a 108-kb Region of theSaccharopolyspora spinosaGenome Covering the Obscurin Polyketide Synthase Locus. ACTA ACUST UNITED AC 2009; 15:123-34. [PMID: 15346767 DOI: 10.1080/1042517042000208167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A 108-kb genomic DNA region of Saccharopolyspora spinosa NRRL 18395, producer of the agriculturally important insecticidal antibiotics spinosyns, has been cloned, sequenced and analyzed to reveal clustered genes encoding a type I polyketide synthase (PKS) complex. The genes for the PKS are flanked by genes encoding homologs of enzymes that are involved in the urea cycle, valine, leucine and isoleucine biosynthesis and energy metabolism. While the disruption of the PKS genes by insertional inactivation was not expected to abolish the production of spinosyns, no differences were found in the antibacterial, antifungal, or insecticidal activities either of the parental and the knockout mutant strains under the growth conditions tested. Deduction of the most likely structure of the polyketide core of the cryptic metabolite, termed obscurin, from the predicted modules and domains of the PKS suggests the formation of a highly unsaturated substituted C22 carboxylic acid that might undergo further processing after its release from the PKS.
Collapse
Affiliation(s)
- Ross Zirkle
- Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
13
|
Haydock SF, Appleyard AN, Mironenko T, Lester J, Scott N, Leadlay PF. Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiology (Reading) 2005; 151:3161-3169. [PMID: 16207901 DOI: 10.1099/mic.0.28194-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The macrolide antibiotic concanamycin A has been identified as an exceptionally potent inhibitor of the vacuolar (V-type) ATPase. Such compounds have been mooted as the basis of a potential drug treatment for osteoporosis, since the V-ATPase is involved in the osteoclast-mediated bone resorption that underlies this common condition. To enable combinatorial engineering of altered concanamycins, the biosynthetic gene cluster governing the biosynthesis of concanamycin A has been cloned fromStreptomyces neyagawaensisand shown to span a region of over 100 kbp of contiguous DNA. An efficient transformation system has been developed forS. neyagawaensisand used to demonstrate the role of the cloned locus in the formation of concanamycin A. Sequence analysis of the 28 ORFs in the region has revealed key features of the biosynthetic pathway, in particular the biosynthetic origin of portions of the backbone, which arise from the unusual polyketide building blocks ethylmalonyl-CoA and methoxymalonyl-ACP, and the origin of the pendant deoxysugar moiety 4′-O-carbamoyl-2′-deoxyrhamnose, as well as the presence of a modular polyketide synthase (PKS) encoded by six giant ORFs. Examination of the methoxymalonyl-specific acyltransferase (AT) domains has led to recognition of an amino acid sequence motif which can be used to distinguish methylmalonyl-CoA- from methoxymalonyl-ACP-specific AT domains in natural PKSs.
Collapse
Affiliation(s)
- Stephen F Haydock
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Anthony N Appleyard
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tatiana Mironenko
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - John Lester
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Natasha Scott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
14
|
Gregory MA, Petkovic H, Lill RE, Moss SJ, Wilkinson B, Gaisser S, Leadlay PF, Sheridan RM. Mutasynthesis of Rapamycin Analogues through the Manipulation of a Gene Governing Starter Unit Biosynthesis. Angew Chem Int Ed Engl 2005; 44:4757-60. [PMID: 15977283 DOI: 10.1002/anie.200462784] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew A Gregory
- Biotica Technology Ltd, Chesterford Research Park, Little Chesterford, Near Saffron Walden, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gregory MA, Petkovic H, Lill RE, Moss SJ, Wilkinson B, Gaisser S, Leadlay PF, Sheridan RM. Mutasynthesis of Rapamycin Analogues through the Manipulation of a Gene Governing Starter Unit Biosynthesis. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462784] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Pelzer S, Wohlert SE, Vente A. Tool-box: tailoring enzymes for bio-combinatorial lead development and as markers for genome-based natural product lead discovery. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:233-59. [PMID: 15645724 DOI: 10.1007/3-540-27055-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- S Pelzer
- Microbiology/Biotechnology, Eberhard-Karls-Universität Tübingen, Germany.
| | | | | |
Collapse
|
17
|
Ayuso-Sacido A, Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. MICROBIAL ECOLOGY 2005; 49:10-24. [PMID: 15614464 DOI: 10.1007/s00248-004-0249-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 01/28/2004] [Indexed: 05/24/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) and type I polyketide synthases (PKS-I) are biosynthetic systems involved in the synthesis of a large number of important biologically active compounds produced by microorganisms, among others by actinomycetes. In order to assess the occurrence of these biosynthetic systems in this metabolically active bacterial group, we designed new PCR primers targeted to specifically amplify NRPS and PKS-I gene sequences from actinomycetes. The sequence analysis of amplified products cloned from two model systems and used to validate these molecular tools has shown the extreme richness of NRPS or PKS-I-like sequences in the actinomycete genome. When these PCR primers were tested on a large collection of 210 reference strains encompassing all major families and genera in actinomycetes, we observed that the wide distribution of these genes in the well-known productive Streptomyces species is also extended to other minor lineages where in some cases very few bioactive compounds have been identified to date.
Collapse
Affiliation(s)
- A Ayuso-Sacido
- Centro de Investigatión Bńsica, Merck Research Laboratories, Merck Sharp and Dohme de España S.A., Josefa Valcńrcel 38, E-28027 Madrid, Spain
| | | |
Collapse
|
18
|
Paradkar A, Trefzer A, Chakraburtty R, Stassi D. Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 2003; 23:1-27. [PMID: 12693442 DOI: 10.1080/713609296] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and anti-tumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the developmental cycle and the production of secondary metabolites. This information provides a solid foundation for the application of structural and functional genomics to the actinomycetes. The complete DNA sequence of the model organism, Streptomyces coelicolor M145, has been published recently, with others expected to follow soon. As more genomic sequences become available, the rational genetic manipulation of these organisms to elucidate metabolic and regulatory networks, to increase the production of commercially important compounds, and to create novel secondary metabolites will be greatly facilitated. This review presents the current state of the field of genomics as it is being applied to the actinomycetes.
Collapse
Affiliation(s)
- Ashish Paradkar
- Small Molecule Discovery, Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
19
|
He J, Magarvey N, Piraee M, Vining LC. The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2817-2829. [PMID: 11577160 DOI: 10.1099/00221287-147-10-2817] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regions of the Streptomyces venezuelae ISP5230 chromosome flanking pabAB, an amino-deoxychorismate synthase gene needed for chloramphenicol (Cm) production, were examined for involvement in biosynthesis of the antibiotic. Three of four ORFs in the sequence downstream of pabAB resembled genes involved in the shikimate pathway. BLASTX searches of GenBank showed that the deduced amino acid sequences of ORF3 and ORF4 were similar to proteins encoded by monofunctional genes for chorismate mutase and prephenate dehydrogenase, respectively, while the sequence of the ORF5 product resembled deoxy-arabino-heptulosonate-7-phosphate (DAHP) synthase, the enzyme that initiates the shikimate pathway. A relationship to Cm biosynthesis was indicated by sequence similarities between the ORF6 product and membrane proteins associated with Cm export. BLASTX searches of GenBank for matches with the translated sequence of ORF1 in chromosomal DNA immediately upstream of pabAB did not detect products relevant to Cm biosynthesis. However, the presence of Cm biosynthesis genes in a 7.5 kb segment of the chromosome beyond ORF1 was inferred when conjugal transfer of the DNA into a blocked S. venezuelae mutant restored Cm production. Deletions in the 7.5 kb segment of the wild-type chromosome eliminated Cm production, confirming the presence of Cm biosynthesis genes in this region. Sequencing and analysis located five ORFs, one of which (ORF8) was deduced from BLAST searches of GenBank, and from characteristic motifs detected in alignments of its deduced amino acid sequence, to be a monomodular nonribosomal peptide synthetase. GenBank searches did not identify ORF7, but matched the translated sequences of ORFs 9, 10 and 11 with short-chain ketoreductases, the ATP-binding cassettes of ABC transporters, and coenzyme A ligases, respectively. As has been shown for ORF2, disrupting ORF3, ORF7, ORF8 or ORF9 blocked Cm production.
Collapse
Affiliation(s)
- J He
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - N Magarvey
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - M Piraee
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - L C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| |
Collapse
|
20
|
Gosset G, Bonner CA, Jensen RA. Microbial origin of plant-type 2-keto-3-deoxy-D-arabino-heptulosonate 7-phosphate synthases, exemplified by the chorismate- and tryptophan-regulated enzyme from Xanthomonas campestris. J Bacteriol 2001; 183:4061-70. [PMID: 11395471 PMCID: PMC95290 DOI: 10.1128/jb.183.13.4061-4070.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes performing the initial reaction of aromatic amino acid biosynthesis, 2-keto-3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthases, exist as two distinct homology classes. The three classic Escherichia coli paralogs are AroA(I) proteins, but many members of the Bacteria possess the AroA(II) class of enzyme, sometimes in combination with AroA(I) proteins. AroA(II) DAHP synthases until now have been shown to be specifically dedicated to secondary metabolism (e.g., formation of ansamycin antibiotics or phenazine pigment). In contrast, here we show that the Xanthomonas campestris AroA(II) protein functions as the sole DAHP synthase supporting aromatic amino acid biosynthesis. X. campestris AroA(II) was cloned in E. coli by functional complementation, and genes corresponding to two possible translation starts were expressed. We developed a 1-day partial purification method (>99%) for the unstable protein. The recombinant AroA(II) protein was found to be subject to an allosteric pattern of sequential feedback inhibition in which chorismate is the prime allosteric effector. L-Tryptophan was found to be a minor feedback inhibitor. An N-terminal region of 111 amino acids may be located in the periplasm since a probable inner membrane-spanning region is predicted. Unlike chloroplast-localized AroA(II) of higher plants, X. campestris AroA(II) was not hysteretically activated by dithiols. Compared to plant AroA(II) proteins, differences in divalent metal activation were also observed. Phylogenetic tree analysis shows that AroA(II) originated within the Bacteria domain, and it seems probable that higher-plant plastids acquired AroA(II) from a gram-negative bacterium via endosymbiosis. The X. campestris AroA(II) protein is suggested to exemplify a case of analog displacement whereby an ancestral aroA(I) species was discarded, with the aroA(II) replacement providing an alternative pattern of allosteric control. Three subgroups of AroA(II) proteins can be recognized: a large, central group containing the plant enzymes and that from X. campestris, one defined by a three-residue deletion near the conserved KPRS motif, and one possessing a larger deletion further downstream.
Collapse
Affiliation(s)
- G Gosset
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, Mexico.
| | | | | |
Collapse
|
21
|
Wilson DJ, Xue Y, Reynolds KA, Sherman DH. Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 2001; 183:3468-75. [PMID: 11344155 PMCID: PMC99645 DOI: 10.1128/jb.183.11.3468-3475.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Streptomyces venezuelae pikD gene from the pikromycin biosynthetic cluster was analyzed, and its deduced product (PikD) was found to have amino acid sequence homology with a small family of bacterial regulatory proteins. Database comparisons revealed two hypothetical domains, including an N-terminal triphosphate-binding domain and a C-terminal helix-turn-helix DNA-binding motif. Analysis of PikD was initiated by deletion of the corresponding gene (pikD) from the chromosome of S. venezuelae, resulting in complete loss of antibiotic production. Complementation by a plasmid carrying pikD restored macrolide biosynthesis, demonstrating that PikD is a positive regulator. Mutations were made in the predicted nucleotide triphosphate-binding domain, confirming the active-site amino acid residues of the Walker A and B motifs. Feeding of macrolide intermediates was carried out to gauge the points of operon control by PikD. Although the pikD mutant strain was unable to convert macrolactones (10-deoxymethynolide and narbonolide) to glycosylated products, macrolide intermediates (YC-17 and narbomycin) were hydroxylated with high efficiency. To study further the control of biosynthesis, presumed promoter regions from pik cluster loci were linked to the xylE reporter and placed in S. venezuelae wild-type and pikD mutant strains. This analysis demonstrated that PikD-mediated transcriptional regulation occurs at promoters controlling expression of pikRII, pikAI, and desI but not those controlling pikRI or pikC.
Collapse
Affiliation(s)
- D J Wilson
- Department of Microbiology and Biological Process Technology Institute, University of Minnesota, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
22
|
Du L, Sánchez C, Shen B. Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 2001; 3:78-95. [PMID: 11162234 DOI: 10.1006/mben.2000.0171] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural and catalytic similarities between modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) inspired us to search for hybrid NRPS-PKS systems. By examining the biochemical and genetic data known to date for the biosynthesis of hybrid peptide-polyketide natural products, we show (1) that the same catalytic sites are conserved between the hybrid NRPS-PKS and normal NRPS or PKS systems, although the ketoacyl synthase domain in NRPS/PKS hybrids is unique, and (2) that specific interpolypeptide linkers exist at both the C- and N-termini of the NRPS and PKS proteins, which presumably play a critical role in facilitating the transfer of the growing peptide or polyketide intermediate between NRPS and PKS modules in hybrid NRPS-PKS systems. These findings provide new insights for intermodular communications in hybrid NRPS-PKS systems and should now be taken into consideration in engineering hybrid peptide-polyketide biosynthetic pathways for making novel "unnatural" natural products.
Collapse
Affiliation(s)
- L Du
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
23
|
Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. CHEMISTRY & BIOLOGY 2000; 7:753-64. [PMID: 11033079 DOI: 10.1016/s1074-5521(00)00021-1] [Citation(s) in RCA: 584] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Blooms of toxic cyanobacteria (blue-green algae) have become increasingly common in the surface waters of the world. Of the known toxins produced by cyanobacteria, the microcystins are the most significant threat to human and animal health. These cyclic peptides are potent inhibitors of eukaryotic protein phosphatases type 1 and 2A. Synthesized nonribosomally, the microcystins contain a number of unusual amino acid residues including the beta-amino polyketide moiety Adda (3-amino-9-methoxy-2,6, 8-trimethyl-10-phenyl-4,6-decadienoic acid). We have characterized the microcystin biosynthetic gene cluster from Microcystis aeruginosa PCC7806. RESULTS A cluster spanning 55 kb, composed of 10 bidirectionally transcribed open reading frames arranged in two putative operons (mcyA-C and mcyD-J), has been correlated with microcystin formation by gene disruption and mutant analysis. Of the 48 sequential catalytic reactions involved in microcystin synthesis, 45 have been assigned to catalytic domains within six large multienzyme synthases/synthetases (McyA-E, G), which incorporate the precursors phenylacetate, malonyl-CoA, S-adenosyl-L-methionine, glutamate, serine, alanine, leucine, D-methyl-isoaspartate, and arginine. The additional four monofunctional proteins are putatively involved in O-methylation (McyJ), epimerization (McyF), dehydration (McyI), and localization (McyH). The unusual polyketide amino acid Adda is formed by transamination of a polyketide precursor as enzyme-bound intermediate, and not released during the process. CONCLUSIONS This report is the first complete description of the biosynthesis pathway of a complex cyanobacterial metabolite. The enzymatic organization of the microcystin assembly represents an integrated polyketide-peptide biosynthetic pathway with a number of unusual structural and enzymatic features. These include the integrated synthesis of a beta-amino-pentaketide precursor and the formation of beta- and gamma-carboxyl-peptide bonds, respectively. Other features of this complex system also observed in diverse related biosynthetic clusters are integrated C- and N-methyltransferases, an integrated aminotransferase, and an associated O-methyltransferase and a racemase acting on acidic amino acids.
Collapse
Affiliation(s)
- D Tillett
- School of Microbiology and Immunology, The University of New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Smith WC, Xiang L, Shen B. Genetic localization and molecular characterization of the nonS gene required for macrotetrolide biosynthesis in Streptomyces griseus DSM40695. Antimicrob Agents Chemother 2000; 44:1809-17. [PMID: 10858335 PMCID: PMC89966 DOI: 10.1128/aac.44.7.1809-1817.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The macrotetrolides are a family of cyclic polyethers derived from tetramerization, in a stereospecific fashion, of the enantiomeric nonactic acid (NA) and its homologs. Isotope labeling experiments established that NA is of polyketide origin, and biochemical investigations demonstrated that 2-methyl-6,8-dihydroxynon-2E-enoic acid can be converted into NA by a cell-free preparation from Streptomyces lividans that expresses nonS. These results lead to the hypothesis that macrotetrolide biosynthesis involves a pair of enantiospecific polyketide pathways. In this work, a 55-kb contiguous DNA region was cloned from Streptomyces griseus DSM40695, a 6.3-kb fragment of which was sequenced to reveal five open reading frames, including the previously reported nonR and nonS genes. Inactivation of nonS in vivo completely abolished macrotetrolide production. Complementation of the nonS mutant by the expression of nonS in trans fully restored its macrotetrolide production ability, with a distribution of individual macrotetrolides similar to that for the wild-type producer. In contrast, fermentation of the nonS mutant in the presence of exogenous (+/-)-NA resulted in the production of nonactin, monactin, and dinactin but not in the production of trinactin and tetranactin. These results prove the direct involvement of nonS in macrotetrolide biosynthesis. The difference in macrotetrolide production between in vivo complementation of the nonS mutant by the plasmid-borne nonS gene and fermentation of the nonS mutant in the presence of exogenously added (+/-)-NA suggests that NonS catalyzes the formation of (-)-NA and its homologs, supporting the existence of a pair of enantiospecific polyketide pathways for macrotetrolide biosynthesis in S. griseus. The latter should provide a model that can be used to study the mechanism by which polyketide synthase controls stereochemistry during polyketide biosynthesis.
Collapse
Affiliation(s)
- W C Smith
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
25
|
Santi DV, Siani MA, Julien B, Kupfer D, Roe B. An approach for obtaining perfect hybridization probes for unknown polyketide synthase genes: a search for the epothilone gene cluster. Gene 2000; 247:97-102. [PMID: 10773448 DOI: 10.1016/s0378-1119(00)00113-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
An approach is described for obtaining 'perfect probes' for type I modular polyketide synthase (PKS) gene clusters that in turn enables the identification of all such gene clusters in a genome. The approach involves sequencing small fragments of a random genomic DNA library containing one or more modular PKS gene clusters, and identifying which fragments emanate from PKS genes. Knowing the approximate sizes of the genome and the target gene cluster, one can predict the the frequency that a PKS gene fragment will be present in the library sequenced. Computer simulations of the approach were applied to the known PKS and non-ribosomal peptide synthetase (NRPS) gene clusters in the Bacillus subtilus genome. The approach was then used to identify PKS gene fragments in a strain of Sorangium cellulosum that produces epothilone. In addition to identifying fragments of the epothilone gene cluster, we obtained 11 unique fragments from other PKS gene clusters; the results suggest that there may be six to eight PKS gene clusters in this organism. In addition, we identified four unique fragments of NRPS genes, demonstrating that the approach is also applicable for identification of these modular gene clusters.
Collapse
Affiliation(s)
- D V Santi
- Kosan Biosciences, 3832 Bay Center Place, Hayward, CA 94545, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
In a new golden age, polyketides are investigated and manipulated with the tools of molecular biology and genetics; hybrid polyketides can be produced. Pharmaceutical companies hope to find new and useful polyketide products, including antibiotics, anthelminthics, and immunosuppressants. This review describes the past developments (largely chemical) on which the present investigations are based, attempts to make sense of the expanding scope of polyketides, looks at the shifting research focus around polyketides, presents a working definition in biosynthetic terms, and takes note of recent work in combinatorial biosynthesis. Also discussed is the failure of the classical enzymological approach to polyketide biosynthesis.
Collapse
Affiliation(s)
- R Bentley
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
27
|
Reeves AR, English RS, Lampel JS, Post DA, Vanden Boom TJ. Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea. J Bacteriol 1999; 181:7098-106. [PMID: 10559177 PMCID: PMC94186 DOI: 10.1128/jb.181.22.7098-7106.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional organization of the erythromycin biosynthetic gene (ery) cluster of Saccharopolyspora erythraea has been examined by a variety of methods, including S1 nuclease protection assays, Northern blotting, Western blotting, and bioconversion analysis of erythromycin intermediates. The analysis was facilitated by the construction of novel mutants containing a S. erythraea transcriptional terminator within the eryAI, eryAIII, eryBIII, eryBIV, eryBV, eryBVI, eryCIV, and eryCVI genes and additionally by an eryAI -10 promoter mutant. All mutant strains demonstrated polar effects on the transcription of downstream ery biosynthetic genes. Our results demonstrate that the ery gene cluster contains four major polycistronic transcriptional units, the largest one extending approximately 35 kb from eryAI to eryG. Two overlapping polycistronic transcripts extending from eryBIV to eryBVII were identified. In addition, seven ery cluster promoter transcription start sites, one each beginning at eryAI, eryBI, eryBIII, eryBVI, and eryK and two beginning at eryBIV, were determined.
Collapse
Affiliation(s)
- A R Reeves
- Fermentation Microbiology Research and Development, Abbott Laboratories, North Chicago, Illinois 60064-4000, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Erythromycin, a complex polyketide antibiotic belonging to the macrolide class, is produced as a natural product by the bacterium Saccharopolyspora erythraea. The genes encoding the enzymes responsible for the synthesis of the antibiotic have been cloned and sequenced, revealing that the polyketide backbone of the molecule in produced by a polyketide synthase (PKS) composed of multifunctional proteins that contain discrete functional domains for each step of synthesis. Genetic manipulation of the PKS-encoding genes can result in predictable changes in the structure of the polyketide component of erythromycin, many of which are not easily achievable through standard chemical derivatization or synthesis. Many of the changes can be combined to lead to the further generation of navel structures. Whereas genetic engineering of the erythromycin structure has been practiced for a number of years, the re cent and continuing discoveries of modular PKSs for the synthesis of many other important complex polyketides has raised the possibility of generating novel structures in these molecules by genetic manipulation, as well.
Collapse
Affiliation(s)
- L Katz
- Kosan Biosciences, Inc., Hayward, California 94545, USA.
| | | |
Collapse
|
29
|
Valdez F, González-Cerón G, Kieser HM, Servı N-González L. The Streptomyces coelicolor A3(2) lipAR operon encodes an extracellular lipase and a new type of transcriptional regulator. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2365-2374. [PMID: 10517589 DOI: 10.1099/00221287-145-9-2365] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A region of the Streptomyces coelicolor A3(2) chromosome was identified and cloned by using as a probe the lipase gene from Streptomyces exfoliatus M11. The cloned region consisted of 6286 bp, and carried a complete lipase gene, lipA, as well as a gene encoding a transcriptional activator (lipR). The S. coelicolor A3(2) lipA gene encodes a functional extracellular lipase 82% identical to the S. exfoliatus M11 lipase; the partially purified S. coelicolor enzyme showed a preference for substrates of short to medium chain length. Transcription of lipA was completely dependent on the presence of lipR, and occurred from a single promoter similar to the lipA promoters of S. exfoliatus M11 and Streptomyces albus G. These three Streptomyces lipA promoters have well-conserved -10 and -35 regions, as well as additional conserved sequences upstream of the -35 region, which could function as targets for transcriptional activation by the cognate LipR regulators. The Streptomyces LipR activators are related to other bacterial regulators of a similar size, constituting a previously unidentified family of proteins that includes MalT, AcoK, AlkS, AfsR, five mycobacterial proteins of unknown function and some Streptomyces regulators in antibiotic synthesis clusters. A lipase-deficient strain of S. coelicolor was constructed and found to be slightly affected in production of the polyketide antibiotic actinorhodin.
Collapse
Affiliation(s)
- Fabiola Valdez
- Departamento de Biologı́a Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 DF, Mexico1
| | - Gabriela González-Cerón
- Departamento de Biologı́a Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 DF, Mexico1
| | - Helen M Kieser
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK2
| | - Luis Servı N-González
- Departamento de Biologı́a Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 DF, Mexico1
| |
Collapse
|
30
|
Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A 1999; 96:9509-14. [PMID: 10449723 PMCID: PMC22239 DOI: 10.1073/pnas.96.17.9509] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of the gene cluster from Streptomyces avermitilis that governs the biosynthesis of the polyketide anthelmintic avermectin revealed that it contains four large ORFs encoding giant multifunctional polypeptides of the avermectin polyketide synthase (AVES 1, AVES 2, AVES 3, and AVES 4). These clustered polyketide synthase genes responsible for avermectin biosynthesis together encode 12 homologous sets of enzyme activities (modules), each catalyzing a specific round of polyketide chain elongation. The clustered genes encoding polyketide synthase are organized as two sets of six modular repeats, aveA1-aveA2 and aveA3-aveA4, which are convergently transcribed. The total of 55 constituent active sites makes this the most complex multifunctional enzyme system identified to date. The sequenced DNA region contains 14 additional ORFs, some of which encode polypeptides governing other key steps in avermectin biosynthesis. Between the two sets of polyketide synthase genes lie two genes involved in postpolyketide modification, one of which encodes cynthochrome P450 hydroxylase that probably catalyzes furan ring formation at C6 to C8a. Immediately right of the large polyketide synthase genes is a set of genes involved in oleandrose biosynthesis and its transglycosylation to polyketide-derived aglycons. This cluster includes nine genes, but one is not functional in the biosynthesis of avermectin. On the left side of polyketide synthase genes, two ORFs encoding methyltransferase and nonpolyketide synthase ketoreductase involved in postpolyketide modification are located to the left of the polyketide synthase genes, and an adjacent gene encodes a regulatory function that may be involved in activation of the transcription of avermectin biosynthetic genes.
Collapse
Affiliation(s)
- H Ikeda
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
The shikimate pathway links metabolism of carbohydrates to biosynthesis of aromatic compounds. In a sequence of seven metabolic steps, phosphoenolpyruvate and erythrose 4-phosphate are converted to chorismate, the precursor of the aromatic amino acids and many aromatic secondary metabolites. All pathway intermediates can also be considered branch point compounds that may serve as substrates for other metabolic pathways. The shikimate pathway is found only in microorganisms and plants, never in animals. All enzymes of this pathway have been obtained in pure form from prokaryotic and eukaryotic sources and their respective DNAs have been characterized from several organisms. The cDNAs of higher plants encode proteins with amino terminal signal sequences for plastid import, suggesting that plastids are the exclusive locale for chorismate biosynthesis. In microorganisms, the shikimate pathway is regulated by feedback inhibition and by repression of the first enzyme. In higher plants, no physiological feedback inhibitor has been identified, suggesting that pathway regulation may occur exclusively at the genetic level. This difference between microorganisms and plants is reflected in the unusually large variation in the primary structures of the respective first enzymes. Several of the pathway enzymes occur in isoenzymic forms whose expression varies with changing environmental conditions and, within the plant, from organ to organ. The penultimate enzyme of the pathway is the sole target for the herbicide glyphosate. Glyphosate-tolerant transgenic plants are at the core of novel weed control systems for several crop plants.
Collapse
Affiliation(s)
- Klaus M. Herrmann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907; e-mail: , Monsanto Company, St. Louis, Missouri 63198; e-mail:
| | | |
Collapse
|
32
|
Bleomycin Biosynthesis inStreptomyces verticillusATCC15003: A Model of Hybrid Peptide and Polyketide Biosynthesis. Bioorg Chem 1999. [DOI: 10.1006/bioo.1998.1131] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Xue Y, Wilson D, Zhao L, Liu HW, Sherman DH. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. CHEMISTRY & BIOLOGY 1998; 5:661-7. [PMID: 9831532 DOI: 10.1016/s1074-5521(98)90293-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND . Streptomyces venezuelae produces two groups of antibiotics that include the 12-membered ring macrolides methymycin and neomethymycin, and the 14-membered ring macrolide pikromycin. Methymycin and pikromycin are derived from the corresponding precursors, YC-17 and narbomycin, respectively, by hydroxylation of the tertiary carbon position (C-10 in YC-17 or C-12 in narbomycin) on the macrolactone ring. In contrast, neomethymycin is derived from YC-17 by hydroxylation of the secondary carbon (C-12) of the propionyl starter unit sidechain. RESULTS . Using a genetic and biochemical approach we have characterized a single P450 hydroxylase (PikC) in the methymycin/pikromycin biosynthetic gene cluster (pik) from S. venezuelae. Inactivation of pikC abolished production of all hydroxylated macrolides, with corresponding accumulation of YC-17 and narbomycin in the culture medium. The enzyme was produced efficiently and purified as a His-tagged protein from recombinant Escherichia coli cells. Purified PikC effectively converts YC-17 into methymycin and neomethymycin and narbomycin into pikromycin in vitro. CONCLUSIONS . These results demonstrate that PikC is responsible for the conversion of YC-17 to methymycin and neomethymycin, and narbomycin to pikromycin in S. venezuelae. This substrate flexibility is unique and represents the first example of a P450 hydroxylase that can accept 12- and 14-membered ring macrolides as substrates, as well as functionalize at two positions on the macrolactone system. The broad substrate specificity of PikC provides a potentially valuable entry into the construction of novel macrolide- and ketolide-based antibiotics.
Collapse
Affiliation(s)
- Y Xue
- Department of Microbiology Biological Process Technology Institute University of Minnesota Minneapolis MN 55455 USA
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- K A Reynolds
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
35
|
Pereda A, Summers RG, Stassi DL, Ruan X, Katz L. The loading domain of the erythromycin polyketide synthase is not essential for erythromycin biosynthesis in Saccharopolyspora erythraea. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):543-553. [PMID: 9493390 DOI: 10.1099/00221287-144-2-543] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
6-Deoxyerythronolide B synthase (DEBS) is a large multifunctional enzyme that catalyses the biosynthesis of the erythromycin polyketide aglycone. DEBS is organized into six modules, each containing the enzymic domains required for a single condensation of carboxylic acid residues which make up the growing polyketide chain. Module 1 is preceded by loading acyltransferase (AT-L) and acyl carrier protein (ACP-L) domains, hypothesized to initiate polyketide chain growth with a propionate-derived moiety. Using recombinant DNA technology several mutant strains of Saccharopolyspora erythraea were constructed that lack the initial AT-L domain or that lack both the AT-L and ACP-L domains. These strains were still able to produce erythromycin, although at much lower levels than that produced by the wild-type strain. In addition, the AT-L domain expressed as a monofunctional enzyme was able to complement the deletion of this domain from the PKS, resulting in increased levels of erythromycin production. These findings indicate that neither the initial AT-L nor the ACP-L domains are required to initiate erythromycin biosynthesis; however, without these domains the efficiency of erythromycin biosynthesis is decreased significantly. It is proposed that in these mutants the first step in erythromycin biosynthesis is the charging of KS1 with propionate directly from propionyl-CoA.
Collapse
Affiliation(s)
- Ana Pereda
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | - Richard G Summers
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | - Diane L Stassi
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | - Xiaoan Ruan
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | - Leonard Katz
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| |
Collapse
|
36
|
August PR, Tang L, Yoon YJ, Ning S, Müller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG. Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. CHEMISTRY & BIOLOGY 1998; 5:69-79. [PMID: 9512878 DOI: 10.1016/s1074-5521(98)90141-7] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The ansamycin class of antibiotics are produced by various Actinomycetes. Their carbon framework arises from the polyketide pathway via a polyketide synthase (PKS) that uses an unusual starter unit. Rifamycin (rif), produced by Amycolatopsis mediterranei, is the archetype ansamycin and it is medically important. Although its basic precursors (3-amino-5-hydroxy benzoic acid AHBA, and acetic and propionic acids) had been established, and several biosynthetic intermediates had been identified, very little was known about the origin of AHBA nor had the PKS and the various genes and enzymes that modify the initial intermediate been characterized. RESULTS A set of 34 genes clustered around the rifK gene encoding AHBA synthase were defined by sequencing all but 5 kilobases (kb) of a 95 kb contiguous region of DNA from A. mediterranei. The involvement of some of the genes in the biosynthesis of rifamycin B was examined. At least five genes were shown to be essential for the synthesis of AHBA, five genes were determined to encode the modular type I PKS that uses AHBA as the starter unit, and 20 or more genes appear to govern modification of the polyketide-derived framework, and rifamycin resistance and export. Putative regulatory genes were also identified. Disruption of the PKS genes at the end of rifA abolished rifamycin B production and resulted in the formation of P8/1-OG, a known shunt product of rifamycin biosynthesis, whereas disruption of the orf6 and orf9 genes, which may encode deoxysugar biosynthesis enzymes, had no apparent effect. CONCLUSIONS Rifamycin production in A. mediterranei is governed by a single gene cluster consisting of structural, resistance and export, and regulatory genes. The genes characterized here could be modified to produce novel forms of the rifamycins that may be effective against rifamycin-resistant microorganisms.
Collapse
Affiliation(s)
- P R August
- Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|