1
|
Xu B, Meng Y, Jin Y. RNA structures in alternative splicing and back-splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1626. [PMID: 32929887 DOI: 10.1002/wrna.1626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Alternative splicing greatly expands the transcriptomic and proteomic diversities related to physiological and developmental processes in higher eukaryotes. Splicing of long noncoding RNAs, and back- and trans- splicing further expanded the regulatory repertoire of alternative splicing. RNA structures were shown to play an important role in regulating alternative splicing and back-splicing. Application of novel sequencing technologies made it possible to identify genome-wide RNA structures and interaction networks, which might provide new insights into RNA splicing regulation in vitro to in vivo. The emerging transcription-folding-splicing paradigm is changing our understanding of RNA alternative splicing regulation. Here, we review the insights into the roles and mechanisms of RNA structures in alternative splicing and back-splicing, as well as how disruption of these structures affects alternative splicing and then leads to human diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
2
|
Pan S, Bruford MW, Wang Y, Lin Z, Gu Z, Hou X, Deng X, Dixon A, Graves JAM, Zhan X. Transcription-Associated Mutation Promotes RNA Complexity in Highly Expressed Genes-A Major New Source of Selectable Variation. Mol Biol Evol 2018; 35:1104-1119. [PMID: 29420738 PMCID: PMC5913671 DOI: 10.1093/molbev/msy017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alternatively spliced transcript isoforms are thought to play a critical role for functional diversity. However, the mechanism generating the enormous diversity of spliced transcript isoforms remains unknown, and its biological significance remains unclear. We analyzed transcriptomes in saker falcons, chickens, and mice to show that alternative splicing occurs more frequently, yielding more isoforms, in highly expressed genes. We focused on hemoglobin in the falcon, the most abundantly expressed genes in blood, finding that alternative splicing produces 10-fold more isoforms than expected from the number of splice junctions in the genome. These isoforms were produced mainly by alternative use of de novo splice sites generated by transcription-associated mutation (TAM), not by the RNA editing mechanism normally invoked. We found that high expression of globin genes increases mutation frequencies during transcription, especially on nontranscribed DNA strands. After DNA replication, transcribed strands inherit these somatic mutations, creating de novo splice sites, and generating multiple distinct isoforms in the cell clone. Bisulfate sequencing revealed that DNA methylation may counteract this process by suppressing TAM, suggesting DNA methylation can spatially regulate RNA complexity. RNA profiling showed that falcons living on the high Qinghai-Tibetan Plateau possess greater global gene expression levels and higher diversity of mean to high abundance isoforms (reads per kilobases per million mapped reads ≥18) than their low-altitude counterparts, and we speculate that this may enhance their oxygen transport capacity under low-oxygen environments. Thus, TAM-induced RNA diversity may be physiologically significant, providing an alternative strategy in lifestyle evolution.
Collapse
Affiliation(s)
- Shengkai Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Michael W Bruford
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, China.,Organisms and Environment Division, School of Biosciences and Sustainable Place Institute, Cardiff University, Cardiff, United Kingdom
| | - Yusong Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, China
| | - Zhongru Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xian Hou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Andrew Dixon
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, China.,Emirates Falconers' Club, Abu Dhabi, UAE
| | | | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Whitmill A, Timani KA, Liu Y, He JJ. Tip110: Physical properties, primary structure, and biological functions. Life Sci 2016; 149:79-95. [PMID: 26896687 DOI: 10.1016/j.lfs.2016.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
HIV-1 Tat-interacting protein of 110kDa (Tip110), also referred to as squamous cell carcinoma antigen recognized by T cells 3 (Sart3), p110 or p110(nrb), was initially identified as a cDNA clone (KIAA0156) without annotated functions. Over the past twenty years, several functions have been attributed to this protein. The proposed biological functions include roles for Tip110 in pre-mRNA splicing, gene transcription, stem cell biology, and development. Dysregulation of Tip110 is also a contributing factor in the development of cancer and other human diseases. It is clear that our understanding of this protein is rapidly evolving. In this review, we aimed to provide a summary of all the existing literature on this gene/protein and its proposed biological functions.
Collapse
Affiliation(s)
- Amanda Whitmill
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Khalid Amine Timani
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ying Liu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
4
|
Chen J, Yang JT, Doctor DL, Rawlins BA, Shields BC, Vaughn JC. 5'-UTR mediated translational control of splicing assembly factor RNP-4F expression during development of the Drosophila central nervous system. Gene 2013; 528:154-62. [PMID: 23892091 DOI: 10.1016/j.gene.2013.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022]
Abstract
Drosophila RNP-4F is a highly conserved protein from yeast to human and functions as a spliceosome assembly factor during pre-mRNA splicing. Two major developmentally regulated rnp-4f mRNA isoforms have been described during fly development, designated "long" and "short," differing by a 177-nt tract in the 5'-UTR. This region potentially folds into a single long stable stem-loop by pairing of intron 0 and part of exon 2. Since the coding potential for the two isoforms is identical, the interesting question arises as to the functional significance of this evolutionarily-conserved 5'-UTR feature. Here we describe the effects of wild-type and mutated stem-loop on modulation of rnp-4f gene expression in embryos using a GFP reporter assay. In this work, a new GFP expression vector designated pUAS-Neostinger was constructed. The UAS-GAL4 system was utilized to trigger GFP expression using tissue-specific promoter driver fly lines. Fluorescence microscopy visualization, Western blotting and real-time qRT-PÇR were used to study and quantify GFP reporter protein and mRNA levels. A significant increase in GFP reporter protein expression due to presence of the wild-type stem-loop sequence/structure was unexpectedly observed with no concomitant increase in GFP reporter mRNA levels, showing that the 177-nt region enhancement acts posttranscriptionally. The effects of potential cis-acting elements within the stem-loop were evaluated using the reporter assay in two mutant constructs. Results of GFP reporter over-expression show that RNP-4F translational regulation is highly sensitive in the developing fly central nervous system. The potential molecular mechanism behind the observed translational enhancement is discussed.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | |
Collapse
|
5
|
Ghosh S, Wang Y, Cook JA, Chhiba L, Vaughn JC. A molecular, phylogenetic and functional study of the dADAR mRNA truncated isoform during Drosophila embryonic development reveals an editing-independent function. ACTA ACUST UNITED AC 2013; 3:20-30. [PMID: 25414802 PMCID: PMC4235677 DOI: 10.4236/ojas.2013.34a2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine Deaminases Acting on RNA (ADARs) have been studied in many animal phyla, where they have been shown to deaminate specific adenosines into inosines in duplex mRNA regions. In Drosophila, two isoform classes are encoded, designated full-length (contains the editase domain) and truncated (lacks this domain). Much is known about the full-length isoform, which plays a major role in regulating functions of voltage-gated ion channel proteins in the adult brain. In contrast, almost nothing is known about the functional significance of the truncated isoform. In situ hybridization shows that both isoform mRNA classes are maternally derived and transcripts for both localize primarily to the developing central nervous system. Quantitative RT-PCR shows that about 35% of all dADAR mRNA transcripts belong to the truncated class in embryos. 3′-RACE results show that abundance of the truncated isoform class is developmentally regulated, with a longer transcript appearing after the mid-blastula transition. 3′-UTR sequences for the truncated isoform have been determined from diverse Drosophila species and important regulatory regions including stop codons have been mapped. Western analysis shows that both mRNA isoform classes are translated into protein during embryonic development, as full-length variant levels gradually diminish. The truncated protein isoform is present in every Drosophila species studied, extending over a period spanning about 40 × 106 years, implying a conserved function. Previous work has shown that a dADAR protein isoform binds to the evolutionarily conserved rnp-4f pre-mRNA stem-loop located in the 5′-UTR to regulate splicing, while no RNA editing was observed, suggesting the hypothesis that it is the non-catalytic truncated isoform which regulates splicing. To test this hypothesis, we have utilized RNAi technology, the results of which support the hypothesis. These results demonstrate a novel, non-catalytic function for the truncated dADAR protein isoform in Drosophila embryonic development, which is very likely evolutionarily conserved.
Collapse
Affiliation(s)
- Sushmita Ghosh
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA
| | - Yaqi Wang
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA
| | - John A Cook
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA
| | - Lea Chhiba
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA
| | - Jack C Vaughn
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA
| |
Collapse
|
6
|
Vaughn JC, Ghosh S, Chen J. A phylogenetic study of Drosophila splicing assembly chaperone RNP-4F associated U4-/U6-snRNA secondary structure. ACTA ACUST UNITED AC 2013; 3:36-48. [PMID: 25419488 PMCID: PMC4237228 DOI: 10.4236/ojas.2013.34a2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The rnp-4f gene in Drosophila melanogaster encodes nuclear protein RNP-4F. This encoded protein is represented by homologs in other eukaryotic species, where it has been shown to function as an intron splicing assembly factor. Here, RNP-4F is believed to initially bind to a recognition sequence on U6-snRNA, serving as a chaperone to facilitate its association with U4-snRNA by intermolecular hydrogen bonding. RNA conformations are a key factor in spliceosome function, so that elucidation of changing secondary structures for interacting snRNAs is a subject of considerable interest and importance. Among the five snRNAs which participate in removal of spliceosomal introns, there is a growing consensus that U6-snRNA is the most structurally dynamic and may constitute the catalytic core. Previous studies by others have generated potential secondary structures for free U4- and U6-snRNAs, including the Y-shaped U4-/U6-snRNA model. These models were based on study of RNAs from relatively few species, and the popular Y-shaped model remains to be systematically re-examined with reference to the many new sequences generated by recent genomic sequencing projects. We have utilized a comparative phylogenetic approach on 60 diverse eukaryotic species, which resulted in a revised and improved U4-/U6-snRNA secondary structure. This general model is supported by observation of abundant compensatory base mutations in every stem, and incorporates more of the nucleotides into base-paired associations than in previous models, thus being more energetically stable. We have extensively sampled the eukaryotic phylogenetic tree to its deepest roots, but did not find genes potentially encoding either U4- or U6-snRNA in the Giardia and Trichomonas data-bases. Our results support the hypothesis that nuclear introns in these most deeply rooted eukaryotes may represent evolutionary intermediates, sharing characteristics of both group II and spliceosomal introns. An unexpected result of this study was discovery of a potential competitive binding site for Drosophila splicing assembly factor RNP-4F to a 5’-UTR regulatory region within its own premRNA, which may play a role in negative feedback control.
Collapse
Affiliation(s)
- Jack C Vaughn
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA
| | - Sushmita Ghosh
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA
| | - Jing Chen
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, USA
| |
Collapse
|
7
|
Lakshmi GG, Ghosh S, Jones GP, Parikh R, Rawlins BA, Vaughn JC. An RNA electrophoretic mobility shift and mutational analysis of rnp-4f 5'-UTR intron splicing regulatory proteins in Drosophila reveals a novel new role for a dADAR protein isoform. Gene 2012; 511:161-8. [PMID: 23026215 PMCID: PMC4123196 DOI: 10.1016/j.gene.2012.09.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/09/2012] [Accepted: 09/12/2012] [Indexed: 01/09/2023]
Abstract
Alternative splicing greatly enhances the diversity of proteins encoded by eukaryotic genomes, and is also important in gene expression control. In contrast to the great depth of knowledge as to molecular mechanisms in the splicing pathway itself, relatively little is known about the regulatory events behind this process. The 5'-UTR and 3'-UTR in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation, and nearly 4000 of the roughly 14,000 protein coding genes in Drosophila contain introns of unknown functional significance in their 5'-UTR. Here we report the results of an RNA electrophoretic mobility shift analysis of Drosophila rnp-4f 5'-UTR intron 0 splicing regulatory proteins. The pre-mRNA potential regulatory element consists of an evolutionarily-conserved 177-nt stem-loop arising from pairing of intron 0 with part of adjacent exon 2. Incubation of in vitro transcribed probe with embryo protein extract is shown to result in two shifted RNA-protein bands, and protein extract from a dADAR null mutant fly line results in only one shifted band. A mutated stem-loop in which the conserved exon 2 primary sequence is changed but secondary structure maintained by introducing compensatory base changes results in diminished band shifts. To test the hypothesis that dADAR plays a role in intron splicing regulation in vivo, levels of unspliced rnp-4f mRNA in dADAR mutant were compared to wild-type via real-time qRT-PCR. The results show that during embryogenesis unspliced rnp-4f mRNA levels fall by up to 85% in the mutant, in support of the hypothesis. Taken together, these results demonstrate a novel role for dADAR protein in rnp-4f 5'-UTR alternative intron splicing regulation which is consistent with a previously proposed model.
Collapse
Affiliation(s)
- G. Girija Lakshmi
- Department of Zoology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, United States
| | - Sushmita Ghosh
- Department of Zoology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, United States
| | - Gabriel P. Jones
- Department of Zoology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, United States
| | - Roshni Parikh
- Department of Zoology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, United States
| | - Bridgette A. Rawlins
- Department of Zoology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, United States
| | - Jack C. Vaughn
- Department of Zoology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, United States
| |
Collapse
|
8
|
Chen J, Lakshmi GG, Hays DL, McDowell KM, Ma E, Vaughn JC. Spatial and temporal expression of dADAR mRNA and protein isoforms during embryogenesis in Drosophila melanogaster. Differentiation 2009; 78:312-20. [PMID: 19720447 DOI: 10.1016/j.diff.2009.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/22/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
Abstract
Adenosine Deaminases Acting on RNA (ADARs) function to co-transcriptionally deaminate specific (or non-specific) adenosines to inosines within pre-mRNAs, using double-stranded RNAs as substrate. In both Drosophila and mammals, the best-studied ADAR functions are to catalyze specific nucleotide conversions within mRNAs encoding various ligand- or voltage-gated ion channel proteins within the adult brain. In contrast, ADARs within developing fly embryos have scarcely been studied, in part because they contain little or no editase activity, raising interesting questions as to their functional significance. Quantitative RT-PCR shows that two major developmentally regulated mRNA isoform classes are produced (full-length and truncated), which arise by alternative splicing and also alternative 3'-end formation. In situ localization of specific dADAR mRNA isoforms during embryogenesis reveals that the full-length class is found primarily within the developing germ band and central nervous system, whereas the truncated isoform is mostly located in gut endothelium. Developmental Western immunoblots show that both isoform classes are expressed into protein during embryogenesis. Both the rnp-4f 5'-UTR unspliced isoform and the full-length dADAR mRNA primarily localize in the embryonic germ band and subsequently throughout the developing central nervous system. Previous studies have shown that some rnp-4f pre-mRNAs are extensively edited by dADAR in the adult brain. Computer predictions suggest that intron-exon pairing promotes formation of an evolutionarily conserved secondary structure in the rnp-4f 5'-UTR, forming a 177-nt RNA duplex resembling an editing site complementary sequence, which is shown to be associated with splicing failure and to generate a long isoform. Taken together, these observations led us to explore the possibility that interaction between rnp-4f pre-mRNA and nuclear full-length dADAR protein may occur during embryogenesis. In dADAR null mutants, rnp-4f 5'-UTR alternative splicing is significantly diminished, suggesting a non-catalytic role for dADAR in splicing regulation. A working model is proposed which provides a possible molecular mechanism.
Collapse
Affiliation(s)
- Jing Chen
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | |
Collapse
|
9
|
Chen J, Concel VJ, Bhatla S, Rajeshwaran R, Smith DLH, Varadarajan M, Backscheider KL, Bockrath RA, Petschek JP, Vaughn JC. Alternative splicing of an rnp-4f mRNA isoform retaining an evolutionarily-conserved 5'-UTR intronic element is developmentally regulated and shown via RNAi to be essential for normal central nervous system development in Drosophila melanogaster. Gene 2007; 399:91-104. [PMID: 17582706 DOI: 10.1016/j.gene.2007.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 01/08/2023]
Abstract
Two major mRNA isoforms arise via alternative splicing in the 5'-UTR of Drosophila splicing assembly factor rnp-4f pre-mRNA, designated "long" (unspliced) and "short" (alternatively spliced). The coding potential for the two isoforms is identical, raising interesting questions as to the control mechanism and functional significance of this 5'-UTR intronic splicing decision. Developmental Northerns show that two temporally distinct rnp-4f mRNA degradation episodes occur during embryogenesis. The first occurs at the midblastula transition (MBT) stage and involves degradation of both maternally-derived transcripts, while the second involves only the long mRNA isoform and occurs during late embryo stages. Immunostaining of ovaries and staged embryos combined with results from developmental Westerns shows that maternal RNP-4F protein persists into fertilized eggs at high levels, associated with a burst of long isoform-specific transcription which begins just after the MBT and peaks in mid-embryo stages. These observations are discussed in support of a putative negative feedback control model for modulation of RNP-4F translation. In situ hybridization shows that the long isoform is relatively abundant throughout the developing embryonic germ band and central nervous system (CNS), especially along the dorsal roof of the ventral nerve cord. Long rnp-4f mRNA knockdown via RNAi reveals a variety of CNS abnormalities, which leads us to postulate that this isoform acts upstream of other genes which have been shown to be important for normal CNS development.
Collapse
Affiliation(s)
- Jing Chen
- Department of Zoology, Miami University, Oxford, OH 45056, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hirons L, Gardiner EJ, Hunter CA, Willett P. Structural DNA Profiles: Single Sequence Queries. J Chem Inf Model 2006; 46:743-52. [PMID: 16563005 DOI: 10.1021/ci050385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural DNA profiles use the structural properties of the constituent octamers either to observe any characteristics of a single sequence that are unusual (a single sequence query) or to visualize a pattern common to a set of sequences (a multiple sequence query). They are an aid in understanding structural reasons for functional DNA activity. Profiles that answer single sequence queries are introduced and Profile Manager (a software application developed to automate profile generation) is presented. Two sequences that are similar by their nucleotide composition but are known to be very different by structure are analyzed, resulting in useful illustrations that agree with the experimental nuclear magnetic resonance structures.
Collapse
Affiliation(s)
- Linda Hirons
- Centre for Chemical Biology, Krebs Institute for Biomolecular Science, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | | | | |
Collapse
|
11
|
Fetherson RA, Strock SB, White KN, Vaughn JC. Alternative pre-mRNA splicing in Drosophila spliceosomal assembly factor RNP-4F during development. Gene 2006; 371:234-45. [PMID: 16497447 DOI: 10.1016/j.gene.2005.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/04/2005] [Accepted: 12/03/2005] [Indexed: 11/26/2022]
Abstract
The 5'- and 3'-UTR regions in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation. Here we report the results of a systematic study of alternative splicing in rnp-4f, which encodes a Drosophila spliceosomal assembly factor. We show that most of the nine introns are constitutively spliced, but several patterns of alternative splicing are observed in two pre-mRNA regions including the 5'-UTR. Intron V is shown to be of recent evolutionary origin and is infrequently spliced, resulting in generation of an in-frame stop codon and a predicted truncated protein lacking a nuclear localization signal, so that alternative splicing regulates its subcellular localization. Intron 0, located in the 5'-UTR, is subject to three different splicing decisions in D. melanogaster. Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA isoforms in this species. A switch in relative isoform abundance occurs during mid-embryo stages, when the larger isoform becomes more abundant. This isoform is shown to represent intron 0 unspliced mRNA, whereas the smaller transcript represents the product of alternative splicing. Comparative genomic analysis predicts that intron 0 is present in diverse Drosophila species. Intron 0 splicing results in loss of an evolutionarily conserved stem-loop constituting a potential cis-regulatory element at the 3'-splice site. A model is proposed for the role of this element both in 5'-UTR alternative splicing decisions and in RNP-4F translational modulation. Preliminary evidences in support of our model are discussed.
Collapse
|
12
|
Peters NT, Rohrbach JA, Zalewski BA, Byrkett CM, Vaughn JC. RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA (NEW YORK, N.Y.) 2003; 9:698-710. [PMID: 12756328 PMCID: PMC1370437 DOI: 10.1261/rna.2120703] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 03/06/2003] [Indexed: 05/19/2023]
Abstract
We have previously described an example of extensively A-to-G edited cDNA derived from adult heads of the fruitfly Drosophila melanogaster. In that study, the source of the predicted antisense RNA pairing strand for template recognition by dADAR editase was not identified, and the biological significance of the observed hyperediting was not known. Here, we address each of these questions. 4f-rnp and sas-10 are closely adjacent X-linked genes located on opposite DNA strands that produce convergent transcripts. We show that developmentally regulated antisense sas-10 readthrough mRNA arises by activation of an upstream promoter P2 during the late embryo stage of fly development. The sas-10 readthrough transcripts pair with 4f-rnp mRNA to form double-stranded molecules, as indicated by A-to-G editing observed in both RNA strands. It would be predicted that perfect RNA duplexes would be targeted for modification/degradation by enzyme pathways that recognize double-stranded RNAs, leading to decline in 4f-rnp mRNA levels, and this is what we observe. The observation using quantitative RT-PCR that sas-10 readthrough and 4f-rnp transcript levels are inversely related suggests a role for the antisense RNA in posttranscriptional regulation of 4f-rnp gene expression during development. Potential molecular mechanisms that could lead to this result are discussed, one of which is targeted transcript degradation via the RNAi pathway. Insofar as the dADAR editase and RNAi pathways are known to be constitutive in this system, it is likely that control of antisense RNA transcription is the rate-limiting factor. The results provide insight into roles of naturally occurring antisense RNAs in regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Nick T Peters
- Department of Zoology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
RNA editing is defined as a post-transcriptional change of a gene-encoded sequence at the RNA level, excluding alterations due to processes such as pre-mRNA splicing and 3'-end formation. RNA editing is found in many organisms and can occur either by the insertion or deletion of nucleotides or by the substitution of bases by modification. The nucleoside inosine (I) was first detected in cytoplasmic tRNA and was later found in messenger RNA precursors (pre-mRNAs) and in viral transcripts. It is formed by hydrolytic deamination of a genomically encoded adenosine (A) at C6 of the base and this reaction is catalysed by a family of related enzymes. ADARs (for adenosine deaminases acting on RNA) catalyse A to I conversion either promiscuously or site-specifically in pre-mRNAs, viral RNAs and synthetic double-stranded RNAs (dsRNAs), whereas ADATs (for adenosine deaminases acting on tRNA) are involved in inosine formation in tRNAs. ADAT1 generates I at position 37 (3' of the anticodon) in eukaryotic tRNA(Ala). ADAT2 and ADAT3 function as a heterodimer which catalyses inosine formation at the wobble position (position 34) in eukaryotic tRNAs. Here, we review the state of knowledge on ADARs and ADATs and their RNA substrates, with an emphasis on the developments over the past few years that have increased the understanding of the mechanism of action of these enzymes and of the functional consequences of the widespread modification they catalyse.
Collapse
Affiliation(s)
- Myriam Schaub
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | | |
Collapse
|
14
|
Bell M, Schreiner S, Damianov A, Reddy R, Bindereif A. p110, a novel human U6 snRNP protein and U4/U6 snRNP recycling factor. EMBO J 2002; 21:2724-35. [PMID: 12032085 PMCID: PMC126028 DOI: 10.1093/emboj/21.11.2724] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During each spliceosome cycle, the U6 snRNA undergoes extensive structural rearrangements, alternating between singular, U4-U6 and U6-U2 base-paired forms. In Saccharomyces cerevisiae, Prp24 functions as an snRNP recycling factor, reannealing U4 and U6 snRNAs. By database searching, we have identified a Prp24-related human protein previously described as p110(nrb) or SART3. p110 contains in its C-terminal region two RNA recognition motifs (RRMs). The N-terminal two-thirds of p110, for which there is no counterpart in the S.cerevisiae Prp24, carries seven tetratricopeptide repeat (TPR) domains. p110 homologs sharing the same domain structure also exist in several other eukaryotes. p110 is associated with the mammalian U6 and U4/U6 snRNPs, but not with U4/U5/U6 tri-snRNPs nor with spliceosomes. Recom binant p110 binds in vitro specifically to human U6 snRNA, requiring an internal U6 region. Using an in vitro recycling assay, we demonstrate that p110 functions in the reassembly of the U4/U6 snRNP. In summary, p110 represents the human ortholog of Prp24, and associates only transiently with U6 and U4/U6 snRNPs during the recycling phase of the spliceosome cycle.
Collapse
Affiliation(s)
| | | | | | - Ram Reddy
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany and
Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Corresponding author e-mail:
| | - Albrecht Bindereif
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany and
Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Corresponding author e-mail:
| |
Collapse
|
15
|
Rosenthal JJC, Bezanilla F. Extensive editing of mRNAs for the squid delayed rectifier K+ channel regulates subunit tetramerization. Neuron 2002; 34:743-57. [PMID: 12062021 DOI: 10.1016/s0896-6273(02)00701-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report the extensive editing of mRNAs that encode the classical delayed rectifier K+ channel (SqK(v)1.1A) in the squid giant axon. Using a quantitative RNA editing assay, 14 adenosine to guanine transitions were identified, and editing efficiency varied tremendously between positions. Interestingly, half of the sites are targeted to the T1 domain, important for subunit assembly. Other sites occur in the channel's transmembrane spans. The effects of editing on K+ channel function are elaborate. Edited codons affect channel gating, and several T1 sites regulate functional expression as well. In particular, the edit R87G, a phylogenetically conserved position, reduces expression close to 50-fold by regulating the channel's ability to form tetramers. These data suggest that RNA editing plays a dynamic role in regulating action potential repolarization in the giant axon.
Collapse
|
16
|
Beghini A, Ripamonti CB, Peterlongo P, Roversi G, Cairoli R, Morra E, Larizza L. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet 2000; 9:2297-304. [PMID: 11001933 DOI: 10.1093/oxfordjournals.hmg.a018921] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The SH2 domain-containing tyrosine phosphatase PTPN6 (SHP-1, PTP1C, HCP) is a 68 kDa cytoplasmic protein primarily expressed in hematopoietic cell development, proliferation and receptor-mediated mitogenic signaling pathways. By means of direct dephosphorylation, it down-regulates a broad spectrum of growth-promoting receptors, including the Kit tyrosine kinase, activated to elicit a prominent cascade of intracellular events by stem cell factor binding. The pivotal contribution of PTPN6 in modulating myeloid cell signaling has been revealed by the finding that shp-1 mutation is responsible for the overexpansion and inappropriate activation of myelomonocytic populations in motheaten (me/me) and motheaten viable (me(v)/me(v)) mice. Association of PTPN6 with c-Kit and negative modulation of the myeloid leukocyte signal transduction pathways prompted us to examine the expression of the protein tyrosine phosphatase PTPN6 gene in CD34(+)/CD117(+) blasts from acute myeloid leukemia patients. We identified and cloned cDNAs representing novel PTPN6 mRNA species, derived from aberrant splicing within the N-SH2 domain leading to retention of intron 3. Sequence analysis of cDNA clones revealed multiple A-->G editing conversions. The editing of PTPN6 mRNA mainly occurred as an A-->G conversion of A(7866), which represents the putative branch site in IVS3 of PTPN6 mRNA. Evidence that editing of A(7866) abrogates splicing has been obtained in vitro by using an edited clone and its backward clone generated by site-directed mutagenesis. The level of the aberrant intron-retaining splice variant, evaluated by semi-quantitative RT-PCR, was lower in CD117(+)-AML bone marrow mononuclear cells at remission than at diagnosis, suggesting the involvement of post-transcriptional PTPN6 processing in leukemogenesis.
Collapse
Affiliation(s)
- A Beghini
- Department of Biology and Genetics, University of Milan, Medical Faculty, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
RNA editing, the post-transcriptional alteration of a gene-encoded sequence, is a widespread phenomenon in eukaryotes. As a consequence of RNA editing, functionally distinct proteins can be produced from a single gene. The molecular mechanisms involved include single or multiple base insertions or deletions as well as base substitutions. In mammals, one type of substitutional RNA editing, characterized by site-specific base-modification, was shown to modulate important physiological processes. The underlying reaction mechanism of substitutional RNA editing involves hydrolytic deamination of cytosine or adenosine bases to uracil or inosine, respectively. Protein factors have been characterized that are able to induce RNA editing in vitro. A supergene family of RNA-dependent deaminases has emerged with the recent addition of adenosine deaminases specific for tRNA. Here we review the developments that have substantially increased our understanding of base-modification RNA editing over the past few years, with an emphasis on mechanistic differences, evolutionary aspects and the first insights into the regulation of editing activity.
Collapse
Affiliation(s)
- S Maas
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
18
|
Hanrahan CJ, Palladino MJ, Ganetzky B, Reenan RA. RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation. Genetics 2000; 155:1149-60. [PMID: 10880477 PMCID: PMC1461140 DOI: 10.1093/genetics/155.3.1149] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Post-transcriptional editing of pre-mRNAs through the action of dsRNA adenosine deaminases results in the modification of particular adenosine (A) residues to inosine (I), which can alter the coding potential of the modified transcripts. We describe here three sites in the para transcript, which encodes the major voltage-activated Na(+) channel polypeptide in Drosophila, where RNA editing occurs. The occurrence of RNA editing at the three sites was found to be developmentally regulated. Editing at two of these sites was also conserved across species between the D. melanogaster and D. virilis. In each case, a highly conserved region was found in the intron downstream of the editing site and this region was shown to be complementary to the region of the exonic editing site. Thus, editing at these sites would appear to involve a mechanism whereby the edited exon forms a base-paired secondary structure with the distant conserved noncoding sequences located in adjacent downstream introns, similar to the mechanism shown for A-to-I RNA editing of mammalian glutamate receptor subunits (GluRs). For the third site, neither RNA editing nor the predicted RNA secondary structures were evolutionarily conserved. Transcripts from transgenic Drosophila expressing a minimal editing site construct for this site were shown to faithfully undergo RNA editing. These results demonstrate that Na(+) channel diversity in Drosophila is increased by RNA editing via a mechanism analogous to that described for transcripts encoding mammalian GluRs.
Collapse
Affiliation(s)
- C J Hanrahan
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
19
|
Harada K, Yamada A, Mine T, Kawagoe N, Takasu H, Itoh K. Mouse homologue of the human SART3 gene encoding tumor-rejection antigen. Jpn J Cancer Res 2000; 91:239-47. [PMID: 10761712 PMCID: PMC5926322 DOI: 10.1111/j.1349-7006.2000.tb00937.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We recently isolated a human SART3 (hSART3) gene encoding a tumor-rejection antigen recognized by HLA-A2402-restricted cytotoxic T lymphocytes (CTLs). The hSART3 was also found to exist as an RNA-binding nuclear protein of unknown biological function. In this study, we cloned and analyzed the homologous mouse SART3 (mSART3) gene in order to understand better the function of hSART3, and to aid in establishing animal models of specific immunotherapy. The cloned 3586-bp cDNA encoded a 962-amino acid polypeptide with high homology to hSART3 (80% or 86% identity at the nucleotide or protein level, respectively). Nonapeptides recognized by the HLA-A2402-restricted CTLs and all of the RNA-binding motifs were conserved between hSART3 and mSART3. The mSART3 mRNA was ubiquitously expressed in normal tissues, with low level expression in the liver, heart, and skeletal muscle. It was widely expressed in various organs from as early as day 7 of gestation. mSART3 was mapped to chromosome 5, a syntenic region for human chromosome 12q23-24, and its genomic DNA extended over 28-kb and consisted of 19 exons. This information should be important for studies of the biological functions of the SART3 protein and for the establishment of animal models of specific cancer immunotherapy.
Collapse
Affiliation(s)
- K Harada
- Department of Immunology, Kurume University School of Medicine, Fukuoka
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Extensive analysis of cDNAs from the para locus in D. melanogaster reveals posttranscriptional modifications indicative of adenosine-to-inosine RNA editing. Most of these edits occur in highly conserved regions of the Na+ channel, and they occur in distant relatives of D. melanogaster as well. Sequence comparison between species has identified putative cis-acting elements important for each RNA editing site. Double-stranded RNA secondary structures with striking similarity to known RNA editing sites were generated based on these data. In addition, the RNA editing sites appear to be developmentally regulated. We have cloned a potential RNA editase, DRED, with a high degree of homology to the mammalian RED1,2 genes. The DRED locus itself is highly regulated by transcription from alternative promoters and alternative splicings.
Collapse
Affiliation(s)
- C J Hanrahan
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030-6125, USA
| | | | | | | |
Collapse
|
21
|
Abstract
In eukaryotes, RNA processing events, including alternative splicing and RNA editing, can generate many different messages from a single gene. As a consequence, the RNA pool, which we refer to here as the 'ribotype', has a different information content from the genotype and can vary as circumstances change. The outcome of a single RNA processing event often regulates the outcome of another, giving rise to networks that affect the composition and expression of a particular ribotype. Successful ribotypes are determined by natural selection, and can be incorporated into the genome over time by reverse transcription. Eukaryotic evolution is therefore influenced by the alternate ways in which RNAs are processed and the continual interplay between RNA and DNA.
Collapse
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
22
|
Eckmann CR, Jantsch MF. The RNA-editing enzyme ADAR1 is localized to the nascent ribonucleoprotein matrix on Xenopus lampbrush chromosomes but specifically associates with an atypical loop. J Biophys Biochem Cytol 1999; 144:603-15. [PMID: 10037784 PMCID: PMC2132932 DOI: 10.1083/jcb.144.4.603] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Double-stranded RNA adenosine deaminase (ADAR1, dsRAD, DRADA) converts adenosines to inosines in double-stranded RNAs. Few candidate substrates for ADAR1 editing are known at this point and it is not known how substrate recognition is achieved. In some cases editing sites are defined by basepaired regions formed between intronic and exonic sequences, suggesting that the enzyme might function cotranscriptionally. We have isolated two variants of Xenopus laevis ADAR1 for which no editing substrates are currently known. We demonstrate that both variants of the enzyme are associated with transcriptionally active chromosome loops suggesting that the enzyme acts cotranscriptionally. The widespread distribution of the protein along the entire chromosome indicates that ADAR1 associates with the RNP matrix in a substrate-independent manner. Inhibition of splicing, another cotranscriptional process, does not affect the chromosomal localization of ADAR1. Furthermore, we can show that the enzyme is dramatically enriched on a special RNA-containing loop that seems transcriptionally silent. Detailed analysis of this loop suggests that it might represent a site of ADAR1 storage or a site where active RNA editing is taking place. Finally, mutational analysis of ADAR1 demonstrates that a putative Z-DNA binding domain present in ADAR1 is not required for chromosomal targeting of the protein.
Collapse
Affiliation(s)
- C R Eckmann
- Department of Cytology and Genetics, Institute of Botany, University of Vienna, A-1030 Vienna, Austria
| | | |
Collapse
|