1
|
Liu S, Han C, Zhang Y. De novo assembly, characterization and comparative transcriptome analysis of gonads reveals sex-biased genes in Coreoperca whiteheadi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101115. [PMID: 37579624 DOI: 10.1016/j.cbd.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
The wild Coreoperca whiteheadi is considered as the primordial species in sinipercine fish, which has valuable genetic information. Unfortunately, C. whiteheadi was listed as a near-threatened species because of the environmental pollution, over-exploitation and species invasion. Therefore, more genetic information is needed to have a better understanding of gonadal development in C. whiteheadi. Here, the first gonadal transcriptomes analysis of C. whiteheadi was conducted and 277.14 million clean reads were generated. A total of 96,753 unigenes were successfully annotated. By comparing ovary and testis transcriptomes, a total of 21,741 differentially expressed genes (DEGs) were identified, of which 12,057 were upregulated and 9684 were downregulated in testes. Among them, we also identified about 53 differentially expressed sex-biased genes. Subsequently, the expression of twenty-four DEGs were confirmed by real-time fluorescence quantitative PCR. Furthermore, the histological analysis was conducted on ovaries and testes of one-year-old C. whiteheadi. Our results provided basic support for further studies on the function of sex-biased genes and the molecular mechanism of sex determination and reproduction in C. whiteheadi.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China.
| |
Collapse
|
2
|
Zhang T, Zhang M, Sun Y, Li L, Cheng P, Li X, Wang N, Chen S, Xu W. Identification and Functional Analysis of foxo Genes in Chinese Tongue Sole ( Cynoglossus semilaevis). Int J Mol Sci 2023; 24:ijms24087625. [PMID: 37108789 PMCID: PMC10142177 DOI: 10.3390/ijms24087625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The Chinese tongue sole (Cynoglossus semilaevis) is a traditional, precious fish in China. Due to the large growth difference between males and females, the investigation of their sex determination and differentiation mechanisms receives a great deal of attention. Forkhead Box O (FoxO) plays versatile roles in the regulation of sex differentiation and reproduction. Our recent transcriptomic analysis has shown that foxo genes may participate in the male differentiation and spermatogenesis of Chinese tongue sole. In this study, six Csfoxo members (Csfoxo1a, Csfoxo3a, Csfoxo3b, Csfoxo4, Csfoxo6-like, and Csfoxo1a-like) were identified. Phylogenetic analysis indicated that these six members were clustered into four groups corresponding to their denomination. The expression patterns of the gonads at different developmental stages were further analyzed. All members showed high levels of expression in the early stages (before 6 months post-hatching), and this expression was male-biased. In addition, promoter analysis found that the addition of C/EBPα and c-Jun transcription factors enhanced the transcriptional activities of Csfoxo1a, Csfoxo3a, Csfoxo3b, and Csfoxo4. The siRNA-mediated knockdown of the Csfoxo1a, Csfoxo3a, and Csfoxo3b genes in the testicular cell line of Chinese tongue sole affected the expression of genes related to sex differentiation and spermatogenesis. These results have broadened the understanding of foxo's function and provide valuable data for studying the male differentiation of tongue sole.
Collapse
Affiliation(s)
- Tingting Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- School of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mengqian Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuxuan Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lu Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Peng Cheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xihong Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
3
|
Chen YS, Racca JD, Weiss MA. Tenuous Transcriptional Threshold of Human Sex Determination. I. SRY and Swyer Syndrome at the Edge of Ambiguity. Front Endocrinol (Lausanne) 2022; 13:945030. [PMID: 35957822 PMCID: PMC9360328 DOI: 10.3389/fendo.2022.945030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Male sex determination in mammals is initiated by SRY, a Y-encoded transcription factor. The protein contains a high-mobility-group (HMG) box mediating sequence-specific DNA bending. Mutations causing XY gonadal dysgenesis (Swyer syndrome) cluster in the box and ordinarily arise de novo. Rare inherited variants lead to male development in one genetic background (the father) but not another (his sterile XY daughter). De novo and inherited mutations occur at an invariant Tyr adjoining the motif's basic tail (box position 72; Y127 in SRY). In SRY-responsive cell lines CH34 and LNCaP, de novo mutations Y127H and Y127C reduced SRY activity (as assessed by transcriptional activation of principal target gene Sox9) by 5- and 8-fold, respectively. Whereas Y127H impaired testis-specific enhancer assembly, Y127C caused accelerated proteasomal proteolysis; activity was in part rescued by proteasome inhibition. Inherited variant Y127F was better tolerated: its expression was unperturbed, and activity was reduced by only twofold, a threshold similar to other inherited variants. Biochemical studies of wild-type (WT) and variant HMG boxes demonstrated similar specific DNA affinities (within a twofold range), with only subtle differences in sharp DNA bending as probed by permutation gel electrophoresis and fluorescence resonance-energy transfer (FRET); thermodynamic stabilities of the free boxes were essentially identical. Such modest perturbations are within the range of species variation. Whereas our cell-based findings rationalize the de novo genotype-phenotype relationships, a molecular understanding of inherited mutation Y127F remains elusive. Our companion study uncovers cryptic biophysical perturbations suggesting that the para-OH group of Y127 anchors a novel water-mediated DNA clamp.
Collapse
Affiliation(s)
- Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph D Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Ferchaud AL, Mérot C, Normandeau E, Ragoussis J, Babin C, Djambazian H, Bérubé P, Audet C, Treble M, Walkusz W, Bernatchez L. Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides). G3-GENES GENOMES GENETICS 2021; 12:6428537. [PMID: 34791178 DOI: 10.1093/g3journal/jkab376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022]
Abstract
Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. Here, we combined single-molecule sequencing of long reads (Pacific Sciences) with chromatin conformation capture sequencing (Hi-C) data to assemble the first chromosome-level reference genome for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96% of its total length distributed among 24 chromosomes. Investigation of the syntenic relationship with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that, similar to other teleost fishes, flatfishes also exhibit a high level of plasticity and turnover in sex-determination mechanisms. A low-coverage whole-genome sequence analysis of 198 individuals revealed that Greenland Halibut possesses a male heterogametic XY system and several putative candidate genes implied in the sex determination of this species. Our study also suggests for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of the early steps of sex chromosome evolution.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Charles Babin
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Haig Djambazian
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Pierre Bérubé
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Céline Audet
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Margaret Treble
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Wocjciech Walkusz
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
5
|
Mares L, Ramos L. Harderian SOX9: Molecular characterization and its dimorphic expression in hamster. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110981. [PMID: 34000431 DOI: 10.1016/j.cbpa.2021.110981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
The molecular action of SOX9 can promote lipogenesis. Because the hamster Harderian gland (HG) synthesizes lipids and exhibits sexual dimorphism, this study aimed to identify and characterize Harderian SOX9. We examined the tissue distribution and expression profiles of SOX9 in hamster Mesocricetus auratus HGs. The full-length SOX9 cDNA sequence [3649-base pairs (bp)] contains an 81-bp 5' untranslated region (UTR), a 3' UTR of 2044-bp, an open reading frame (ORF) of 1524-bp, and a polyadenylation signal (AATAAA) at 19-bp upstream of poly(A) tail. The cDNA encodes a 507 amino acid protein containing the potential DNA-binding domain known as the HMG box. BLAST analysis revealed 99%, 99%, and 97% identity with the SOX9 of mouse, rat, and human, respectively. High expression levels were also observed in the testis, cerebellum, and hypothalamus. qPCR analysis demonstrated that SOX9 is expressed more abundantly in the HGs of males than in females. Sexually dimorphic expression of SOX9 suggests that differential expression between male and female HGs could be under the regulation of sex steroids. SOX9 might play a similar role in regulating exocrine secretions of lipids; these could occur downstream of FGF signaling - as found during embryogenesis - and/or androgen signaling.
Collapse
Affiliation(s)
- L Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| |
Collapse
|
6
|
Comparison of Gonadal Transcriptomes Uncovers Reproduction-Related Genes with Sexually Dimorphic Expression Patterns in Diodon hystrix. Animals (Basel) 2021; 11:ani11041042. [PMID: 33917262 PMCID: PMC8068034 DOI: 10.3390/ani11041042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/16/2022] Open
Abstract
Diodon hystrix is a new and emerging aquaculture species in south China. However, due to the lack of understanding of reproductive regulation, the management of breeding and reproduction under captivity remains a barrier for the commercial aquaculture of D. hystrix. More genetic information is needed to identify genes critical for gonadal development. Here, the first gonadal transcriptomes of D. hystrix were analyzed and 151.89 million clean reads were generated. All reads were assembled into 57,077 unigenes, and 24,574 could be annotated. By comparing the gonad transcriptomes, 11,487 differentially expressed genes were obtained, of which 4599 were upregulated and 6888 were downregulated in the ovaries. Using enrichment analyses, many functional pathways were found to be associated with reproduction regulation. A set of sex-biased genes putatively involved in gonad development and gametogenesis were identified and their sexually dimorphic expression patterns were characterized. The detailed transcriptomic data provide a useful resource for further research on D. hystrix reproductive manipulation.
Collapse
|
7
|
|
8
|
Molecular identification and expression analysis of foxl2 and sox9b in Oryzias celebensis. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liao J, Zhang Z, Jia X, Zou Z, Liang K, Wang Y. Transcriptional Regulation of Vih by Oct4 and Sox9 in Scylla paramamosain. Front Endocrinol (Lausanne) 2020; 11:650. [PMID: 33178132 PMCID: PMC7593643 DOI: 10.3389/fendo.2020.00650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 01/28/2023] Open
Abstract
Mud crab (Scylla paramamosain) is one of the most economically-important marine crabs in China. However, research on mechanisms of reproductive regulation is not sufficient. Vitellogenesis-inhibiting hormone (VIH) is a member of the crustacean hyperglycemia hormones (CHH) family, which plays an essential role in the regulation of gonadal development and maturation in crustaceans, and current studies on the regulation of Vih transcription in crabs are relatively rare. Our previous studies on the transcriptional regulation of mud crab Vih (SpVih) have proved that the binding site of Oct4/Sox9 transcription factor may be the key region for positively regulating the expression of SpVih. In this study, the electrophoretic mobility shift assay (EMSA) experiment confirmed that the nuclear protein extracted from the eyestalk could bind to the key region of SpVih promoter, and these specific bindings were dependent on the presence of Oct4/Sox9 binding sites. Two specific binding complex bands were detected in the supershift group of EMSA supershift experiments by Oct4 and Sox9 antibodies, further confirming the specific recognition of these two transcription factors on the key regulatory region of SpVih. In vitro, Oct4 and Sox9 gene overexpression vectors and SpVih core promoter fragment vector were constructed and co-transfected into HEK293T cells. As a result, SpVih activity increased with the concentration of transcription factors. In vivo, when Oct4 and Sox9 dsRNA were injected into the eyestalks of mud crab, respectively, the expression level of SpVih decreased significantly after interference with Oct4 or Sox9, and the expression level of SpVtg in the ovary and hepatopancreatic increased. Both in vitro and in vivo experiments showed that Oct4 and Sox9 had a positive regulatory effect on SpVih. The GST pull-down experiment was carried out by purified Oct4 and Sox9 proteins, and the results showed that there was an interaction between them. It was speculated that they regulated the expression of SpVih through the interaction.
Collapse
Affiliation(s)
- Jiaqian Liao
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiwei Jia
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Zhihua Zou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Keying Liang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
- *Correspondence: Yilei Wang
| |
Collapse
|
10
|
Zhang K, Xu J, Zhang Z, Huang Y, Ruan Z, Chen S, Zhu F, You X, Jia C, Meng Q, Gu R, Lin X, Xu J, Xu P, Zhang Z, Shi Q. A comparative transcriptomic study on developmental gonads provides novel insights into sex change in the protandrous black porgy (Acanthopagrus schlegelii). Genomics 2018; 111:277-283. [PMID: 30439483 DOI: 10.1016/j.ygeno.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Protandrous black porgy (Acanthopagrus schlegelii) is a popular and valuable commercial marine fish in China and East Asian countries. Controlling and managing its breeding has been an imperative step towards obtaining a sustainable supply of this fish in aquaculture production systems. Therefore, study on the molecular mechanisms of sex change in black porgy has both scientific and commercial importance. Previously, we identified some candidate genes related to sex determination and differentiation from a high-quality genome assembly of the black porgy. In the present study, transcriptome sequencing of developmental gonads (including testis, ovotestis and ovary) of black porgy was performed to further investigate the sex-change mechanisms. Our results showed that the highly expressed male-related genes (dmrt1, piwi1, piwi2, sox9, sox30 and amh) at the male phase were significantly down-regulated to a substantial degree at the intersexual stage, and the female-related genes (jnk1, vasa, wnt4, figla and foxl2) were distinctly up-regulated when the fish grows into a female adult, suggesting the potential roles of these genes in sex change of the black porgy. These data also support a previous hypothesis that the femaleness will be switched on when the testis is entering the degenerated stage through the diminished dmrt1 expression. Our transcriptome data provide a very useful genomic resource for future studies on sex change and practical aquaculture in the black porgy.
Collapse
Affiliation(s)
- Kai Zhang
- School of Animal and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Jin Xu
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Zhiwei Zhang
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Shuyin Chen
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Fei Zhu
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Chaofeng Jia
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Qian Meng
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Ruobo Gu
- BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, Zhenjiang 212000, China.
| | - Xueqiang Lin
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; Hainan BGI Marine Science and Technology Co. Ltd., BGI Marine, Wenchang 571327, China.
| | - Junmin Xu
- BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, Zhenjiang 212000, China; School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Pao Xu
- Freshwater Fishery Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Zhiyong Zhang
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, Zhenjiang 212000, China.
| |
Collapse
|
11
|
Tai ZP, Li DD, Ling SC, Zhang DG, Cui HY, Tan XY. Identification of full-length cDNA sequences for three development-relevant genes from yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to high fat diet. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:67-74. [DOI: 10.1016/j.cbpb.2018.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
|
12
|
Chen Y, Liu Y, Gong Q, Lai J, Song M, Du J, Deng X. Gonadal transcriptome sequencing of the critically endangered Acipenser dabryanus to discover candidate sex-related genes. PeerJ 2018; 6:e5389. [PMID: 30065900 PMCID: PMC6065465 DOI: 10.7717/peerj.5389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023] Open
Abstract
Background Acipenser dabryanus, an endemic Chinese species, has been listed as a first-class protected animal in China. Sturgeons are among the oldest and most primitive group of existing fish in the world and occupy a special place in the evolutionary history of fish. Thus, a study of the reproduction and sex differentiation of sturgeon will be of great value for fish as well as the whole vertebrate group. Methods In this study, we conducted comparative analysis of the testes and ovaries transcriptomes of A. dabryanus to screen for sex-differentiation and sexual development-related genes. Results The transcriptome sequencing of six cDNA libraries generated 265 million clean reads, encompassing 79 Gb of sequences. The N50 and mean length of the identified 91,375 unigenes were 1,718 and 989 bp, respectively. A total of 6,306, 9,961, 13,170, 15,484, and 23,588 unigenes were annotated in the clusters of orthologous groups, gene ontology categories, Kyoto Encyclopedia of Genes and Genomes Pathway, euKaryotic orthologous groups, and NCBI non-redundant protein databases, respectively. A total of 5,396 differentially expressed genes were found between the two sexes, with 1,938 predicted to be up-regulated in ovaries and 3,458 in testes. A total of 73 candidate genes known to be involved in sex differentiation and sexual development were searched in the transcriptome of A. dabryanus of which 52 showed significant similarity. We highlighted six genes that are differentially expressed between the two sexes and may play important roles in sex differentiation and gonad maintenance. In addition, 24,271 simple sequence repeats (SSRs) and 550,519 single-nucleotide polymorphisms (SNPs) were detected. Discussion This work represents the first transcriptome study comparing the ovary and testis in A. dabryanus. The putative differentially expressed genes between the gonads provide an important source of information for further study of the sex-differentiation related genes and the sex-differentiation mechanism in sturgeons. The SSRs or SNPs identified in this study will be helpful in the discovery of sex-related markers in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Ya Liu
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Quan Gong
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Jiansheng Lai
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Mingjiang Song
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Jun Du
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Xiaochuan Deng
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| |
Collapse
|
13
|
Chen Y, Xia Y, Shao C, Han L, Chen X, Yu M, Sha Z. Discovery and identification of candidate sex-related genes based on transcriptome sequencing of Russian sturgeon (Acipenser gueldenstaedtii) gonads. Physiol Genomics 2016; 48:464-76. [PMID: 27199458 DOI: 10.1152/physiolgenomics.00113.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/22/2016] [Indexed: 11/22/2022] Open
Abstract
As the Russian sturgeon (Acipenser gueldenstaedtii) is an important food and is the main source of caviar, it is necessary to discover the genes associated with its sex differentiation. However, the complicated life and maturity cycles of the Russian sturgeon restrict the accurate identification of sex in early development. To generate a first look at specific sex-related genes, we sequenced the transcriptome of gonads in different development stages (1, 2, and 5 yr old stages) with next-generation RNA sequencing. We generated >60 million raw reads, and the filtered reads were assembled into 263,341 contigs, which produced 38,505 unigenes. Genes involved in signal transduction mechanisms were the most abundant, suggesting that development of sturgeon gonads is under control of signal transduction mechanisms. Differentially expressed gene analysis suggests that more genes for protein synthesis, cytochrome c oxidase subunits, and ribosomal proteins were expressed in female gonads than in male. Meanwhile, male gonads expressed more transposable element transposase, reverse transcriptase, and transposase-related genes than female. In total, 342, 782, and 7,845 genes were detected in intersex, male, and female transcriptomes, respectively. The female gonad expressed more genes than the male gonad, and more genes were involved in female gonadal development. Genes (sox9, foxl2) are differentially expressed in different sexes and may be important sex-related genes in Russian sturgeon. Sox9 genes are responsible for the development of male gonads and foxl2 for female gonads.
Collapse
Affiliation(s)
- Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Aoshanwei Town, Jimo, Qingdao, China; and
| | - Yongtao Xia
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Changwei Shao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lei Han
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Xuejie Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Aoshanwei Town, Jimo, Qingdao, China; and
| | - Mengjun Yu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Aoshanwei Town, Jimo, Qingdao, China; and
| | - Zhenxia Sha
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Aoshanwei Town, Jimo, Qingdao, China; and
| |
Collapse
|
14
|
Bhat IA, Rather MA, Saha R, Pathakota GB, Pavan-Kumar A, Sharma R. Expression analysis of Sox9 genes during annual reproductive cycles in gonads and after nanodelivery of LHRH in Clarias batrachus. Res Vet Sci 2016; 106:100-6. [PMID: 27234545 DOI: 10.1016/j.rvsc.2016.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/07/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023]
Abstract
Transcription factor Sox9 plays a crucial role in determining the fate of several cell types and is a primary factor in regulation of gonadal development. Present study reports full-length cDNA sequence of Sox9a gene and partial coding sequence (cds) of Sox9b (two duplicate orthologs of Sox9 gene) from Clarias batrachus. The coding region of Sox9a gene encoded a peptide of 460 amino acids. The partial cds of Sox9b with the length of 558bp was amplified that codes for 186 amino acids. Quantitative Real-time PCR (qRT-PCR) analysis revealed that Sox9a and Sox9b mRNA expression was significantly higher in gonads and brain tissues. Furthermore Sox9a and Sox9b mRNA expression levels were high during preparatory and pre-spawning phases and decreased gradually with onset of spawning and post-spawning phases of reproductive cycles in gonads. Chitosan nanoconjugated sLHRH (CsLHRH) of particle size 133.0nm and zeta potential of 34.3mV were synthesized and evaluated against naked sLHRH (salmon luteinizing hormone-releasing hormone). The entrapment efficiency of CsLHRH was 63%. CsLHRH nanoparticles increased the expression level of Sox9 transcripts in gonads and steroid hormonal levels in blood of male and female. Thus, our findings clearly indicate that Sox9 genes play essential role during seasonal variation of gonads. Besides, the current study reports that sustained release delivery-system will be helpful for proper gonadal development of fish. To the best of our knowledge, till date no study has been reported on nanodelivery of sLHRH and their effect on reproductive gene expression in fish.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Ratnadeep Saha
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Gireesh-Babu Pathakota
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Annam Pavan-Kumar
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India.
| |
Collapse
|
15
|
Lu J, Luan P, Zhang X, Xue S, Peng L, Mahbooband S, Sun X. Gonadal transcriptomic analysis of yellow catfish (Pelteobagrus fulvidraco): identification of sex-related genes and genetic markers. Physiol Genomics 2014; 46:798-807. [PMID: 25185028 DOI: 10.1152/physiolgenomics.00088.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Yellow catfish (Pelteobagrus fulvidraco) has been recognized as a vital freshwater aquaculture species in East and Southeast Asia. In addition to its commercial interest, it is also attracted much attention because of its value in studying sex-determination mechanisms. A comprehensive gonadal transcriptome analysis is believed to provide a resource for genome annotation, candidate gene identification, and molecular marker development. Herein, we performed a de novo assembly of yellow catfish gonad transcriptome by high-throughput Illumina sequencing. A total of 82,123 contigs were obtained, ranging from 351 to 21,268 bp, and N50 of 2,329 bp. Unigenes of 21,869 in total were identified. Of these, 229 and 1,188 genes were found to be specifically expressed in XY gonad tissue for 1 yr and 2 yr old yellow catfish, respectively; correspondingly, 51 and 40 genes were identified in XX gonad tissue at those two stages. Gene ontology and KEGG analysis were conducted and classified all contigs into different categories. A large number of unigenes involved in sex determination were identified, as well as microsatellites and SNP variants. The expression patterns of sex-related genes were then validated by quantitative real-time PCR (qRT-PCR) suggesting the high reliability of RNA-Seq results. In this study, the transcriptome of yellow catfish gonad was first sequenced, assembled, and characterized; it provides a valuable genomic resource for better understanding of yellow catfish sex determination as well as development of molecular markers, thereby assisting in the production of monosex yellow catfish for aquaculture.
Collapse
Affiliation(s)
- Jianguo Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China
| | - Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China
| | - Xiaofeng Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China
| | - Shuqun Xue
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China
| | - Lina Peng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; Harbin Normal University, Harbin, Peoples Republic of China; and
| | - Shahid Mahbooband
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China;
| |
Collapse
|
16
|
Shen ZG, Wang HP. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genet Sel Evol 2014; 46:26. [PMID: 24735220 PMCID: PMC4108122 DOI: 10.1186/1297-9686-46-26] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 03/24/2014] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.
Collapse
Affiliation(s)
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio 45661, USA.
| |
Collapse
|
17
|
Ahi EP, Guðbrandsson J, Kapralova KH, Franzdóttir SR, Snorrason SS, Maier VH, Jónsson ZO. Validation of reference genes for expression studies during craniofacial development in arctic charr. PLoS One 2013; 8:e66389. [PMID: 23785496 PMCID: PMC3681766 DOI: 10.1371/journal.pone.0066389] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/05/2013] [Indexed: 01/08/2023] Open
Abstract
Arctic charr (Salvelinus alpinus) is a highly polymorphic species and in Lake Thingvallavatn, Iceland, four phenotypic morphs have evolved. These differences in morphology, especially in craniofacial structures are already apparent during embryonic development, indicating that genes important in the formation of the craniofacial features are expressed differentially between the morphs. In order to generate tools to examine these expression differences in Arctic charr, the aim of the present study was to identify reference genes for quantitative real-time PCR (qPCR). The specific aim was to select reference genes which are able to detect very small expression differences among different morphs. We selected twelve candidate reference genes from the literature, identified corresponding charr sequences using data derived from transcriptome sequencing (RNA-seq) and examined their expression using qPCR. Many of the candidate reference genes were found to be stably expressed, yet their quality-rank as reference genes varied considerably depending on the type of analysis used. In addition to commonly used software for reference gene validation, we used classical statistics to evaluate expression profiles avoiding a bias for reference genes with similar expression patterns (co-regulation). Based on these analyses we chose three reference genes, ACTB, UB2L3 and IF5A1 for further evaluation. Their consistency was assessed in an expression study of three known craniofacially expressed genes, sparc (or osteonectin), matrix metalloprotease 2 (mmp2) and sox9 (sex-determining region Y box 9 protein) using qPCR in embryo heads derived from four charr groups at three developmental time points. The three reference genes were found to be very suitable for studying expression differences between the morphotypes, enabling robust detection of small relative expression changes during charr development. Further, the results showed that sparc and mmp2 are differentially expressed in embryos of different Arctic charr morphotypes.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Jóhannes Guðbrandsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Kalina H. Kapralova
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Sigurður S. Snorrason
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Valerie H. Maier
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- * E-mail:
| | - Zophonías O. Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
18
|
Leet JK, Gall HE, Sepúlveda MS. A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation. J Appl Toxicol 2011; 31:379-98. [PMID: 21557264 DOI: 10.1002/jat.1682] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 11/09/2022]
Abstract
Teleost fish are unique among vertebrates in that phenotypic sex or onset of sex inversion can be easily manipulated by hormonal treatments. In recent years, researchers have begun reporting concentrations of synthetic and natural hormones in the environment. Although concentrations are very low (in the parts per trillion to low parts per billion), they are still of concern because of the high potency of synthetic hormones and the enhanced susceptibility of teleost fishes, especially early life stages, to hormonal exposures. In this review, we will focus on sex differentiation in teleost fishes and how these processes in fish early life stages may be impacted by environmental hormones which are known to contaminate aquatic environments. We will start by reviewing information on sources and concentrations of hormones in the environment and continue by summarizing the state of knowledge of sex differentiation in teleost gonochoristic fishes, including information on genes involved (e.g. cyp19, dmrt1, sox9 and foxl2). We will end our review with a summary of studies that have examined the effects of androgens and estrogens on fish sex differentiation after exposure of fish embryos and larvae and with ideas for future research.
Collapse
Affiliation(s)
- Jessica K Leet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
19
|
Dumond H, Al-Asaad I, Chesnel A, Chardard D, Boizet-Bonhoure B, Flament S, Kuntz S. Temporal and spatial SOX9 expression patterns in the course of gonad development of the caudate amphibian Pleurodeles waltl. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:199-211. [DOI: 10.1002/jez.b.21390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 12/22/2022]
|
20
|
Guo X, Yan J, Liu S, Xiang B, Liu Y. Isolation and expression analyses of the Sox9a gene in triploid crucian carp. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:125-133. [PMID: 20467853 DOI: 10.1007/s10695-008-9209-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 03/07/2008] [Indexed: 05/29/2023]
Abstract
To investigate the evolutional significance of Sox9 in fish, we isolated and characterized Sox9a cDNA and genomic clones in triploid crucian carp. The cDNA encoded a protein of 457 amino acids with an HMG box and showed more than 60% amino acid sequence identity with known vertebrate Sox9 proteins. Triploid crucian carp and vertebrate Sox9s showed similar gene structure, and two introns in the coding region were located at conserved positions. On the basis of the amino acid sequences, Sox9a can be categorized into the same subgroup of Sox-E proteins as Sox8, 9, and 10. Interestingly, the expression of triploid crucian carp Sox9a was predominantly observed not in the ovary but in the testis by Northern blot and RT-PCR analysis. The expression analysis of Sox9a suggested that it may seldom contribute to the formation of normal functions of spermatozoa, but it may play an important role in the development of testicular tubules. Besides the testicular expression, Sox9a was also shown to be expressed in many other tissues including the brain, kidney, and heart of triploid crucian carp, indicating that Sox9 may have unique functions in some specific tissues during development.
Collapse
Affiliation(s)
- Xinhong Guo
- College of Life Sciences, Hunan Normal University, ChangSha 410081, Hunan, P.R. China
| | | | | | | | | |
Collapse
|
21
|
Navarro-Martín L, Galay-Burgos M, Sweeney G, Piferrer F. Different sox17 transcripts during sex differentiation in sea bass, Dicentrarchus labrax. Mol Cell Endocrinol 2009; 299:240-51. [PMID: 19071190 DOI: 10.1016/j.mce.2008.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/07/2008] [Accepted: 11/09/2008] [Indexed: 01/11/2023]
Abstract
Sox genes participate in several developmental processes, including sex determination and differentiation. In this study, the genomic structure of sox17 was characterized in the sea bass (sb). Two transcripts, one producing a normal protein (sb Sox17) and another producing a truncated protein (sb t-Sox17) were detected. A third, novel transcript, originated by intron retention (sb i-sox17) was also observed. Sb sox17 was widely distributed, whereas sb i-sox17 was predominantly found in skin and brain. In gonads, sb sox17 expression first increased at 150 days of age, coinciding with the onset of sex differentiation. At 250 days and onwards, sb sox17 expression was significantly higher in females, and mRNA levels correlated with those of gonadal aromatase. Thus, this study provides the first evidence for the presence of alternative splicing by intron retention in a Sox17 gene, and for sex-related differences in expression, implicating sox17 in ovarian development and function in fish.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
22
|
Alfaqih MA, Steele CA, Morris RT, Thorgaard GH. Comparative genome mapping reveals evidence of gene conversion between Sox9 paralogs of rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:147-53. [PMID: 20403766 DOI: 10.1016/j.cbd.2009.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/19/2009] [Accepted: 01/19/2009] [Indexed: 11/29/2022]
Abstract
Considerable evidence suggests that one genome duplication event preceded the divergence of teleost fishes and a second genome duplication event occurred before the radiation of teleosts of the family Salmonidae. Two Sox9 genes have been isolated from a number of teleosts and are called Sox9a and Sox9b. Two Sox9 gene copies have also been isolated from rainbow trout, a salmonid fish and are called Sox9 and Sox9?2. Previous evaluations of the evolutionary history of rainbow trout Sox9 gene copies using phylogenetic reconstructions of their coding regions indicated that they both belong to the Sox9b clade. In this study, we determine the true evolutionary history of Sox9 gene copies in rainbow trout. We show that the locus referred to as Sox9 in rainbow trout is itself duplicated. Mapping of the duplicated Sox9 gene copies indicates that they are co-orthologs of Sox9b while mapping of Sox9?2 indicates that it is an ortholog of Sox9a. This relationship is supported by phylogenetic reconstruction of Sox9 gene copies in teleosts using their 3? untranslated regions. The conflicting phylogenetic topology of Sox9 genes in rainbow trout indicates the occurrence of gene conversion events between Sox9 and Sox9?2 which is supported by a number of recombination analyses.
Collapse
Affiliation(s)
- Mahmoud A Alfaqih
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234 USA; Department of Pharmacology and Physiology, Mutah University, Karak, 61710, Jordan
| | | | | | | |
Collapse
|
23
|
von Hofsten J, Olsson PE. Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 2005; 3:63. [PMID: 16281973 PMCID: PMC1298332 DOI: 10.1186/1477-7827-3-63] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 11/10/2005] [Indexed: 11/17/2022] Open
Abstract
Sex determination is the process deciding the sex of a developing embryo. This is usually determined genetically; however it is a delicate process, which in many cases can be influenced by environmental factors. The mechanisms controlling zebrafish sex determination and differentiation are not known. To date no sex linked genes have been identified in zebrafish and no sex chromosomes have been identified. However, a number of genes, as presented here, have been linked to the process of sex determination or differentiation in zebrafish. The zebrafish FTZ-F1 genes are of central interest as they are involved in regulating interrenal development and thereby steroid biosynthesis, as well as that they show expression patterns congruent with reproductive tissue differentiation and function. Zebrafish can be sex reversed by exposure to estrogens, suggesting that the estrogen levels are crucial during sex differentiation. The Cyp19 gene product aromatase converts testosterone into 17 beta-estradiol, and when inhibited leads to male to female sex reversal. FTZ-F1 genes are strongly linked to steroid biosynthesis and the regulatory region of Cyp19 contains binding sites for FTZ-F1 genes, further linking FTZ-F1 to this process. The role of FTZ-F1 and other candidates for zebrafish sex determination and differentiation is in focus of this review.
Collapse
Affiliation(s)
- Jonas von Hofsten
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Per-Erik Olsson
- Örebro Life Science Center, Department of Natural Science, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
24
|
Hett AK, Pitra C, Jenneckens I, Ludwig A. Characterization of Sox9 in European Atlantic sturgeon (Acipenser sturio). ACTA ACUST UNITED AC 2005; 96:150-4. [PMID: 15710905 DOI: 10.1093/jhered/esi008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The Sox9 gene of Acipenser sturio, one of the most primitive vertebrates, was analyzed. No sex-specific differences were observed. Sturgeon Sox9 consists of three exons and two introns with completely conserved exon-intron boundaries showing high levels of homology to other vertebrate Sox9 sequences, especially in the N-terminus region containing the HMG box. We found strong evidence for negative (purifying) selection. In contrast to previous studies of other fishes, we observed no evidence for gene duplication in sturgeon. Phylogenetic analyses of Sox9 evolution revealed a basal position for sturgeon Sox9.
Collapse
Affiliation(s)
- A K Hett
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | | | | | | |
Collapse
|
25
|
Klüver N, Kondo M, Herpin A, Mitani H, Schartl M. Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Dev Genes Evol 2005; 215:297-305. [PMID: 15818483 DOI: 10.1007/s00427-005-0477-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 02/15/2005] [Indexed: 01/27/2023]
Abstract
Sry-related HMG-box genes are key regulators of several developmental processes. Sox9 encodes a transcription factor required for cartilage formation and testis determination in mammals. In zebrafish (Danio rerio) and stickleback (Gasterosteus aculeatus) two co-orthologs of Sox9 are present. To date, only one Sox9 had been identified in medaka (Oryzias latipes). We have now isolated the second Sox9 gene. Sequence analysis, phylogenetic data, linkage mapping as well as expression pattern all together suggest that the medaka Sox9a and Sox9b are co-orthologs. During embryogenesis, the expression pattern of Sox9a and Sox9b are distinct but overlap considerably in craniofacial cartilage elements. Comparing the zebrafish Sox9a and Sox9b expression patterns with medaka Sox9a and Sox9b expression domains revealed that some are identical but others are clearly different. We conclude that Sox9 regulatory subfunctions were not partitioned before divergence of the teleosts and evolved to lineage-specific expression domains.
Collapse
Affiliation(s)
- Nils Klüver
- Department of Physiological Chemistry I, University of Würzburg, 97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Zhou R, Liu L, Guo Y, Yu H, Cheng H, Huang X, Tiersch TR, Berta P. Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol Reprod Dev 2004; 66:211-7. [PMID: 14502599 DOI: 10.1002/mrd.10271] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Sox9 gene encodes a transcription factor that is critical for testis determination and chondrogenesis in vertebrates. Mutations in human SOX9 cause campomelic dysplasia, a dominant skeletal dysmorphology syndrome often associated with male to female sex reversal. Here we show that the Sox9a gene was duplicated during evolution of the rice field eel, Monopterus albus, a freshwater fish which undergoes natural sex reversal from female to male during its life, and has a haploid genome size (0.6-0.8 pg) that is among the smallest of the vertebrates. The duplicated copies of the gene (named Sox9al and Sox9a2) fit within the Sox9 clade of vertebrates, especially in the Sox9a subfamily, not in the Sox9b subfamily. They have similar structures as revealed by both genomic and cDNA analysis. Furthermore, both Sox9al and Sox9a2 are expressed in testis, ovary, and ovotestis; and specifically in the outer layer (mainly gonocytes) of gonadal epithelium with bipotential capacity to form testis or ovary, suggesting that they have similar roles in gonadal differentiation during sex reversal in this species. The closely related gene structure and expression patterns of the two sox9a genes in the rice field eel also suggest that they arose in recent gene duplication events during evolution of this fish lineage.
Collapse
Affiliation(s)
- Rongjia Zhou
- Department of Genetics and Center for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Knower KC, Kelly S, Harley VR. Turning on the male – SRY, SOX9 and sex determination in mammals. Cytogenet Genome Res 2003; 101:185-98. [PMID: 14684982 DOI: 10.1159/000074336] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 07/02/2003] [Indexed: 11/19/2022] Open
Abstract
The decision of the bi-potential gonad to develop into either a testis or ovary is determined by the presence or absence of the Sex-determining Region gene on the Y chromosome (SRY). Since its discovery, almost 13 years ago, the molecular role that SRY plays in initiating the male sexual development cascade has proven difficult to ascertain. While biochemical studies of clinical mutants and mouse genetic models have helped in our understanding of SRY function, no direct downstream targets of SRY have yet been identified. There are, however, a number of other genes of equal importance in determining sexual phenotype, expressed before and after expression of SRY. Of these, one has proven of central importance to mammals and vertebrates, SOX9. This review describes our current knowledge of SRY and SOX9 structure and function in the light of recent key developments.
Collapse
Affiliation(s)
- K C Knower
- Human Molecular Genetics Laboratory, Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | |
Collapse
|
28
|
Harley VR, Clarkson MJ, Argentaro A. The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocr Rev 2003; 24:466-87. [PMID: 12920151 DOI: 10.1210/er.2002-0025] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite 12 yr since the discovery of SRY, little is known at the molecular level about how SRY and the SRY-related protein, SOX9 [SRY-related high-mobility group (HMG) box 9], initiate the program of gene expression required to commit the bipotential embryonic gonad to develop into a testis rather than an ovary. Analysis of SRY and SOX9 clinical mutant proteins and XX mice transgenic for testis-determining genes have provided some insight into their normal functions. SRY and SOX9 contain an HMG domain, a DNA-binding motif. The HMG domain plays a central role, being highly conserved between species and the site of nearly all missense mutations causing XY gonadal dysgenesis. SRY and SOX9 are architectural transcription factors; their HMG domain is capable of directing nuclear import and DNA bending. Whether SRY and SOX9 activate testis-forming genes, repress ovary-forming genes, or both remains speculative until downstream DNA target genes are identified. However, factors that control SRY and SOX9 gene expression have been identified, as have a dozen sex-determining genes, allowing some of the pieces in this molecular genetic puzzle to be connected. Many genes, however, remain unidentified, because in the majority of cases of XY females and in all cases of XX males lacking SRY, the mutated gene is unknown.
Collapse
Affiliation(s)
- Vincent R Harley
- Prince Henry's Institute of Medical Research, Clayton 3168, Victoria, Australia.
| | | | | |
Collapse
|
29
|
Wang R, Cheng H, Xia L, Guo Y, Huang X, Zhou R. Molecular cloning and expression of Sox17 in gonads during sex reversal in the rice field eel, a teleost fish with a characteristic of natural sex transformation. Biochem Biophys Res Commun 2003; 303:452-7. [PMID: 12659838 DOI: 10.1016/s0006-291x(03)00361-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Sox is a large family of genes which encode transcription factors with high-mobility-group DNA binding domain related to the SRY, with diverse roles in development, and a few of them are involved in sex determination and differentiation. We report here the identification of Sox17 gene of the rice field eel, a teleost fish with a characteristic of natural sex transformation. This gene, located on chromosome 5, consists of two exons which encode a 399-amino acid protein with a conserved HMG box. Phylogenetic analysis shows that the rice field eel Sox17 fits within the Sox17 clade of vertebrates. The rice field eel Sox17 was dominantly expressed in gonads of male, female, and intersex, besides in brain and spleen. Gene expression analysis by in situ hybridization showed its expression in testis, ovary, and ovotestis, and specifically in the gonadal lamellae of ovary, ovotestis, and testis and developing spermatogenic cells of testis, suggesting that they have potentially important roles in gonadal differentiation during sex reversal in this species.
Collapse
Affiliation(s)
- Rui Wang
- Department of Genetics and Center for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi KI, Ozato K. Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev 2002; 63:5-16. [PMID: 12211055 DOI: 10.1002/mrd.10169] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sox9 is a transcription factor containing the Sry-related high-mobility-group (HMG) box. Mutations in human SOX9 gene cause skeletal defects and male-to-female sex reversal, indicating its essential roles in chondrogenesis and testis development. Comparative studies have shown that Sox9 is expressed in chondrogenic tissues and testis in other vertebrates. Therefore, it was suggested that roles of Sox9 in cartilage and male gonad development are conserved among vertebrates. To investigate the evolutional significance of Sox9 in the gonad and cartilage development of teleost fish, we isolated medaka sox9 and analyzed its expression. Two kinds of transcripts (sox9 and sox9lf) were isolated by cDNA library screening. The sox9 encoded 487 amino acids and showed approximately 70% amino acid identity with known vertebrate SOX9 proteins. The sox9lf was a longer form of the sox9, which was transcribed from an additional exon in the 5' upstream region. Interestingly, the expression of medaka sox9 was predominantly observed in the adult ovary by northern blot and in situ hybridization analyses, whereas in the testis, its expression was detectable only by RT-PCR. During medaka embryogenesis, its expression was observed in the cranial cartilage and pectoral fin endoskeleton. These observations suggest that the function of Sox9 in the cartilage is conserved among vertebrates, while that in the gonad is quite different in medaka.
Collapse
Affiliation(s)
- Hayato Yokoi
- Division of Biological Science, Graduate School of Science, and Laboratory of Freshwater Fish Stocks, Bioscience Center, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pask AJ, Harry JL, Graves JAM, O'Neill RJW, Layfield SL, Shaw G, Renfree MB. SOX9 has both conserved and novel roles in marsupial sexual differentiation. Genesis 2002; 33:131-9. [PMID: 12124946 DOI: 10.1002/gene.10096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In addition to an essential role in chondrogenesis, SOX9 is a highly conserved and integral part of the testis determining pathway in human and mouse. To determine whether SOX9 is involved in sex determination in noneutherian mammals we cloned a marsupial orthologue and studied its expression. The tammar wallaby SOX9 gene proved to be highly conserved, and maps to a region of the tammar genome syntenic to human chromosome 17. Marsupial SOX9 transcripts were detected by RT-PCR in the developing limb buds and both the developing ovary and testis from the first sign of gonadal development through to adulthood. Northern blot, in situ hybridisation, and immunohistochemical analyses showed that SOX9 reaches high levels of expression in the developing testis, where it is confined to the Sertoli cell nuclei, and the brain. This is similar to the expression pattern seen in human and mouse embryos and is consistent with a conserved role for SOX9 in vertebrate brain, skeletal, and gonadal development. In addition, SOX9 was expressed in the developing scrotum and mammary gland primordium regions of the tammar up to the time of birth. SOX9 protein was also detected in the developing Wolffian duct epithelium in the male mesonephros. These previously undescribed locations of SOX9 expression suggest that SOX9 may play additional roles in the differentiation of the marsupial reproductive system.
Collapse
Affiliation(s)
- Andrew J Pask
- Department of Zoology, The University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bagheri-Fam S, Ferraz C, Demaille J, Scherer G, Pfeifer D. Comparative genomics of the SOX9 region in human and Fugu rubripes: conservation of short regulatory sequence elements within large intergenic regions. Genomics 2001; 78:73-82. [PMID: 11707075 DOI: 10.1006/geno.2001.6648] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Campomelic dysplasia (CD), a human skeletal malformation syndrome with XY sex reversal, is caused by heterozygous mutations in and around the gene SOX9. SOX9 has an extended 5' control region, as indicated by CD translocation breakpoints scattered over 1 Mb proximal to SOX9 and by expression data from mice transgenic for human SOX9-spanning yeast artificial chromosomes. To identify long-range regulatory elements within the SOX9 5' control region, we compared approximately 3.7 Mb and 195 kb of sequence around human and Fugu rubripes SOX9, respectively. We identified only seven and five protein-coding genes in the human and F. rubripes sequences, respectively. Four of the F. rubripes genes have been mapped in humans; all reside on chromosome 17 but show extensive intrachromosomal gene shuffling compared with the gene order in F. rubripes. In both species, very large intergenic distances separate SOX9 from its directly flanking genes: 2 Mb and 500 kb on either side of SOX9 in humans, and 68 and 97 kb on either side of SOX9 in F. rubripes. Comparative sequence analysis of the intergenic regions revealed five conserved elements, E1-E5, up to 290 kb 5' to human SOX9 and up to 18 kb 5' to F. rubripes SOX9, and three such elements, E6-E8, 3' to SOX9. Where available, mouse sequences confirm conservation of the elements. From the yeast artificial chromosome transgenic data, elements E3-E5 are candidate enhancers for SOX9 expression in limb and vertebral column, and 8 of 10 CD translocation breakpoints separate these elements from SOX9.
Collapse
Affiliation(s)
- S Bagheri-Fam
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacherstr. 33, Freiburg, D-79106, Germany
| | | | | | | | | |
Collapse
|
33
|
Torres-Maldonado L, Moreno-Mendoza N, Landa A, Merchant-Larios H. Timing of SOX9 downregulation and female sex determination in gonads of the sea turtle Lepidochelys olivacea. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:498-503. [PMID: 11555857 DOI: 10.1002/jez.1093] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The SRY-related gene SOX9 is involved in the differentiation of Sertoli cells in male gonads of vertebrates with different kinds of sex determination. In the olive ridley Lepidochelys olivacea, a species with temperature sex determination (TSD), the SOX9 protein is expressed at stages 21-24 in medullary cells in gonads of embryos incubated at both male-(MPT) or female-promoting temperatures (FPT). However, at FPT the expression of SOX9 protein decreases at stage 25 and disappears at stage 26, suggesting this as the critical period for SOX9 regulation by temperature. Here, we used reverse transcriptase polymerase chain reaction (RT-PCR) to detect SOX9 transcripts in gonads of embryos switched from MPT to FPT at stage 23 and sampled at days 6-14. Simultaneously, groups of embryos were switched back to MPT and gonadal sex was established. SOX9 transcripts were detected at days 6-12 of switching, when embryos reached stage 25 and were no longer detected at day 14, when the embryos were at stage 26. Embryos switched back to MPT at days 6 or 8 formed testes, whereas embryos switched at days 10 or 14 developed ovaries. Results suggest that at MPT the male sex-determining pathway that maintains SOX9 expression in male gonads is established at stage 24. In contrast, at FPT, the female sex-determining pathway involved in downregulation of SOX9 in female gonads occurs within two days at stage 25. J. Exp. Zool. 290:498-503, 2001.
Collapse
Affiliation(s)
- L Torres-Maldonado
- Departamento de Biologia Celular, Instituto de Investigaciones Biomedicas, UNAM, Mexico 04510
| | | | | | | |
Collapse
|
34
|
D'Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF. Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus. Mol Reprod Dev 2001; 59:265-76. [PMID: 11424212 DOI: 10.1002/mrd.1031] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the tilapia Oreochromis niloticus, sex is determined genetically (GSD), by temperature (TSD) or by temperature/genotype interactions. Functional masculinization can be achieved by applying high rearing temperatures during a critical period of sex differentiation. Estrogens play an important role in female differentiation of non-mammalian vertebrates. The involvement of aromatase, was assessed during the natural (genetic all-females and all-males at 27 degrees C) and temperature-induced sex differentiation of tilapia (genetic all-females at 35 degrees C). Gonads were dissected between 486--702 degree x days. Aromatase gene expression was analyzed by virtual northern and semi-quantitative RT-PCR revealing a strong expression during normal ovarian differentiation concomitant with high levels (465 +/- 137 fg/g) of oestradiol-17 beta (E2-17 beta). This was encountered in gonads after the onset of ovarian differentiation (proliferation of both stromal and germ cells prior to ovarian meiosis). Genetic males exhibited lower levels of aromatase gene expression and E2-17 beta quantities (71 +/- 23 fg/ g). Aromatase enzyme activity in fry heads established a sexual dimorphism in the brain, with high activity in females (377.9 pmol/head/hr) and low activity in males (221.53 pmol/head/hr). Temperature induced the masculinization of genetic females to a different degree in each progeny, but in all cases repression of aromatase expression was encountered. Genetic males at 35 degrees C also exhibited a repression of aromatase expression. Aromatase brain activity decreased by nearly three-fold in the temperature-masculinized females with also a reduction observed in genetic males at 35 degrees C. This suggests that aromatase repression is required in the gonad (and perhaps in the brain) in order to drive differentiation towards testis development. Mol. Reprod. Dev. 59:265-276, 2001.
Collapse
Affiliation(s)
- H D'Cotta
- CIRAD-EMVT (Centre de Coopération International en Recherche Agronomique pour le Développement), Station SCRIBE-INRA, Campus de Beaulieu, Rennes, France.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Sry is the Y-chromosomal gene that acts as a trigger for male development in mammalian embryos. This gene encodes a high mobility group (HMG) box transcription factor that is known to bind to specific target sequences in DNA and to cause a bend in the chromatin. DNA bending appears to be part of the mechanism by which Sry influences transcription of genes downstream in a cascade of gene regulation leading to maleness, but the factors that cooperate with, and the direct targets of, Sry remain to be identified. One gene known to be downstream from Sry in this cascade in Sox9, which encodes a transcription factor related to Sry by the HMG box. Like Sry, mutations in Sox9 disrupt male development, but unlike Sry, the role of Sox9 is not limited to mammals. This review focuses on what is known about the two genes and their likely modes of action, and draws together recent data relating to how they might interconnect with the network of gene activity implicated in testis determination in mammals.
Collapse
Affiliation(s)
- P Koopman
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
36
|
Baroiller JF, Guiguen Y. Endocrine and environmental aspects of sex differentiation in gonochoristic fish. EXS 2001:177-201. [PMID: 11301598 DOI: 10.1007/978-3-0348-7781-7_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper reviews current knowledge concerning the endocrine and environmental regulation of gonadal sex differentiation in gonochoristic fish. In gonochoristic fish, although potentially active around this period, the hypothalamo-pituitary axis is probably not involved in triggering sex differentiation. Although steroids and steroidogenic enzymes are probably not the initial triggers of sex differentiation, new data, including molecular approaches, have confirmed that they are key physiological steps in the regulation of this process. Environmental factors can strongly influence sex differentiation in gonochoristic fish. The most important environmental determinant of sex would appear to be temperature. Interactions between environmental factors and genotype have been suggested for gonochoristic fish.
Collapse
Affiliation(s)
- J F Baroiller
- CIRAD-EMVT (Centre International en Recherche Agronomique pour le Développement), Campus de Beaulieu, 35042 Rennes, France
| | | |
Collapse
|
37
|
Pask A, Graves JA. Sex chromosomes and sex-determining genes: insights from marsupials and monotremes. EXS 2001:71-95. [PMID: 11301601 DOI: 10.1007/978-3-0348-7781-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Comparative studies of the genes involved in sex determination in the three extant classes of mammals, and other vertebrates, has allowed us to identify genes that are highly conserved in vertebrate sex determination and those that have recently evolved roles in one lineage. Analysis of the conservation and function of candidate sex determining genes in marsupials and monotremes has been crucial to our understanding of their function and positioning in a conserved mammalian sex-determining pathway, as well as their evolution. Here we review comparisons between genes in the sex-determining pathway in different vertebrates, and ask how these comparisons affect our views on the role of each gene in vertebrate sex determination.
Collapse
Affiliation(s)
- A Pask
- Department of Zoology, University of Melbourne, Parkville, Vic. 3052, Australia
| | | |
Collapse
|
38
|
Takase M, Noguchi S, Nakamura M. Two Sox9 messenger RNA isoforms: isolation of cDNAs and their expression during gonadal development in the frog Rana rugosa. FEBS Lett 2000; 466:249-54. [PMID: 10682837 DOI: 10.1016/s0014-5793(00)01078-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sox is a family of SRY-related testis-determining genes. We have isolated two different mRNA isoforms of the frog Sox9 gene from adult frog testis cDNAs. One form (Sox9 alpha) encodes a 482 amino acid protein containing the HMG box, whereas the other form (Sox9 beta), which completely lacks the HMG box, is a truncated 265 amino acid protein of Sox9 alpha. Sox9 alpha is 82% similar to mouse, 86% to chicken, and 77% to trout Sox9 at the amino acid level. Sox9 expression was upregulated in embryos after stage 16, and was seen in both developing testes and ovaries. The size of Sox9 transcripts was determined to be 7.8 knt by Northern blot analysis. In addition, Sox9 alpha expression was found prominently in the testis and brain among various tissues of adult frogs examined, and was considerably higher than Sox9 beta. The fact that Sox9 is expressed in both sexes suggests that this gene is involved in gonadal development of male and female frogs. This is dissimilar to the pattern in birds and mammals, in which Sox9 expression is male-specific.
Collapse
Affiliation(s)
- M Takase
- Laboratory for Amphibian Biology, Faculty of Science, Hiroshima University, Japan
| | | | | |
Collapse
|
39
|
Kanda H, Kojima M, Miyamoto N, Ito M, Takamatsu N, Yamashita S, Shiba T. Rainbow trout Sox24, a novel member of the Sox family, is a transcriptional regulator during oogenesis. Gene X 1998; 211:251-7. [PMID: 9602142 DOI: 10.1016/s0378-1119(98)00100-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We isolated a cDNA clone encoding a novel SRY-type HMG box (Sox) protein, designated Sox24, from a rainbow trout ovary cDNA library. On the basis of the HMG box amino acid sequence, Sox24 can be categorized into the same subgroup of Sox proteins as SOX4, SOX11, and SOX22. The proteins in this group also share a highly conserved sequence at the C-terminus. The Sox24 mRNA is expressed at high levels in the ovary, and in-situ hybridization localized its expression to oocytes. The recombinant protein containing the Sox24 HMG box region bound to an AACAAT sequence strongly in a gel retardation assay. Upon co-transfection into CHO cells, the full-length Sox24 transactivated transcription from a reporter plasmid through the AACAAT binding motif. We used GAL4/Sox24 chimeras with the DNA binding domain of yeast GAL4 at the N-terminus to map the transactivation function to the C-terminal region, which included the conserved sequence. These results suggest that Sox24 plays a role as a transcriptional regulator during oogenesis.
Collapse
Affiliation(s)
- H Kanda
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228, Japan
| | | | | | | | | | | | | |
Collapse
|