1
|
Kumar A, Khan FI, Olaniran AO. Chloroacetaldehyde dehydrogenase from Ancylobacter aquaticus UV5: Cloning, expression, characterization and molecular modeling. Int J Biol Macromol 2018; 114:1117-1126. [PMID: 29605256 DOI: 10.1016/j.ijbiomac.2018.03.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/07/2017] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
1,2-Dichloroethane (1,2-DCE) is oxidatively converted to a carcinogenic intermediate compound, chloroacetaldehyde by chloroacetaldehyde dehydrogenase (CAldA) during its biodegradation by many bacterial strains, including Xanthobacter autotrophicus and Ancylobacter aquaticus. In this study, a 55kDa NAD-dependent CAldA expressed by chromosomally encoded aldA gene, is reported in an indigenous Ancylobacter aquaticus UV5. A. aquaticus UV5 aldA gene was found to be 99% homologous to the plasmid (pXAU1) encoded aldA gene reported in X. autotrophicus GJ10. Pulse-field gel electrophoresis (PFGE) and PCR experiments revealed the absence of pXAU1 in A. aquaticus UV5 and that aldA was chromosomal encoded. A 6× His-tag fused CAldA cloned in pET15b, overexpressed and purified on Co-agarose affinity column using AKTA purification system showed Mr of 57,526. CAldA was active optimally at pH9 and 30°C. The Km and vmax for the substrate, acetaldehyde were found to be 115μM and 650mU/mg, respectively. CAldA substrate specificity was found to be low for chloroacetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, benzaldehyde and glutaraldehyde as compared to acetaldehyde. Computational modeling revealed a predicted structure of CAldA consisting of five β-sheets that comprise seven antiparallel β-strands and 11 mix strands. The Molecular Dynamics and Docking studies showed that acetaldehyde bind to CaldA more tightly as compared to chloroacetaldehyde.
Collapse
Affiliation(s)
- Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Faez Iqbal Khan
- Department of Chemistry, Rhodes University, Grahamstown 6139, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
2
|
Hosoda A, Isomura Y, Takeo S, Onai T, Takeuchi K, Toda M, Tamura H. Aerobic Dechlorination of Dichloromethane Using Biostimulation Agent BD-C in Continuous and Batch Cultures of Xanthobacter autotrophicus GJ10. J Oleo Sci 2017; 66:1247-1256. [PMID: 29021488 DOI: 10.5650/jos.ess17072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is important to construct microbiological treatment systems for organic solvent-contaminated water. We developed a continuous culture supplemented with a biostimulation agent named BD-C, which is formulated from canola oil, and Xanthobacter autotrophicus strain GJ10 for an aerobic dichloromethane (DCM)-dechlorinating microorganism. The continuous culture was a chemostat constructed using a 1 L screw-capped bottle containing artificial wastewater medium with 2.0 mM DCM and 1.0% (v/v) BD-C. The expression of genes for DCM metabolism in the dechlorinating aerobe was monitored and analyzed by reverse transcription-quantitative PCR. Strain GJ10 was able to dechlorinate approximately 74% of the DCM in medium supplemented with BD-C during 12 days of incubation. The DCM dechlorination rate was calculated to be 0.11 mM/day. The ΔΔCT method showed that expression of haloalkane dehalogenase increased 5.4 times in the presence of BD-C. Based on batch culture growth tests conducted with mineral salt medium containing three DCM concentrations (0.07, 0.20, 0.43 and 0.65 mM) with BD-C, the apparent maximum specific consumption rate (νmax) and the saturation constant (Ks) determined for DCM degradation in this test were 19.0 nmol/h/CFU and 0.44 mM, respectively. In conclusion, BD-C enhanced the aerobic degradation of DCM by strain GJ10.
Collapse
Affiliation(s)
- Akifumi Hosoda
- Department of Environmental Bioscience, Meijo University
| | - Yuta Isomura
- Department of Environmental Bioscience, Meijo University
| | - Syungo Takeo
- Department of Environmental Bioscience, Meijo University
| | - Takuho Onai
- Department of Environmental Bioscience, Meijo University
| | | | | | - Hiroto Tamura
- Department of Environmental Bioscience, Meijo University
| |
Collapse
|
3
|
Munro JE, Liew EF, Ly MA, Coleman NV. A New Catabolic Plasmid in Xanthobacter and Starkeya spp. from a 1,2-Dichloroethane-Contaminated Site. Appl Environ Microbiol 2016; 82:5298-308. [PMID: 27342553 PMCID: PMC4988179 DOI: 10.1128/aem.01373-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1 Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more recently isolated DCA-degrading Xanthobacter strains from Australia, in which a relatively small circular plasmid (pDCA) carries both dhlA and dhlB homologs. pDCA represents a true organochlorine-catabolic plasmid, first because its only obvious metabolic phenotype is dehalogenation of organochlorines, and second because acquisition of this plasmid provides both key enzymes required for carbon-chlorine bond cleavage. The discovery of the alternative haloacid dehalogenase dhlB2 in pDCA increases the known genetic diversity of bacterial chloroacetate-hydrolyzing enzymes.
Collapse
Affiliation(s)
- Jacob E Munro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Elissa F Liew
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Mai-Anh Ly
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl Environ Microbiol 2013; 79:3282-93. [PMID: 23524667 DOI: 10.1128/aem.03958-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whereas the biochemical properties of the monooxygenase components that catalyze the oxidation of 2,5-diketocamphane and 3,6-diketocamphane (2,5-DKCMO and 3,6-DKCMO, respectively) in the initial catabolic steps of (+) and (-) isomeric forms of camphor (CAM) metabolism in Pseudomonas putida ATCC 17453 are relatively well characterized, the actual identity of the flavin reductase (Fred) component that provides the reduced flavin to the oxygenases has hitherto been ill defined. In this study, a 37-kDa Fred was purified from a camphor-induced culture of P. putida ATCC 17453 and this facilitated cloning and characterization of the requisite protein. The active Fred is a homodimer with a subunit molecular weight of 18,000 that uses NADH as an electron donor (Km = 32 μM), and it catalyzes the reduction of flavin mononucleotide (FMN) (Km = 3.6 μM; kcat = 283 s(-1)) in preference to flavin adenine dinucleotide (FAD) (Km = 19 μM; kcat = 128 s(-1)). Sequence determination of ∼40 kb of the CAM degradation plasmid revealed the locations of two isofunctional 2,5-DKCMO genes (camE25-1 for 2,5-DKCMO-1 and camE25-2 for 2,5-DKCMO-2) as well as that of a 3,6-DKCMO-encoding gene (camE36). In addition, by pulsed-field gel electrophoresis, the CAM plasmid was established to be linear and ∼533 kb in length. To enable functional assessment of the two-component monooxygenase system in Baeyer-Villiger oxidations, recombinant plasmids expressing Fred in tandem with the respective 2,5-DKCMO- and 3,6-DKCMO-encoding genes in Escherichia coli were constructed. Comparative substrate profiling of the isofunctional 2,5-DCKMOs did not yield obvious differences in Baeyer-Villiger biooxidations, but they are distinct from 3,6-DKCMO in the stereoselective oxygenations with various mono- and bicyclic ketone substrates.
Collapse
|
5
|
Li X, Li Y, Wei D, Li P, Wang L, Feng L. Characterization of a broad-range aldehyde dehydrogenase involved in alkane degradation in Geobacillus thermodenitrificans NG80-2. Microbiol Res 2010; 165:706-12. [PMID: 20171064 DOI: 10.1016/j.micres.2010.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/18/2010] [Accepted: 01/24/2010] [Indexed: 11/26/2022]
Abstract
An aldehyde dehydrogenase (ALDH) involved in alkane degradation in crude oil-degrading Geobacillus thermodenitrificans NG80-2 was characterized in vitro. The ALDH was expressed heterologously in Escherichia coli and purified as a His-tagged homotetrameric protein with a subunit of 57 kDa based on SDS-PAGE and Native-PAGE analysis. The purified ALDH-oxidized alkyl aldehydes ranging from formaldehyde (C₁) to eicosanoic aldehyde (C₂₀) with the highest activity on C₁. It also oxidized several aromatic aldehydes including benzaldehyde, phenylacetaldehyde, o-chloro-benzaldehyde and o-phthalaldehyde. The ALDH uses only NAD(+) as the cofactor, and has no reductive activity on acetate or hexadecanoic acid. Therefore, it is an irreversible NAD(+)-dependent aldehyde dehydrogenase. Kinetic parameters, temperature and pH optimum of the enzyme, and effects of metal ions, EDTA and Triton X-100 on the enzyme activity were investigated. Physiological roles of the ALDH for the survival of NG80-2 in oil reservoirs are discussed.
Collapse
Affiliation(s)
- Xiaomin Li
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | | | | | | | | | | |
Collapse
|
6
|
Molecular cloning and expression of the complete DNA sequence encoding NAD+-dependent acetaldehyde dehydrogenase fromAcinetobacter sp. strain HBS-2. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
7
|
Lery LMS, Coelho A, von Kruger WMA, Gonçalves MSM, Santos MF, Valente RH, Santos EO, Rocha SLG, Perales J, Domont GB, Teixeira KRS, Bertalan M, Ferreira PCG, Bisch PM. Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth-promoting bacterium. Proteomics 2008; 8:1631-44. [PMID: 18340630 DOI: 10.1002/pmic.200700912] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This is the first broad proteomic description of Gluconacetobacter diazotrophicus, an endophytic bacterium, responsible for the major fraction of the atmospheric nitrogen fixed in sugarcane in tropical regions. Proteomic coverage of G. diazotrophicus PAL5 was obtained by two independent approaches: 2-DE followed by MALDI-TOF or TOF-TOF MS and 1-DE followed by chromatography in a C18 column online coupled to an ESI-Q-TOF or ESI-IT mass spectrometer. The 583 identified proteins were sorted into functional categories and used to describe potential metabolic pathways for nucleotides, amino acids, carbohydrates, lipids, cofactors and energy production, according to the Enzyme Commission of Enzyme Nomenclature (EC) and Kyoto Encyclopedia of genes and genomes (KEGG) databases. The identification of such proteins and their possible insertion in conserved biochemical routes will allow comparisons between G. diazotrophicus and other bacterial species. Furthermore, the 88 proteins classified as conserved unknown or unknown constitute a potential target for functional genomic studies, aiming at the understanding of protein function and regulation of gene expression. The knowledge of metabolic fundamentals and coordination of these actions are crucial for the rational, safe and sustainable interference on crops. The entire dataset, including peptide sequence information, is available as Supporting Information and is the major contribution of this work.
Collapse
|
8
|
Kazuoka T, Oikawa T, Muraoka I, Kuroda S, Soda K. A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 2006; 11:257-67. [PMID: 17072683 DOI: 10.1007/s00792-006-0034-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/16/2006] [Indexed: 10/24/2022]
Abstract
An NAD(+)-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD(+) as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD(+). F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85 degrees C and the most active at 70 degrees C. The half-life time and k (cat) value at 60 degrees C were calculated to be 50 min and 27,400 min(-1), respectively. The enzyme also shows high catalytic efficiency at low temperatures (0-20 degrees C) (k(cat)/K(m) at 10 degrees C; 12,600 mM(-1)min(-1)) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.
Collapse
Affiliation(s)
- Takayuki Kazuoka
- Department of Biotechnology, Faculty of Engineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan
| | | | | | | | | |
Collapse
|
9
|
Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 2004; 185:7120-8. [PMID: 14645271 PMCID: PMC296251 DOI: 10.1128/jb.185.24.7120-7128.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new isolate, Gordonia sp. strain TY-5, is capable of growth on propane and n-alkanes with C(13) to C(22) carbon chains as the sole source of carbon. In whole-cell reactions, significant propane oxidation to 2-propanol was detected. A gene cluster designated prmABCD, which encodes the components of a putative dinuclear-iron-containing multicomponent monooxygenase, including the large and small subunits of the hydroxylase, an NADH-dependent acceptor oxidoreductase, and a coupling protein, was cloned and sequenced. A mutant with prmB disrupted (prmB::Kan(r)) lost the ability to grow on propane, and Northern blot analysis revealed that polycistronic transcription of the prm genes was induced during its growth on propane. These results indicate that the prmABCD gene products play an essential role in propane oxidation by the bacterium. Downstream of the prm genes, an open reading frame (adh1) encoding an NAD(+)-dependent secondary alcohol dehydrogenase was identified, and the protein was purified and characterized. The Northern blot analysis results and growth properties of a disrupted mutant (adh1::Kan(r)) indicate that Adh1 plays a major role in propane metabolism. Two additional NAD(+)-dependent secondary alcohol dehydrogenases (Adh2 and Adh3) were also found to be involved in 2-propanol oxidation. On the basis of these results, we conclude that Gordonia sp. strain TY-5 oxidizes propane by monooxygenase-mediated subterminal oxidation via 2-propanol.
Collapse
Affiliation(s)
- Tetsuya Kotani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
10
|
Bielanski A, Bergeron H, Lau PCK, Devenish J. Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 2003; 46:146-52. [PMID: 12686204 DOI: 10.1016/s0011-2240(03)00020-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report on microbial contamination of embryos and semen cryopreserved in sealed plastic straws and stored for 6-35 years in liquid nitrogen. There were 32 bacterial and 1 fungal species identified from randomly drawn liquid nitrogen, frozen semen, and embryos samples stored in 8 commercial and 8 research facility liquid nitrogen (LN) tanks. The identified bacteria represented commensal or environmental microorganisms and some, such as Escherichia coli, were potential or opportunistic pathogens for humans and animals. Stenotrophomonas maltophilia was the most common contaminant identified from the samples and was further shown to significantly suppress fertilization and embryonic development in vitro. Analysis of the strains by pulsed field gel electrophoresis revealed restriction patterns with no relatedness indicating that there was no apparent cross-contamination of S. maltophilia strains between the germplasm and liquid nitrogen samples. In addition, no transmission of bovine viral diarrhea virus (BVDV) and bovine herpesvirus-1 (BHV-1) from infected semen and embryos straws to clean germplasm stored in the same LN tanks or LN was detected.
Collapse
Affiliation(s)
- A Bielanski
- Canadian Food Inspection Agency, Animal Diseases Research Institute, Germplasm Centre of Expertise, Ottawa Laboratory-Fallowfield, K2H 8P9, Ottawa/Nepean, Ont., Canada.
| | | | | | | |
Collapse
|
11
|
Krum JG, Ensign SA. Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2. J Bacteriol 2001; 183:2172-7. [PMID: 11244054 PMCID: PMC95121 DOI: 10.1128/jb.183.7.2172-2177.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2000] [Accepted: 01/09/2001] [Indexed: 01/16/2023] Open
Abstract
The bacterial metabolism of propylene proceeds by epoxidation to epoxypropane followed by a sequence of three reactions resulting in epoxide ring opening and carboxylation to form acetoacetate. Coenzyme M (2-mercaptoethanesulfonic acid) (CoM) plays a central role in epoxide carboxylation by serving as the nucleophile for epoxide ring opening and the carrier of the C(3) unit that is ultimately carboxylated to acetoacetate, releasing CoM. In the present work, a 320-kb linear megaplasmid has been identified in the gram-negative bacterium Xanthobacter strain Py2, which contains the genes encoding the key enzymes of propylene oxidation and epoxide carboxylation. Repeated subculturing of Xanthobacter strain Py2 under nonselective conditions, i.e., with glucose or acetate as the carbon source in the absence of propylene, resulted in the loss of the propylene-positive phenotype. The propylene-negative phenotype correlated with the loss of the 320-kb linear megaplasmid, loss of induction and expression of alkene monooxgenase and epoxide carboxylation enzyme activities, and the loss of CoM biosynthetic capability. Sequence analysis of a hypothetical protein (XecG), encoded by a gene located downstream of the genes for the four enzymes of epoxide carboxylation, revealed a high degree of sequence identity with proteins of as-yet unassigned functions in the methanogenic archaea Methanobacterium thermoautotrophicum and Methanococcus jannaschii and in Bacillus subtilis. The M. jannaschii homolog of XecG, MJ0255, is located next to a gene, MJ0256, that has been shown to encode a key enzyme of CoM biosynthesis (M. Graupner, H. Xu, and R. H. White, J. Bacteriol. 182: 4862-4867, 2000). We propose that the propylene-positive phenotype of Xanthobacter strain Py2 is dependent on the selective maintenance of a linear megaplasmid containing the genes for the key enzymes of alkene oxidation, epoxide carboxylation, and CoM biosynthesis.
Collapse
Affiliation(s)
- J G Krum
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| | | |
Collapse
|
12
|
Nagy I, De Mot R. Sequence analysis of the oxidase/reductase genes upstream of the Rhodococcus erythropolis aldehyde dehydrogenase gene thcA reveals a gene organisation different from Mycobacterium tuberculosis. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2000; 10:61-6. [PMID: 10565547 DOI: 10.3109/10425179909033938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence of the DNA region upstream of the thiocarbamate-inducible aldehyde dehydrogenase gene thcA of Rhodococcus erythropolis NI86/21 was determined. Most of the predicted ORFs are related to various oxidases/reductases, including short-chain oxidases/reductases, GMC oxidoreductases, alpha-hydroxy acid oxidases (subfamily 1 flavin oxidases/dehydrogenases), and subfamily 2 flavin oxidases/dehydrogenases. One ORF is related to enzymes involved in biosynthesis of PQQ or molybdopterin cofactors. In addition, a putative member of the TetR family of regulatory proteins was identified. The substantial sequence divergence from functionally characterized enzymes precludes a reliable prediction about the probable function of these proteins at this stage. In Mycobacterium tuberculosis H37Rv, most of these ORFs have homologs that are also clustered in the genome, but some striking differences in gene organization were observed between Rhodococcus and Mycobacterium.
Collapse
Affiliation(s)
- I Nagy
- F.A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | |
Collapse
|
13
|
Maeda T, Yoshinaga I, Shiba T, Murakami M, Wada A, Ishida Y. Cloning and sequencing of the gene encoding an aldehyde dehydrogenase that is induced by growing Alteromonas sp. Strain KE10 in a low concentration of organic nutrients. Appl Environ Microbiol 2000; 66:1883-9. [PMID: 10788355 PMCID: PMC101428 DOI: 10.1128/aem.66.5.1883-1889.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein composition of Alteromonas sp. strain KE10 cultured at two different organic-nutrient concentrations was determined by using two-dimensional polyacrylamide gel electrophoresis. The cellular levels of three proteins, OlgA, -B, and -C, were considerably higher in cells grown in a low concentration of organic nutrient medium (LON medium; 0.2 mg of carbon per liter) than cells grown in a high concentration of organic nutrient medium (HON; 200 mg of C liter(-1)) or cells starved for organic nutrients. In the LON medium, the cellular levels of the Olg proteins were higher at the exponential growth phase than at the stationary growth phase. A sequence of the gene for OlgA revealed that the amino acid sequence had a high degree of similarity to the NAD(+)-dependent aldehyde dehydrogenases of several bacteria. OlgA, expressed in Escherichia coli, catalyzed the dehydrogenation of acetaldehyde, propionaldehyde, and butyraldehyde. The aldehyde dehydrogenase activity of KE10 was higher in cells growing exponentially in LON medium than in HON. OlgA may be involved in the growth under low-nutrient conditions. The physiological role of OlgA is discussed here.
Collapse
Affiliation(s)
- T Maeda
- Department of Food Science and Technology, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Okibe N, Amada K, Hirano S, Haruki M, Imanaka T, Morikawa M, Kanaya S. Gene cloning and characterization of aldehyde dehydrogenase from a petroleum-degrading bacterium, strain HD-1. J Biosci Bioeng 1999; 88:7-11. [PMID: 16232565 DOI: 10.1016/s1389-1723(99)80167-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1999] [Accepted: 04/09/1999] [Indexed: 11/30/2022]
Abstract
The hd-ald gene encoding aldehyde dehydrogenase (hd-ALDH) from an mixotrophic petroleum-degrading bacterium, strain HD-1 was cloned and sequenced. hd-ALDH (506 amino acids) is a member of the NAD+-dependent aldehyde dehydrogenase group. The hd-ald gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized biochemically and enzymatically. The molecular weight of the enzyme was estimated to be 55,000 by SDS-PAGE, and 224,000 by gel filtration chromatography, suggesting that it acts as a tetramer. The CD spectrum suggests that the helical content of the enzyme is 10%. hd-ALDH was active on various aliphatic aldehyde substrates. The K(m) values of the enzyme were 6.4 microM for acetaldehyde, 4.2 microM for hexanal, 2.8 microM for octanal, and 0.84 microM for decanal, whereas the kcat values for these substrates were nearly equal (51-64 min(-1)). These results indicate that hd-ALDH acts preferentially on long-chain aliphatic aldehydes.
Collapse
Affiliation(s)
- N Okibe
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871 Japan
| | | | | | | | | | | | | |
Collapse
|