1
|
Fuyuki A, Sohel MSH, Homma T, Kitamura K, Takashima S, Onouchi S, Saito S. Selective prosaposin expression in Langerhans islets of the mouse pancreas. Tissue Cell 2024; 88:102367. [PMID: 38537378 DOI: 10.1016/j.tice.2024.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 06/17/2024]
Abstract
The islets of Langerhans are clusters of endocrine cells surrounded by exocrine acinar cells in the pancreas. Prosaposin is a housekeeping protein required for normal lysosomal function, but its expression level is significantly different among tissues. Prosaposin also exists in various body fluids including serum. Intracellularly, prosaposin activates lysosomes and may support autophagy, and extracellularly, prosaposin promotes survival of neurons via G protein-coupled receptors. In this study, prosaposin and its mRNA expression were examined in endocrine cells of the islets as well as in exocrine acinar cells in the pancreas of mice by in situ hybridization and immunostaining. High expression levels of prosaposin were found in Alpha, Beta and Delta cells in the islets, whereas prosaposin mRNA expression was faint or negative and prosaposin immunoreactivity was negative in exocrine acinar cells. The high expression levels of prosaposin in endocrine cells may indicate that prosaposin plays a crucial role in crinophagy, which is a characteristic autophagy in peptide-secreting endocrine cells, and/or that prosaposin is secreted from pancreatic islets. Since prosaposin has been reported in serum, this study suggests a new possible function of the Langerhans islets.
Collapse
Affiliation(s)
- Aimi Fuyuki
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Md Shahriar Hasan Sohel
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takeshi Homma
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kai Kitamura
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
2
|
Donner J, Pirkola S, Silander K, Kananen L, Terwilliger JD, Lönnqvist J, Peltonen L, Hovatta I. An association analysis of murine anxiety genes in humans implicates novel candidate genes for anxiety disorders. Biol Psychiatry 2008; 64:672-680. [PMID: 18639233 PMCID: PMC2682432 DOI: 10.1016/j.biopsych.2008.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 05/19/2008] [Accepted: 06/02/2008] [Indexed: 01/19/2023]
Abstract
BACKGROUND Human anxiety disorders are complex diseases with largely unknown etiology. We have taken a cross-species approach to identify genes that regulate anxiety-like behavior with inbred mouse strains that differ in their innate anxiety levels as a model. We previously identified 17 genes with expression levels that correlate with anxiety behavior across the studied strains. In the present study, we tested their 13 known human homologues as candidate genes for human anxiety disorders with a genetic association study. METHODS We describe an anxiety disorder study sample derived from a Finnish population-based cohort and consisting of 321 patients and 653 carefully matched control subjects, all interviewed to obtain DSM-IV diagnoses. We genotyped altogether 208 single nucleotide polymorphisms (SNPs) (all non-synonymous SNPs, SNPs that alter potential microRNA binding sites, and gap-filling SNPs selected on the basis of HapMap information) from the investigated anxiety candidate genes. RESULTS Specific alleles and haplotypes of six of the examined genes revealed some evidence for association (p < or = .01). The most significant evidence for association with different anxiety disorder subtypes were: p = .0009 with ALAD (delta-aminolevulinate dehydratase) in social phobia, p = .009 with DYNLL2 (dynein light chain 2) in generalized anxiety disorder, and p = .004 with PSAP (prosaposin) in panic disorder. CONCLUSIONS Our findings suggest that variants in these genes might predispose to specific human anxiety disorders. These results illustrate the potential utility of cross-species approaches in identification of candidate genes for psychiatric disorders.
Collapse
Affiliation(s)
- Jonas Donner
- Research Program of Molecular Neurology, Biomedicum Helsinki, Finland; Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Department of Molecular Medicine, National Public Health Institute and FIMM, Institute of Molecular Medicine Finland, Helsinki, Finland
| | - Sami Pirkola
- Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland; Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - Kaisa Silander
- Department of Molecular Medicine, National Public Health Institute and FIMM, Institute of Molecular Medicine Finland, Helsinki, Finland
| | - Laura Kananen
- Research Program of Molecular Neurology, Biomedicum Helsinki, Finland; Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Department of Molecular Medicine, National Public Health Institute and FIMM, Institute of Molecular Medicine Finland, Helsinki, Finland
| | - Joseph D Terwilliger
- Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Genetics and Development, Department of Psychiatry, Columbia Genome Center, Columbia University, New York, New York; Division of Medical Genetics, New York State Psychiatric Institute, New York, New York
| | - Jouko Lönnqvist
- Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland; Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - Leena Peltonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Department of Molecular Medicine, National Public Health Institute and FIMM, Institute of Molecular Medicine Finland, Helsinki, Finland; The Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Iiris Hovatta
- Research Program of Molecular Neurology, Biomedicum Helsinki, Finland; Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Department of Molecular Medicine, National Public Health Institute and FIMM, Institute of Molecular Medicine Finland, Helsinki, Finland; Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland.
| |
Collapse
|
3
|
Koochekpour S, Lee TJ, Sun Y, Hu S, Grabowski GA, Liu Z, Garay J. Prosaposin is an AR-target gene and its neurotrophic domain upregulates AR expression and activity in prostate stromal cells. J Cell Biochem 2008; 104:2272-85. [PMID: 18481277 DOI: 10.1002/jcb.21786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies have introduced prosaposin (PSAP) as a pleiotrophic growth factor for prostate cancer (PCa). We have previously reported that PSAP or one of its known active molecular derivatives, saposin C functions as an androgen-agonist and androgen-regulated gene (ARG) for androgen-sensitive (AS) PCa cell lines. Due to the potential significance of androgen receptor (AR)-expressing stroma in PCa, we evaluated a possible bi-directional paracrine regulatory interactions between DHT and PSAP in AR-positive prostate stromal (PrSt) cells. We report that saposin C in a ligand-independent manner increased AR expression, its nuclear content, and tyrosine phosphorylation. DHT treatment of PrSt cells increased PSAP expression. We also demonstrated both serum- and androgen-inducibility of a previously characterized hormone-responsive element (HRE) located in the proximal region of PSAP promoter. In addition, conditioned-media derived from PrSt cells and bone fibroblasts (i.e., MSF) differentially increased PSAP-promoter activity in androgen-independent (AI) PC-3 and AS LNCaP cells. Our data for the first time demonstrate that not only saposin C or PSAP regulates AR expression/activity, but also function as an ARG in PrSt. Ligand-independent activation of AR by PSAP or saposin C in PCa and stromal cells may contribute not only to prostate carcinogenesis at an early stage, but also in AI progression of the disease in an androgen-deprived tumor microenvironment.
Collapse
Affiliation(s)
- S Koochekpour
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Koochekpour S, Lee TJ, Wang R, Sun Y, Delorme N, Hiraiwa M, Grabowski GA, Culig Z, Minokadeh A. Prosaposin is a novel androgen-regulated gene in prostate cancer cell line LNCaP. J Cell Biochem 2007; 101:631-41. [PMID: 17171640 DOI: 10.1002/jcb.21207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Androgen-regulated genes (ARG) are implicated in normal and neoplastic growth of the prostate. Recently, we reported genomic amplification and/or overexpression of a previously known neurotrophic factor, prosaposin, in androgen-independent (AI) or metastatic prostate cancer (PCa) cells and tissues. Prosaposin and/or its known active molecular derivatives (e.g., saposin C) function as a pluripotent growth factor with diverse biological activities that favor malignant phenotypes in PCa cells. In addition, prosaposin or saposin C upregulates androgen receptor (AR) and AR-target genes (i.e., prostate-specific antigen, Probasin) expression and activity in LNCaP cells. Here, we examined prosaposin as an ARG. We report that DHT treatment of LNCaP cells increases prosaposin expression. In addition, we demonstrate androgen-responsiveness of prosaposin promoter and AR occupancy to a hormone-responsive element located in the proximal region of the prosaposin promoter. Our data for the first time identify prosaposin as an ARG. This observation, together with the pleiotropic growth factor activity of prosaposin, might suggest a role for this molecule in AR-dependent progression of prostate cancer at its early or late AI-state.
Collapse
Affiliation(s)
- S Koochekpour
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cove J, Morales CR, Baranes D. SGP-1 increases dendritic and synaptic development dependent on synaptic activity. Neurosci Res 2006; 56:372-85. [PMID: 17050025 DOI: 10.1016/j.neures.2006.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 08/13/2006] [Accepted: 08/14/2006] [Indexed: 11/21/2022]
Abstract
Neurotrophic factors are a group of secreted proteins which generally regulate neurite outgrowth and synaptic development. SGP-1 has been reported as a neurotrophic factor, though little is known of its effect on neurite outgrowth, and it is unknown whether SGP-1 affects synaptic development. We report here that SGP-1 is distributed in vesicle-like puncta in somas and dendrites of primary neurons in culture, and that SGP-1 is secreted in culture and is taken up by endocytosis in dendrites. Endogenous extracellular activity of SGP-1 promotes dendritic, but not axonal outgrowth. Furthermore, endogenous activity of SGP-1 increases synaptogenesis in hippocampal neurons as determined by measuring the density and size of synaptophysin puncta and by determining the density of dendritic spines, their surface expression of GluR2 and their immunoreactivity for GluR1. The effect of SGP-1 on the amount of postsynaptic receptors in dendritic spines depends on synaptic activity and apparently on activation of MAPK, as inhibition of either of these abolished the affect. Hence, SGP-1 has neurotrophic effects, increasing dendritic growth and promoting synaptic development in an activity-dependent fashion.
Collapse
Affiliation(s)
- Joshua Cove
- Department of Life Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | | | | |
Collapse
|
6
|
Coyle AT, Kinsella BT. Characterization of promoter 3 of the human thromboxane A receptor gene. A functional AP-1 and octamer motif are required for basal promoter activity. FEBS J 2005; 272:1036-53. [PMID: 15691336 DOI: 10.1111/j.1742-4658.2004.04538.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The TPalpha and TPbeta isoforms of the human thromboxane A(2) receptor (TP) arise by differential splicing but are under the transcriptional control of two distinct promoters, termed Prm1 and Prm3, respectively (Coyle et al. 2002 Eur J Biochem269, 4058-4073). The aim of the current study was to determine the key factors regulating TPbeta expression by functionally characterizing Prm3, identifying the core promoter and the cis-acting elements regulating basal Prm3 activity. Hence, the ability of Prm3 and a series of Prm3 deleted/mutated subfragments to direct reporter gene expression in human erythroleukemia 92.1.7 and human embryonic kidney 293 cells was investigated. It was established that nucleotides -118 to +1 are critical for core Prm3 activity in both cell types. Furthermore, three distinct regulatory regions comprising of an upstream repressor sequence, located between -404 to -320, and two positive regulatory regions required for efficient basal gene expression, located between -154 to -106 and -50 to +1, were identified within the core Prm3. Deletion and site-directed mutagenesis of consensus Oct-1/2 and AP-1 elements within the latter -154 to -106 and -50 to +1 regions, respectively, substantially reduced Prm3 activity while mutation of both elements abolished Prm3 activity. Electromobility shift and supershift assays confirmed the specificity of nuclear factor binding to the latter Oct-1/2 and AP-1 elements. Moreover, herein it was established that the core AP-1 element mediates phorbol myristic acid-induction of Prm3 activity hence providing a mechanistic explanation of phorbol ester up-regulation of TPbeta mRNA expression.
Collapse
Affiliation(s)
- Adrian T Coyle
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
7
|
Sun Y, Witte DP, Jin P, Grabowski GA. Analyses of temporal regulatory elements of the prosaposin gene in transgenic mice. Biochem J 2003; 370:557-66. [PMID: 12467496 PMCID: PMC1223203 DOI: 10.1042/bj20021120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 11/19/2002] [Accepted: 12/06/2002] [Indexed: 11/17/2022]
Abstract
The expression of prosaposin is temporally and spatially regulated at transcriptional and post-translational levels. Transgenic mice with various 5'-flanking deletions of the prosaposin promoter fused to luciferase (LUC) reporters were used to define its temporal regulatory region. LUC expression in the transgenic mice carrying constructs with 234 bp (234LUC), 310 bp (310LUC) or 2400 bp (2400LUC) of the 5'-flanking region was analysed in the central nervous system and eye throughout development. For 310LUC and 2400LUC, low-level LUC activity was maintained until embryonal day 18 in brain, eye and spinal cord. The peak level of LUC activity was at birth, with return to a plateau (1/3 of peak) throughout adulthood. Deletion of the region that included the retinoic acid-receptor-related orphan receptor (ROR alpha)-binding site and sequence-specific transcription factor (Sp1) cluster sites (44-310 bp) suppressed the peak of activity. By comparison, the peak level for 234LUC was shifted 2 weeks into neonatal life in the brain, but not in the eye, and no peak of activity was observed in the spinal cord. The endogenous prosaposin mRNA in eye, spinal cord and cerebellum had low-level expression before birth and continued to increase into adulthood. In cerebrum, the endogenous mRNA showed similar expression profile to constructs 310LUC, 2400LUC and 234LUC, with the peak expression at 1 week and a decreased level in adult. In the brain of the newborn, 2400LUC was highly expressed in the trigeminal ganglion and brain stem regions when compared with the generalized expression pattern for endogenous prosaposin mRNA. These results suggest that the modifiers (ROR alpha- and Sp1-binding sites) residing within 310 bp of the 5'-flanking region mediate developmental regulation in the central nervous system and eye. Additional regulatory elements outside the 5' region of the 2400 bp promoter fragment appear to be essential for the physiological control of the prosaposin locus.
Collapse
Affiliation(s)
- Ying Sun
- The Division and Program in Human Genetics, Children's Hospital Medical Center, 3333 Burnet Avenue, PAV 3-52, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
8
|
Jin P, Sun Y, Grabowski GA. In vivo roles of RORalpha and Sp4 in the regulation of murine prosaposin gene. DNA Cell Biol 2001; 20:781-9. [PMID: 11879571 DOI: 10.1089/104454901753438598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prosaposin has a central role in intracellular glycosphingolipid catabolism and also has extracellular functions. This locus is regulated temporally and spatially. The highest mRNA expression occurs in the central nervous system (CNS) and reproductive system. In vitro, the CNS-expressed proteins Sp4 and RORalpha bind to Sp1 and RORE sites within a 310-bp fragment directly upstream of the transcription start site. These transcription factors exhibit negative cooperativity in vitro for prosaposin expression. Mice deficient in RORalpha and Sp4 (Staggerer [Sg(-/-)] and Sp4 knockout [Sp4 KO], respectively) containing selected prosaposin promoter deletion transgenes were used in comparative expression studies to evaluate this negative cooperativity in vivo. Constructs containing the RORE or Sp1/U cluster alone were independently stimulatory. Deletion of the Sp1/U site led to a decrease in reporter activity only in the cerebellum of Sg(-/-) mice. The deletion of RORE and Sp1/U sites did alter the increase of reporter activity in the brain and eye, but not in the spinal cord, of Sg(-/-) mice. These results indicate that Sp4 and RORalpha play minor and major roles, respectively, in regional expression of the prosaposin locus in the brain, whereas expression in the spinal cord is independent of RORalpha.
Collapse
Affiliation(s)
- P Jin
- The Division of Human Genetics, Children's Hospital Research Foundation at Children's Hospital Medical Center, Cincinnati, Ohio 45529-3039, USA
| | | | | |
Collapse
|
9
|
Schepers U, Lemm T, Herzog V, Sandhoff K. Characterization of regulatory elements in the 5'-flanking region of the GM2 activator gene. Biol Chem 2000; 381:531-44. [PMID: 10987359 DOI: 10.1515/bc.2000.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lysosomal degradation of the ganglioside GM2 by human beta-hexosaminidase A requires the presence of the GM2 activator protein as an essential cofactor. Here we demonstrate that GM2 activator mRNA is differentially expressed and mainly localized to the apical part of the epithelial cells of distal renal tubules and the collecting duct. In order to understand the mechanism underlying the regulation of the GM2 activator gene, we analyzed the genomic organization upstream exon 2 as well as the 5'-flanking region. The GM2 activator gene spans about 16.8 kb with a first intron of 6.5 kb, and the transcription start is located at position -96 upstream from the ATG. DNA elements responsible for GM2 activator expression were identified in a PCR-based method of long-distance DNA walking. Sequence analysis revealed a 2.9 kb region upstream of the ATG that contained regulatory elements like CAAT boxes, Sp1 binding sites as well as AP1, and AP2 sites. Transfection experiments in COS-1 cells with a series of chimeras of 5'-stepwise deletion mutants of the GM2 activator gene 5'-flanking region and the secretory alkaline phosphatase (SEAP)-reporter gene indicated that a genomic fragment encompassing -323 to +1 bp had significant promoter activity. EMSA experiments showed that Sp1 and other transcription factors like AP1, AP2 and CCAAT-Box binding proteins are involved in GM2 activator gene regulation.
Collapse
Affiliation(s)
- U Schepers
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | | | |
Collapse
|