1
|
Knoll ER, Zhu ZI, Sarkar D, Landsman D, Morse RH. Kin28 depletion increases association of TFIID subunits Taf1 and Taf4 with promoters in Saccharomyces cerevisiae. Nucleic Acids Res 2020; 48:4244-4255. [PMID: 32182349 DOI: 10.1093/nar/gkaa165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 03/04/2020] [Indexed: 01/31/2023] Open
Abstract
Transcription of eukaryotic mRNA-encoding genes by RNA polymerase II (Pol II) begins with assembly of the pre-initiation complex (PIC), comprising Pol II and the general transcription factors. Although the pathway of PIC assembly is well established, the mechanism of assembly and the dynamics of PIC components are not fully understood. For example, only recently has it been shown that in yeast, the Mediator complex normally occupies promoters only transiently, but shows increased association when Pol II promoter escape is inhibited. Here we show that two subunits of TFIID, Taf1 and Taf4, similarly show increased occupancy as measured by ChIP upon depletion or inactivation of Kin28. In contrast, TBP occupancy is unaffected by depletion of Kin28, thus revealing an uncoupling of Taf and TBP occupancy during the transcription cycle. Increased Taf1 occupancy upon Kin28 depletion is suppressed by depletion of TBP, while depletion of TBP in the presence of Kin28 has little effect on Taf1 occupancy. The increase in Taf occupancy upon depletion of Kin28 is more pronounced at TFIID-dominated promoters compared to SAGA-dominated promoters. Our results support the suggestion, based on recent structural studies, that TFIID may not remain bound to gene promoters through the transcription initiation cycle.
Collapse
Affiliation(s)
- Elisabeth R Knoll
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201-0509, USA
| | - Z Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20814, USA
| | - Debasish Sarkar
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20814, USA
| | - Randall H Morse
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201-0509, USA.,Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| |
Collapse
|
2
|
Knoll ER, Zhu ZI, Sarkar D, Landsman D, Morse RH. Role of the pre-initiation complex in Mediator recruitment and dynamics. eLife 2018; 7:39633. [PMID: 30540252 PMCID: PMC6322861 DOI: 10.7554/elife.39633] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Mediator complex stimulates the cooperative assembly of a pre-initiation complex (PIC) and recruitment of RNA Polymerase II (Pol II) for gene activation. The core Mediator complex is organized into head, middle, and tail modules, and in budding yeast (Saccharomyces cerevisiae), Mediator recruitment has generally been ascribed to sequence-specific activators engaging the tail module triad of Med2-Med3-Med15 at upstream activating sequences (UASs). We show that yeast lacking Med2-Med3-Med15 are viable and that Mediator and PolII are recruited to promoters genome-wide in these cells, albeit at reduced levels. To test whether Mediator might alternatively be recruited via interactions with the PIC, we examined Mediator association genome-wide after depleting PIC components. We found that depletion of Taf1, Rpb3, and TBP profoundly affected Mediator association at active gene promoters, with TBP being critical for transit of Mediator from UAS to promoter, while Pol II and Taf1 stabilize Mediator association at proximal promoters.
Collapse
Affiliation(s)
- Elisabeth R Knoll
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States
| | - Z Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States
| | - Debasish Sarkar
- Wadsworth Center, New York State Department of Health, Albany, United States
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States
| | - Randall H Morse
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States.,Wadsworth Center, New York State Department of Health, Albany, United States
| |
Collapse
|
3
|
Ciftci-Yilmaz S, Au WC, Mishra PK, Eisenstatt JR, Chang J, Dawson AR, Zhu I, Rahman M, Bilke S, Costanzo M, Baryshnikova A, Myers CL, Meltzer PS, Landsman D, Baker RE, Boone C, Basrai MA. A Genome-Wide Screen Reveals a Role for the HIR Histone Chaperone Complex in Preventing Mislocalization of Budding Yeast CENP-A. Genetics 2018; 210:203-218. [PMID: 30012561 PMCID: PMC6116949 DOI: 10.1534/genetics.118.301305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/12/2018] [Indexed: 11/18/2022] Open
Abstract
Centromeric localization of the evolutionarily conserved centromere-specific histone H3 variant CENP-A (Cse4 in yeast) is essential for faithful chromosome segregation. Overexpression and mislocalization of CENP-A lead to chromosome segregation defects in yeast, flies, and human cells. Overexpression of CENP-A has been observed in human cancers; however, the molecular mechanisms preventing CENP-A mislocalization are not fully understood. Here, we used a genome-wide synthetic genetic array (SGA) to identify gene deletions that exhibit synthetic dosage lethality (SDL) when Cse4 is overexpressed. Deletion for genes encoding the replication-independent histone chaperone HIR complex (HIR1, HIR2, HIR3, HPC2) and a Cse4-specific E3 ubiquitin ligase, PSH1, showed highest SDL. We defined a role for Hir2 in proteolysis of Cse4 that prevents mislocalization of Cse4 to noncentromeric regions for genome stability. Hir2 interacts with Cse4 in vivo, and hir2∆ strains exhibit defects in Cse4 proteolysis and stabilization of chromatin-bound Cse4 Mislocalization of Cse4 to noncentromeric regions with a preferential enrichment at promoter regions was observed in hir2∆ strains. We determined that Hir2 facilitates the interaction of Cse4 with Psh1, and that defects in Psh1-mediated proteolysis contribute to increased Cse4 stability and mislocalization of Cse4 in the hir2∆ strain. In summary, our genome-wide screen provides insights into pathways that regulate proteolysis of Cse4 and defines a novel role for the HIR complex in preventing mislocalization of Cse4 by facilitating proteolysis of Cse4, thereby promoting genome stability.
Collapse
Affiliation(s)
- Sultan Ciftci-Yilmaz
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Prashant K Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jessica R Eisenstatt
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Joy Chang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Anthony R Dawson
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Iris Zhu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Mahfuzur Rahman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - Sven Bilke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario M5S 3E1, Canada
| | | | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario M5S 3E1, Canada
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Salinero AC, Knoll ER, Zhu ZI, Landsman D, Curcio MJ, Morse RH. The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. PLoS Genet 2018; 14:e1007232. [PMID: 29462141 PMCID: PMC5834202 DOI: 10.1371/journal.pgen.1007232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/02/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022] Open
Abstract
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility. Retrotransposons are mobile genetic elements that copy their RNA genomes into DNA and insert the DNA copies into the host genome. These elements contribute to genome instability, control of host gene expression and adaptation to changing environments. Retrotransposons depend on numerous host factors for their own propagation and control. The retrovirus-like retrotransposon, Ty1, in the yeast Saccharomyces cerevisiae has been an invaluable model for retrotransposon research, and hundreds of host factors that regulate Ty1 retrotransposition have been identified. Non-essential subunits of the Mediator transcriptional co-activator complex have been identified as one set of host factors implicated in Ty1 regulation. Here, we report a systematic investigation of the effects of loss of these non-essential subunits of Mediator on Ty1 retrotransposition. Our findings reveal a heretofore unknown mechanism by which Mediator influences the balance between transcription from two promoters in Ty1 to modulate expression of an autoinhibitory transcript known as Ty1i RNA. Our results provide new insights into host control of retrotransposon activity via promoter choice and elucidate a novel mechanism by which the Mediator co-activator governs this choice.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Elisabeth R. Knoll
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Z. Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - M. Joan Curcio
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| | - Randall H. Morse
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| |
Collapse
|
5
|
Campero‐Basaldua C, Quezada H, Riego‐Ruíz L, Márquez D, Rojas E, González J, El‐Hafidi M, González A. Diversification of the kinetic properties of yeast NADP-glutamate-dehydrogenase isozymes proceeds independently of their evolutionary origin. Microbiologyopen 2017; 6:e00419. [PMID: 27864882 PMCID: PMC5387307 DOI: 10.1002/mbo3.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the ScGDH1 and ScGDH3 encoded glutamate dehydrogenases (NADP-GDHs) catalyze the synthesis of glutamate from ammonium and α-ketoglutarate (α-KG). Previous kinetic characterization showed that these enzymes displayed different allosteric properties and respectively high or low rate of α-KG utilization. Accordingly, the coordinated action of ScGdh1 and ScGdh3, regulated balanced α-KG utilization for glutamate biosynthesis under either fermentative or respiratory conditions, safeguarding energy provision. Here, we have addressed the question of whether there is a correlation between the regulation and kinetic properties of the NADP-GDH isozymes present in S. cerevisiae (ScGdh1 and ScGdh3), Kluyveromyces lactis (KlGdh1), and Lachancea kluyveri (LkGdh1) and their evolutionary history. Our results show that the kinetic properties of K. lactis and L. kluyveri single NADP-GDHs are respectively similar to either ScGDH3 or ScGDH1, which arose from the whole genome duplication event of the S. cerevisiae lineage, although, KlGDH1 and LkGDH1 originated from a GDH clade, through an ancient interspecies hybridization event that preceded the divergence between the Saccharomyces clade and the one containing the genera Kluyveromyces, Lachancea, and Eremothecium. Thus, the kinetic properties which determine the NADP-GDHs capacity to utilize α-KG and synthesize glutamate do not correlate with their evolutionary origin.
Collapse
Affiliation(s)
- Carlos Campero‐Basaldua
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Héctor Quezada
- Laboratorio de Inmunología y ProteómicaHospital Infantil de México Federico GómezMexico CityMéxico
| | | | - Dariel Márquez
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Erendira Rojas
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - James González
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Mohammed El‐Hafidi
- Departamento de Biomedicina CardiovascularInstituto Nacional de Cardiología Ignacio ChávezMexico CityMéxico
| | - Alicia González
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| |
Collapse
|
6
|
Dujon B. Basic principles of yeast genomics, a personal recollection: Graphical Abstract Figure. FEMS Yeast Res 2015; 15:fov047. [DOI: 10.1093/femsyr/fov047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
|
7
|
Ulrich A, Wahl MC. Structure and evolution of the spliceosomal peptidyl-prolyl cis-trans isomerase Cwc27. ACTA ACUST UNITED AC 2014; 70:3110-23. [PMID: 25478830 DOI: 10.1107/s1399004714021695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/10/2022]
Abstract
Cwc27 is a spliceosomal cyclophilin-type peptidyl-prolyl cis-trans isomerase (PPIase). Here, the crystal structure of a relatively protease-resistant N-terminal fragment of human Cwc27 containing the PPIase domain was determined at 2.0 Å resolution. The fragment exhibits a C-terminal appendix and resides in a reduced state compared with the previous oxidized structure of a similar fragment. By combining multiple sequence alignments spanning the eukaryotic tree of life and secondary-structure prediction, Cwc27 proteins across the entire eukaryotic kingdom were identified. This analysis revealed the specific loss of a crucial active-site residue in higher eukaryotic Cwc27 proteins, suggesting that the protein evolved from a prolyl isomerase to a pure proline binder. Noting a fungus-specific insertion in the PPIase domain, the 1.3 Å resolution crystal structure of the PPIase domain of Cwc27 from Chaetomium thermophilum was also determined. Although structurally highly similar in the core domain, the C. thermophilum protein displayed a higher thermal stability than its human counterpart, presumably owing to the combined effect of several amino-acid exchanges that reduce the number of long side chains with strained conformations and create new intramolecular interactions, in particular increased hydrogen-bond networks.
Collapse
Affiliation(s)
- Alexander Ulrich
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
8
|
Genome-wide association of mediator and RNA polymerase II in wild-type and mediator mutant yeast. Mol Cell Biol 2014; 35:331-42. [PMID: 25368384 DOI: 10.1128/mcb.00991-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mediator is a large, multisubunit complex that is required for essentially all mRNA transcription in eukaryotes. In spite of the importance of Mediator, the range of its targets and how it is recruited to these is not well understood. Previous work showed that in Saccharomyces cerevisiae, Mediator contributes to transcriptional activation by two distinct mechanisms, one depending on the tail module triad and favoring SAGA-regulated genes, and the second occurring independently of the tail module and favoring TFIID-regulated genes. Here, we use chromatin immunoprecipitation sequencing (ChIP-seq) to show that dependence on tail module subunits for Mediator recruitment and polymerase II (Pol II) association occurs preferentially at SAGA-regulated over TFIID-regulated genes on a genome-wide scale. We also show that recruitment of tail module subunits to active gene promoters continues genome-wide when Mediator integrity is compromised in med17 temperature-sensitive (ts) yeast, demonstrating the modular nature of the Mediator complex in vivo. In addition, our data indicate that promoters exhibiting strong and stable occupancy by Mediator have a wide range of activity and are enriched for targets of the Tup1-Cyc8 repressor complex. We also identify a number of strong Mediator occupancy peaks that overlap dubious open reading frames (ORFs) and are likely to include previously unrecognized upstream activator sequences.
Collapse
|
9
|
Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R, van den Broek M, Seifar RM, Ten Pierick A, Thompson M, Müller V, Wahl SA, Pronk JT, Daran JM. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol Microbiol 2014; 93:369-89. [PMID: 24912400 PMCID: PMC4149782 DOI: 10.1111/mmi.12666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2014] [Indexed: 11/26/2022]
Abstract
Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were cloned from Kluyveromyces lactis and shown to functionally complement the corresponding deletion in S. cerevisiae. Surprisingly, deletion of the single K. lactis arginase gene KlCAR1 did not completely abolish growth on arginine as nitrogen source. Growth rate of the deletion mutant strongly increased during serial transfer in shake-flask cultures. A combination of RNAseq-based transcriptome analysis and (13)C-(15)N-based flux analysis was used to elucidate the arginase-independent pathway. Isotopic (13)C(15)N-enrichment in γ-aminobutyrate revealed succinate as the entry point in the TCA cycle of the alternative pathway. Transcript analysis combined with enzyme activity measurements indicated increased expression in the Klcar1Δ mutant of a guanidinobutyrase (EC.3.5.3.7), a key enzyme in a new pathway for arginine degradation. Expression of the K. lactis KLLA0F27995g (renamed KlGBU1) encoding guanidinobutyrase enabled S. cerevisiae to use guanidinobutyrate as sole nitrogen source and its deletion in K. lactis almost completely abolish growth on this nitrogen source. Phylogenetic analysis suggests that this enzyme activity is widespread in fungi.
Collapse
Affiliation(s)
- G Romagnoli
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 4047, 2600 GA, Delft, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lin CPC, Kim C, Smith SO, Neiman AM. A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae. PLoS Genet 2013; 9:e1003700. [PMID: 23966878 PMCID: PMC3744438 DOI: 10.1371/journal.pgen.1003700] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/20/2013] [Indexed: 12/01/2022] Open
Abstract
The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation. The cell wall of fungi is a complex extracellular matrix and an important target for antifungal drugs. Assembly of the wall during spore formation in baker's yeast is a useful model for fungal wall development. The outermost layers of the spore wall are composed of a polymer of dityrosine connected to an underlying polysaccharide layer. The assembly pathway of this dityrosine polymer is not known. Using a genetic approach we reveal a network of genes that function redundantly to control dityrosine layer synthesis. Solid state NMR analysis of spore walls from wild-type and mutant cells reveals a novel constituent of the spore wall that may link the dityrosine to the underlying polysaccharides and a role for lipid droplets in the incorporation of this new component into the spore wall.
Collapse
Affiliation(s)
- Coney Pei-Chen Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Carey Kim
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Steven O. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Woodwark KC, Hubbard SJ, Oliver SG. Sequence search algorithms for single pass sequence identification: does one size fit all? Comp Funct Genomics 2010; 2:4-9. [PMID: 18628895 PMCID: PMC2447189 DOI: 10.1002/cfg.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bioinformatic tools have become essential to biologists in their quest to understand the vast quantities of sequence data, and now whole genomes, which are being produced at an ever increasing rate. Much of these sequence data are single-pass sequences, such as sample sequences from organisms closely related to other organisms of interest which have already been sequenced, or cDNAs or expressed sequence tags (ESTs). These single-pass sequences often contain errors, including frameshifts, which complicate the identification of homologues, especially at the protein level. Therefore, sequence searches with this type of data are often performed at the nucleotide level. The most commonly used sequence search algorithms for the identification of homologues are Washington University's and the National Center for Biotechnology Information's (NCBI) versions of the BLAST suites of tools, which are to be found on websites all over the world. The work reported here examines the use of these tools for comparing sample sequence datasets to a known genome. It shows that care must be taken when choosing the parameters to use with the BLAST algorithms. NCBI's version of gapped BLASTn gives much shorter, and sometimes different, top alignments to those found using Washington University's version of BLASTn (which also allows for gaps), when both are used with their default parameters. Most of the differences in performance were found to be due to the choices of default parameters rather than underlying differences between the two algorithms. Washington University's version, used with defaults, compares very favourably with the results obtained using the accurate but computationally intensive Smith-Waterman algorithm.
Collapse
Affiliation(s)
- K C Woodwark
- Department of Biomolecular Sciences UMIST, Manchester M60 1QD, UK
| | | | | |
Collapse
|
12
|
Martens C, Van de Peer Y. The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection. BMC Genomics 2010; 11:353. [PMID: 20525264 PMCID: PMC2996974 DOI: 10.1186/1471-2164-11-353] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 06/03/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oomycetes of the genus Phytophthora are pathogens that infect a wide range of plant species. For dicot hosts such as tomato, potato and soybean, Phytophthora is even the most important pathogen. Previous analyses of Phytophthora genomes uncovered many genes, large gene families and large genome sizes that can partially be explained by significant repeat expansion patterns. RESULTS Analysis of the complete genomes of three different Phytophthora species, using a newly developed approach, unveiled a large number of small duplicated blocks, mainly consisting of two or three consecutive genes. Further analysis of these duplicated genes and comparison with the known gene and genome duplication history of ten other eukaryotes including parasites, algae, plants, fungi, vertebrates and invertebrates, suggests that the ancestor of P. infestans, P. sojae and P. ramorum most likely underwent a whole genome duplication (WGD). Genes that have survived in duplicate are mainly genes that are known to be preferentially retained following WGDs, but also genes important for pathogenicity and infection of the different hosts seem to have been retained in excess. As a result, the WGD might have contributed to the evolutionary and pathogenic success of Phytophthora. CONCLUSIONS The fact that we find many small blocks of duplicated genes indicates that the genomes of Phytophthora species have been heavily rearranged following the WGD. Most likely, the high repeat content in these genomes have played an important role in this rearrangement process. As a consequence, the paucity of retained larger duplicated blocks has greatly complicated previous attempts to detect remnants of a large-scale duplication event in Phytophthora. However, as we show here, our newly developed strategy to identify very small duplicated blocks might be a useful approach to uncover ancient polyploidy events, in particular for heavily rearranged genomes.
Collapse
Affiliation(s)
- Cindy Martens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Bioinformatics and Evolutionary Genomics, Department of Molecular Genetics, Technologiepark 927, Ghent University, B-9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Bioinformatics and Evolutionary Genomics, Department of Molecular Genetics, Technologiepark 927, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
13
|
IMP dehydrogenase is recruited to the transcription complex through serine 2 phosphorylation of RNA polymerase II. Biochem Biophys Res Commun 2010; 392:588-92. [DOI: 10.1016/j.bbrc.2010.01.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/18/2010] [Indexed: 11/21/2022]
|
14
|
Overexpression of Drosophila mitoferrin in l(2)mbn cells results in dysregulation of Fer1HCH expression. Biochem J 2009; 421:463-71. [DOI: 10.1042/bj20082231] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mrs3p and Mrs4p (Mrs3/4p) are yeast mitochondrial iron carrier proteins that play important roles in ISC (iron-sulphur cluster) and haem biosynthesis. At low iron conditions, mitochondrial and cytoplasmic ISC protein maturation is correlated with MRS3/4 expression. Zebrafish mitoferrin1 (mfrn1), one of two MRS3/4 orthologues, is essential for erythropoiesis, but little is known about the ubiquitously expressed paralogue mfrn2. In the present study we identified a single mitoferrin gene (dmfrn) in the genome of Drosophila melanogaster, which is probably an orthologue of mfrn2. Overexpression of dmfrn in the Drosophila l(2)mbn cell line (mbn-dmfrn) resulted in decreased binding between IRP-1A (iron regulatory protein 1A) and stem-loop RNA structures referred to as IREs (iron responsive elements). mbn-dmfrn cell lines also had increased cytoplasmic aconitase activity and slightly decreased iron content. In contrast, iron loading results in decreased IRP-1A–IRE binding, but increased cellular iron content, in experimental mbn-dmfrn and control cell lines. Iron loading also increases cytoplasmic aconitase activity in all cell lines, but with slightly higher activity observed in mbn-dmfrn cells. From this we concluded that dmfrn overexpression stimulates cytoplasmic ISC protein maturation, as has been reported for MRS3/4 overexpression. Compared with control cell lines, mbn-dmfrn cells had higher Fer1HCH (ferritin 1 heavy chain homologue) transcript and protein levels. RNA interference of the putative Drosophila orthologue of human ABCB7, a mitochondrial transporter involved in cytoplasmic ISC protein maturation, restored Fer1HCH transcript levels of iron-treated mbn-dmfrn cells to those of control cells grown in normal medium. These results suggest that dmfrn overexpression in l(2)mbn cells causes an ‘overestimation’ of the cellular iron content, and that regulation of Fer1HCH transcript abundance probably depends on cytoplasmic ISC protein maturation.
Collapse
|
15
|
Katju V, Farslow JC, Bergthorsson U. Variation in gene duplicates with low synonymous divergence in Saccharomyces cerevisiae relative to Caenorhabditis elegans. Genome Biol 2009; 10:R75. [PMID: 19594930 PMCID: PMC2728529 DOI: 10.1186/gb-2009-10-7-r75] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/28/2009] [Accepted: 07/13/2009] [Indexed: 11/21/2022] Open
Abstract
Differences between yeast and worm duplicates result from differences in mechanisms of duplication and effective population size. Background The direct examination of large, unbiased samples of young gene duplicates in their early stages of evolution is crucial to understanding the origin, divergence and preservation of new genes. Furthermore, comparative analysis of multiple genomes is necessary to determine whether patterns of gene duplication can be generalized across diverse lineages or are species-specific. Here we present results from an analysis comprising 68 duplication events in the Saccharomyces cerevisiae genome. We partition the yeast duplicates into ohnologs (generated by a whole-genome duplication) and non-ohnologs (from small-scale duplication events) to determine whether their disparate origins commit them to divergent evolutionary trajectories and genomic attributes. Results We conclude that, for the most part, ohnologs tend to appear remarkably similar to non-ohnologs in their structural attributes (specifically the relative composition frequencies of complete, partial and chimeric duplicates), the discernible length of the duplicated region (duplication span) as well as genomic location. Furthermore, we find notable differences in the features of S. cerevisiae gene duplicates relative to those of another eukaryote, Caenorhabditis elegans, with respect to chromosomal location, extent of duplication and the relative frequencies of complete, partial and chimeric duplications. Conclusions We conclude that the variation between yeast and worm duplicates can be attributed to differing mechanisms of duplication in conjunction with the varying efficacy of natural selection in these two genomes as dictated by their disparate effective population sizes.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, Castetter Hall, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | |
Collapse
|
16
|
Durrett R, Popovic L. Degenerate diffusions arising from gene duplication models. ANN APPL PROBAB 2009. [DOI: 10.1214/08-aap530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Armisén D, Lecharny A, Aubourg S. Unique genes in plants: specificities and conserved features throughout evolution. BMC Evol Biol 2008; 8:280. [PMID: 18847470 PMCID: PMC2576244 DOI: 10.1186/1471-2148-8-280] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Plant genomes contain a high proportion of duplicated genes as a result of numerous whole, segmental and local duplications. These duplications lead up to the formation of gene families, which are the usual material for many evolutionary studies. However, all characterized genomes include single-copy (unique) genes that have not received much attention. Unlike gene duplication, gene loss is not an unspecific mechanism but is rather influenced by a functional selection. In this context, we have established and used stringent criteria in order to identify suitable sets of unique genes present in plant proteomes. Comparisons of unique genes in the green phylum were used to characterize the gene and protein features exhibited by both conserved and species-specific unique genes. Results We identified the unique genes within both A. thaliana and O. sativa genomes and classified them according to the number of homologs in the alternative species: none (U{1:0}), one (U{1:1}) or several (U{1:m}). Regardless of the species, all the genes in these groups present some conserved characteristics, such as small average protein size and abnormal intron number. In order to understand the origin and function of unique genes, we further characterized the U{1:1} gene pairs. The possible involvement of sequence convergence in the creation of U{1:1} pairs was discarded due to the frequent conservation of intron positions. Furthermore, an orthology relationship between the two members of each U{1:1} pair was strongly supported by a high conservation in the protein sizes and transcription levels. Within the promoter of the unique conserved genes, we found a number of TATA and TELO boxes that specifically differed from their mean number in the whole genome. Many unique genes have been conserved as unique through evolution from the green alga Ostreococcus lucimarinus to higher plants. Plant unique genes may also have homologs in bacteria and we showed a link between the targeting towards plastids of proteins encoded by plant nuclear unique genes and their homology with a bacterial protein. Conclusion Many of the A. thaliana and O. sativa unique genes are conserved in plants for which the ancestor diverged at least 725 million years ago (MYA). Half of these genes are also present in other eukaryotic and/or prokaryotic species. Thus, our results indicate that (i) a strong negative selection pressure has conserved a number of genes as unique in genomes throughout evolution, (ii) most unique genes are subjected to a low divergence rate, (iii) they have some features observed in housekeeping genes but for most of them there is no functional annotation and (iv) they may have an ancient origin involving a possible gene transfer from ancestral chloroplasts or bacteria to the plant nucleus.
Collapse
Affiliation(s)
- David Armisén
- Unité de Recherche en Génomique Végetale , UMR INRA 1165 - CNRS 8114 - Université d'Evry Val d'Essonne, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France.
| | | | | |
Collapse
|
18
|
Bugnicourt A, Mari M, Reggiori F, Haguenauer-Tsapis R, Galan JM. Irs4p and Tax4p: two redundant EH domain proteins involved in autophagy. Traffic 2008; 9:755-69. [PMID: 18298591 DOI: 10.1111/j.1600-0854.2008.00715.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins carrying EPS15 homology (EH) domains are present from yeast to mammals. The characterized members of this protein family are all involved in intracellular trafficking, typically endocytosis and endocytic recycling. We focused on two members of this family in Saccharomyces cerevisiae Irs4p and Tax4p, whose functions are less well characterized. We show that the deletion of IRS4 altered the function of a neighboring gene, VPS51, involved in endocytic recycling. The irs4Deltatax4Delta cells complemented for the loss of Vps51p (irs4Deltatax4Delta*) display no defects in endocytosis and endosomal recycling, clearly differentiating these two EH proteins from the other protein family members. Because Irs4p is phosphorylated when autophagy is induced, we studied the potential role of these two proteins in this latter process. We observed a loss of viability upon starvation in irs4Deltatax4Delta* cells because of a delay in bulk autophagy. Irs4p and Tax4p are also required for pexophagy but not for the cytoplasm-to-vacuole pathway. In growing cells, Irs4p and Tax4p colocalized to few cytoplasmic puncta distinct from endosomes and Golgi compartments. In conditions inducing autophagy, Irs4p and Tax4p partially localized to the pre-autophagosomal structure (PAS) and are required to efficiently recruit to the PAS Atg17p, a factor modulating the autophagic response. We propose that Irs4p and Tax4p are two redundant modulators of the autophagic processes acting upstream from Atg17p, possibly in the signaling events leading to the activation of the autophagic machinery in response to starvation.
Collapse
Affiliation(s)
- Amandine Bugnicourt
- Institut Jacques Monod-CNRS, Universités Paris 6 and 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
19
|
Martin N, Ruedi EA, LeDuc R, Sun FJ, Caetano-Anollés G. Gene-interleaving patterns of synteny in the Saccharomyces cerevisiae genome: are they proof of an ancient genome duplication event? Biol Direct 2007; 2:23. [PMID: 17894859 PMCID: PMC2134927 DOI: 10.1186/1745-6150-2-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/25/2007] [Indexed: 11/24/2022] Open
Abstract
Background Recent comparative genomic studies claim local syntenic gene-interleaving relationships in Ashbya gossypii and Kluyveromyces waltii are compelling evidence for an ancient whole-genome duplication event in Saccharomyces cerevisiae. We here test, using Hannenhalli-Pevzner rearrangement algorithms that address the multiple genome rearrangement problem, whether syntenic patterns are proof of paleopolyploidization. Results We focus on (1) pairwise comparison of gene arrangement sequences in A. gossypii and S. cerevisiae, (2) reconstruction of gene arrangements ancestral to A. gossypii, S. cerevisiae, and K. waltii, (3) synteny patterns arising within and between lineages, and (4) expected gene orientation of duplicate gene sets. The existence of syntenic patterns between ancestral gene sets and A. gossypii, S. cerevisiae, and K. waltii, and other evidence, suggests that gene-interleaving relationships are the natural consequence of topological rearrangements in chromosomes and that a more gradual scenario of genome evolution involving segmental duplication and recombination constitutes a more parsimonious explanation. Furthermore, phylogenetic trees reconstructed under alternative hypotheses placed the putative whole-genome duplication event after the divergence of the S. cerevisiae and K. waltii lineages, but in the lineage leading to K. waltii. This is clearly incompatible with an ancient genome duplication event in S. cerevisiae. Conclusion Because the presence of syntenic patterns appears to be a condition that is necessary, but not sufficient, to support the existence of the whole-genome duplication event, our results prompt careful re-evaluation of paleopolyploidization in the yeast lineage and the evolutionary meaning of syntenic patterns. Reviewers This article was reviewed by Kenneth H. Wolfe (nominated by Nicolas Galtier), Austin L. Hughes (nominated by Eugene Koonin), Mikhail S. Gelfand, and Mark Gerstein.
Collapse
Affiliation(s)
- Nicolas Martin
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Drive, Urbana, IL 61801, USA
| | - Elizabeth A Ruedi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Drive, Urbana, IL 61801, USA
| | - Richard LeDuc
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Drive, Urbana, IL 61801, USA
| | - Feng-Jie Sun
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Drive, Urbana, IL 61801, USA
| | - Gustavo Caetano-Anollés
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Drive, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Nelson MN, Lydiate DJ. New evidence from Sinapis alba L. for ancestral triplication in a crucifer genome. Genome 2006; 49:230-8. [PMID: 16604105 DOI: 10.1139/g05-099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present clear evidence of ancestral genome triplication in Sinapis alba, a close relative of the cultivated Brassica species. Exceptionally high levels of heterozygosity in the parents of an F1 intercross permitted the mapping of an estimated 87% of all detected restriction fragment length polymorphism (RFLP) loci, with each RFLP probe typically detecting 2 or 3 loci. These duplicated loci were arranged in 8 triplicated homologous linkage blocks and 2 small, duplicated, homologous linkage blocks covering the majority of the S. alba genome. Several large-scale inversions and translocations appear to have rearranged the order of loci within homologous blocks. The role of successive polyploidization events on the evolution of crucifer species is discussed.
Collapse
Affiliation(s)
- Matthew N Nelson
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia.
| | | |
Collapse
|
21
|
Hughes AL, Friedman R. Sharing of transcription factors after gene duplication in the yeast Saccharomyces cerevisiae. Genetica 2006; 129:301-8. [PMID: 16897462 DOI: 10.1007/s10709-006-0011-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
In a set of 190 duplicate gene pairs in yeast Saccharomyces cerevisiae, the sharing of transcription factors tended to decrease with increased divergence in coding sequence, at both synonymous and nonsynonymous sites. Our results showed a significantly higher sharing of transcription factors by duplicated gene pairs falling within duplicated genomic blocks than in other duplicated gene pairs; and genes in duplicated blocks also showed significantly greater conservation at the coding sequence level. In spite of the overall trends, there were certain gene pairs, both in duplicated blocks and in other genomic regions, which were highly divergent in coding sequence and yet had identical patterns of transcription factor binding. These results suggest that functional differentiation of genes after duplication is a multi-dimensional process, with different duplicate pairs differentiating in different ways.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg. 700 Sumter St., Columbia, SC 29208, USA.
| | | |
Collapse
|
22
|
Farabaugh PJ, Kramer E, Vallabhaneni H, Raman A. Evolution of +1 programmed frameshifting signals and frameshift-regulating tRNAs in the order Saccharomycetales. J Mol Evol 2006; 63:545-61. [PMID: 16838213 DOI: 10.1007/s00239-005-0311-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 03/21/2006] [Indexed: 11/27/2022]
Abstract
Programmed translational frameshifting is a ubiquitous but rare mechanism of gene expression in which mRNA sequences cause the translational machinery to shift reading frames with extreme efficiency, up to at least 50%. The mRNA sequences responsible are deceptively simple; the sequence CUU-AGG-C causes about 40% frameshifting when inserted into an mRNA in the yeast Saccharomyces cerevisiae. The high efficiency of this site depends on a set of S. cerevisiae tRNA isoacceptors that perturb the mechanism of translation to cause the programmed translational error. The simplicity of the system might suggest that it could evolve frequently and perhaps be lost as easily. We have investigated the history of programmed +1 frameshifting in fungi. We find that frameshifting has persisted in two structural genes in budding yeasts, ABP140 and EST3 for about 150 million years. Further, the tRNAs that stimulate the event are equally old. Species that diverged from the lineage earlier both do not employ frameshifting and have a different complement of tRNAs predicted to be inimical to frameshifting. The stability of the coevolution of protein coding genes and tRNAs suggests that frameshifting has been selected for during the divergence of these species.
Collapse
Affiliation(s)
- Philip J Farabaugh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Yeasts provide a powerful model system for comparative genomics research. The availability of multiple complete genome sequences from different fungal groups--currently 18 hemiascomycetes, 8 euascomycetes and 4 basidiomycetes--enables us to gain a broad perspective on genome evolution. The sequenced genomes span a continuum of divergence levels ranging from multiple individuals within a species to species pairs with low levels of protein sequence identity and no conservation of gene order. One of the most interesting emerging areas is the growing number of events such as gene losses, gene displacements and gene relocations that can be attributed to the action of natural selection.
Collapse
Affiliation(s)
- Kenneth H Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
24
|
Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 2006; 34:1816-35. [PMID: 16600899 PMCID: PMC1447645 DOI: 10.1093/nar/gkl085] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/03/2006] [Accepted: 03/03/2006] [Indexed: 01/09/2023] Open
Abstract
We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic 'p-distance tree' using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes.
Collapse
MESH Headings
- Ascomycota/enzymology
- Ascomycota/genetics
- Base Sequence
- Codon
- Conserved Sequence
- DNA, Fungal/chemistry
- Evolution, Molecular
- Genes, Fungal
- Genome, Fungal
- Genomics
- Introns
- Molecular Sequence Data
- Multigene Family
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Christian Marck
- Service de Biochimie et de Génétique Moléculaire, Bât 144. CEA/Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
25
|
Cao Y, Tung WW, Gao JB. Recurrence time statistics: versatile tools for genomic DNA sequence analysis. PROCEEDINGS. IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE 2006:40-51. [PMID: 16447998 DOI: 10.1109/csb.2004.1332415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.
Collapse
|
26
|
Cliften PF, Fulton RS, Wilson RK, Johnston M. After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 2006; 172:863-72. [PMID: 16322519 PMCID: PMC1456250 DOI: 10.1534/genetics.105.048900] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 11/08/2005] [Indexed: 11/18/2022] Open
Abstract
The ancient duplication of the Saccharomyces cerevisiae genome and subsequent massive loss of duplicated genes is apparent when it is compared to the genomes of related species that diverged before the duplication event. To learn more about the evolutionary effects of the duplication event, we compared the S. cerevisiae genome to other Saccharomyces genomes. We demonstrate that the whole genome duplication occurred before S. castellii diverged from S. cerevisiae. In addition to more accurately dating the duplication event, this finding allowed us to study the effects of the duplication on two separate lineages. Analyses of the duplication regions of the genomes indicate that most of the duplicated genes (approximately 85%) were lost before the speciation. Only a small amount of paralogous gene loss (4-6%) occurred after speciation. On the other hand, S. castellii appears to have lost several hundred genes that were not retained as duplicated paralogs. These losses could be related to genomic rearrangements that reduced the number of chromosomes from 16 to 9. In addition to S. castellii, other Saccharomyces sensu lato species likely diverged from S. cerevisiae after the duplication. A thorough analysis of these species will likely reveal other important outcomes of the whole genome duplication.
Collapse
Affiliation(s)
- Paul F Cliften
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
27
|
Louzoun Y, Muchnik L, Solomon S. Copying nodes versus editing links: the source of the difference between genetic regulatory networks and the WWW. ACTA ACUST UNITED AC 2006; 22:581-8. [PMID: 16403796 DOI: 10.1093/bioinformatics/btk030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED We study two kinds of networks: genetic regulatory networks and the World Wide Web. We systematically test microscopic mechanisms to find the set of such mechanisms that optimally explain each networks' specific properties. In the first case we formulate a model including mainly random unbiased gene duplications and mutations. In the second case, the basic moves are website generation and rapid surf-induced link creation (/destruction). The different types of mechanisms reproduce the appropriate observed network properties. We use those to show that different kinds of networks have strongly system-dependent macroscopic experimental features. The diverging properties result from dissimilar node and link basic dynamics. The main non-uniform properties include the clustering coefficient, small-scale motifs frequency, time correlations, centrality and the connectivity of outgoing links. Some other features are generic such as the large-scale connectivity distribution of incoming links (scale-free) and the network diameter (small-worlds). The common properties are just the general hallmark of autocatalysis (self-enhancing processes), while the specific properties hinge on the specific elementary mechanisms. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics Online.
Collapse
Affiliation(s)
- Yoram Louzoun
- Department of mathematics, Bar Ilan University, Ramat Gan 52900, Israel.
| | | | | |
Collapse
|
28
|
Abstract
Recent sequencing efforts and experiments have advanced our understanding of genome evolution in yeasts, particularly the Saccharomyces yeasts. The ancestral genome of the Saccharomyces sensu stricto complex has been subject to both whole-genome duplication, followed by massive sequence loss and divergence, and segmental duplication. In addition the subtelomeric regions are subject to further duplications and rearrangements via ectopic exchanges. Translocations and other gross chromosomal rearrangements that break down syntenic relationships occur; however, they do not appear to be a driving force of speciation. Analysis of single genomes has been fruitful for hypothesis generation such as the whole-genome duplication, but comparative genomics between close and more distant species has proven to be a powerful tool in testing these hypotheses as well as elucidating evolutionary processes acting on the genome. Future work on population genomics and experimental evolution will keep yeast at the forefront of studies in genome evolution.
Collapse
Affiliation(s)
- Gianni Liti
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | | |
Collapse
|
29
|
Hughes AL, Friedman R. Gene duplication and the properties of biological networks. J Mol Evol 2005; 61:758-64. [PMID: 16315107 PMCID: PMC1343502 DOI: 10.1007/s00239-005-0037-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 07/12/2005] [Indexed: 11/26/2022]
Abstract
Patterns of network connection of members of multigene families were examined for two biological networks: a genetic network from the yeast Saccharomyces cerevisiae and a protein-protein interaction network from Caenorhabditis elegans. In both networks, genes belonging to gene families represented by a single member in the genome ("singletons") were disproportionately represented among the nodes having large numbers of connections. Of 68 single-member yeast families with 25 or more network connections, 28 (44.4%) were located in duplicated genomic segments believed to have originated from an ancient polyploidization event; thus, each of these 28 loci was thus presumably duplicated along with the genomic segment to which it belongs, but one of the two duplicates has subsequently been deleted. Nodes connected to major "hubs" with a large number of connections, tended to be relatively sparsely interconnected among themselves. Furthermore, duplicated genes, even those arising from recent duplication, rarely shared many network connections, suggesting that network connections are remarkably labile over evolutionary time. These factors serve to explain well-known general properties of biological networks, including their scale-free and modular nature.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street,, Columbia,, SC 29205, USA.
| | | |
Collapse
|
30
|
Pyne S, Skiena S, Futcher B. Copy correction and concerted evolution in the conservation of yeast genes. Genetics 2005; 170:1501-13. [PMID: 15911592 PMCID: PMC1449775 DOI: 10.1534/genetics.103.025940] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 04/06/2005] [Indexed: 11/18/2022] Open
Abstract
The yeast Saccharomyces cerevisiae and other members of the genus Saccharomyces are descendants of an ancient whole-genome duplication event. Although most of the duplicate genes have since been deleted, many remain, and so there are many pairs of related genes. We have found that poorly expressed genes diverge rapidly from their paralog, while highly expressed genes diverge little, if at all. This lack of divergence of highly expressed paralogous gene pairs seems to involve gene correction: one member of the pair "corrects" the sequence of its twin, and so the gene pair evolves as a unit. This correction presumably involves gene conversion and could occur via a reverse-transcribed cDNA intermediate. Such correction events may also occur in other organisms. These results support the idea that copies of poorly expressed genes are preserved when they diverge to take on new functions, while copies of highly expressed genes are preserved when they are needed to provide additional gene product for the original function.
Collapse
Affiliation(s)
- Saumyadipta Pyne
- Department of Computer Science, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
31
|
Suckale J, Sim RB, Dodds AW. Evolution of innate immune systems*. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 33:177-183. [PMID: 21638572 DOI: 10.1002/bmb.2005.494033032466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Innate immunity is the oldest form of defense and is found to some degree in all species. It predates the adaptive immune system, consisting of antibodies, B cells, T cells, and the major histocompatibility antigens. These are found only in higher vertebrates and have been the focus of the majority of immunological research, particularly in mice and humans, over the years. Knowledge of immunity in lower vertebrate and invertebrate species is now increasing rapidly, shedding light on the evolution of immunity and in many cases adding to our understanding of the mammalian system. Several recurring structural, genetic, and developmental mechanisms are common features in these processes in both the cellular and the molecular aspects of innate immunity.
Collapse
Affiliation(s)
- Jakob Suckale
- Department of Biochemistry, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
32
|
Abstract
Over 35 years ago, Susumu Ohno stated that gene duplication was the single most important factor in evolution. He reiterated this point a few years later in proposing that without duplicated genes the creation of metazoans, vertebrates, and mammals from unicellular organisms would have been impossible. Such big leaps in evolution, he argued, required the creation of new gene loci with previously nonexistent functions. Bold statements such as these, combined with his proposal that at least one whole-genome duplication event facilitated the evolution of vertebrates, have made Ohno an icon in the literature on genome evolution. However, discussion on the occurrence and consequences of gene and genome duplication events has a much longer, and often neglected, history. Here we review literature dealing with the occurrence and consequences of gene duplication, beginning in 1911. We document conceptual and technological advances in gene duplication research from this early research in comparative cytology up to recent research on whole genomes, "transcriptomes," and "interactomes."
Collapse
Affiliation(s)
- John S Taylor
- Department of Biology, University of Victoria, British Columbia V8W 3N5, Canada.
| | | |
Collapse
|
33
|
Abstract
Recent analyses of complete genome sequences have revealed that many genomes have been duplicated in their evolutionary past. Such events have been associated with important biological transitions, major leaps in evolution and adaptive radiations of species. Here, we consider recently developed computational methods to detect such ancient large-scale gene duplication events. Several new approaches have been used to show that large-scale gene duplications are more common than previously thought.
Collapse
Affiliation(s)
- Yves Van de Peer
- Department of Plant Systems Biology, Flanders Interuniversity, Institute for Biotechnology, Ghent, Belgium.
| |
Collapse
|
34
|
Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. EUKARYOTIC CELL 2004; 3:1-13. [PMID: 14871932 PMCID: PMC329510 DOI: 10.1128/ec.3.1.1-13.2004] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Julian C Rutherford
- Division of Hematology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
35
|
Baudot A, Jacq B, Brun C. A scale of functional divergence for yeast duplicated genes revealed from analysis of the protein-protein interaction network. Genome Biol 2004; 5:R76. [PMID: 15461795 PMCID: PMC545596 DOI: 10.1186/gb-2004-5-10-r76] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/11/2004] [Accepted: 08/02/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studying the evolution of the function of duplicated genes usually implies an estimation of the extent of functional conservation/divergence between duplicates from comparison of actual sequences. This only reveals the possible molecular function of genes without taking into account their cellular function(s). We took into consideration this latter dimension of gene function to approach the functional evolution of duplicated genes by analyzing the protein-protein interaction network in which their products are involved. For this, we derived a functional classification of the proteins using PRODISTIN, a bioinformatics method allowing comparison of protein function. Our work focused on the duplicated yeast genes, remnants of an ancient whole-genome duplication. RESULTS Starting from 4,143 interactions, we analyzed 41 duplicated protein pairs with the PRODISTIN method. We showed that duplicated pairs behaved differently in the classification with respect to their interactors. The different observed behaviors allowed us to propose a functional scale of conservation/divergence for the duplicated genes, based on interaction data. By comparing our results to the functional information carried by GO annotations and sequence comparisons, we showed that the interaction network analysis reveals functional subtleties, which are not discernible by other means. Finally, we interpreted our results in terms of evolutionary scenarios. CONCLUSIONS Our analysis might provide a new way to analyse the functional evolution of duplicated genes and constitutes the first attempt of protein function evolutionary comparisons based on protein-protein interactions.
Collapse
Affiliation(s)
- Anaïs Baudot
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS INSERM Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 9, France
| | - Bernard Jacq
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS INSERM Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 9, France
| | - Christine Brun
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS INSERM Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 9, France
| |
Collapse
|
36
|
Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. THE PLANT CELL 2004; 16:1667-78. [PMID: 15208399 PMCID: PMC514152 DOI: 10.1105/tpc.021345] [Citation(s) in RCA: 841] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 04/01/2004] [Indexed: 05/17/2023]
Abstract
It is often anticipated that many of today's diploid plant species are in fact paleopolyploids. Given that an ancient large-scale duplication will result in an excess of relatively old duplicated genes with similar ages, we analyzed the timing of duplication of pairs of paralogous genes in 14 model plant species. Using EST contigs (unigenes), we identified pairs of paralogous genes in each species and used the level of synonymous nucleotide substitution to estimate the relative ages of gene duplication. For nine of the investigated species (wheat [Triticum aestivum], maize [Zea mays], tetraploid cotton [Gossypium hirsutum], diploid cotton [G. arboretum], tomato [Lycopersicon esculentum], potato [Solanum tuberosum], soybean [Glycine max], barrel medic [Medicago truncatula], and Arabidopsis thaliana), the age distributions of duplicated genes contain peaks corresponding to short evolutionary periods during which large numbers of duplicated genes were accumulated. Large-scale duplications (polyploidy or aneuploidy) are strongly suspected to be the cause of these temporal peaks of gene duplication. However, the unusual age profile of tandem gene duplications in Arabidopsis indicates that other scenarios, such as variation in the rate at which duplicated genes are deleted, must also be considered.
Collapse
Affiliation(s)
- Guillaume Blanc
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, 2, Ireland.
| | | |
Collapse
|
37
|
Lafontaine I, Fischer G, Talla E, Dujon B. Gene relics in the genome of the yeast Saccharomyces cerevisiae. Gene 2004; 335:1-17. [PMID: 15194185 DOI: 10.1016/j.gene.2004.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/09/2004] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that DNA duplication is a common and ongoing process that plays a major role in molecular evolution of genomes and that a large fraction of the duplicated gene copies becomes non-functional by accumulation of deleterious mutations. In order to describe this phenomenon, we systematically searched the 6404 intergenic regions (IRs) of the genome of Saccharomyces cerevisiae for traces of coding sequences presenting degenerated but still recognizable sequence similarity with active open reading frames (5823 annotated ORFs). We detected a total of 124 anciently coding regions, or "gene relics", showing similarity to a total of 149 distinct active ORFs. This set of relics shows a continuum of sequence degeneration from those whose sequence is slightly altered compared to the functional ORF (classically defined as pseudogenes), to those that contains so many deleterious mutations, as to reach the limit of recognition. Gene relics are more concentrated in the subtelomeric regions of the chromosomes, reflecting the high plasticity of these regions. The presence of relics also revealed ancestral duplication events of chromosomal segments that were previously undetected. Some of these segments are intermingled with the more easily recognizable ancestral blocks of duplication, indicating successive duplication events. We present a compilation of all the data available, leading to a total of 278 pseudogenes in the genome of S. cerevisiae.
Collapse
Affiliation(s)
- Ingrid Lafontaine
- Unité de Génétique Moléculaire des Levures, CNRS URA 2171, Institut Pasteur, Université Pierre et Marie Curie UFR 927, 25, rue du Docteur Roux 75724, Paris, Cedex 15, France.
| | | | | | | |
Collapse
|
38
|
Abstract
Comparing chromosomal gene order in two or more related species is an important approach to studying the forces that guide genome organization and evolution. Linked clusters of similar genes found in related genomes are often used to support arguments of evolutionary relatedness or functional selection. However, as the gene order and the gene complement of sister genomes diverge progressively due to large scale rearrangements, horizontal gene transfer, gene duplication and gene loss, it becomes increasingly difficult to determine whether observed similarities in local genomic structure are indeed remnants of common ancestral gene order, or are merely coincidences. A rigorous comparative genomics requires principled methods for distinguishing chance commonalities, within or between genomes, from genuine historical or functional relationships. In this paper, we construct tests for significant groupings against null hypotheses of random gene order, taking incomplete clusters, multiple genomes, and gene families into account. We consider both the significance of individual clusters of prespecified genes and the overall degree of clustering in whole genomes.
Collapse
Affiliation(s)
- Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
39
|
Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004; 428:617-24. [PMID: 15004568 DOI: 10.1038/nature02424] [Citation(s) in RCA: 1018] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022]
Abstract
Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.
Collapse
Affiliation(s)
- Manolis Kellis
- The Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
40
|
Simillion C, Vandepoele K, Van de Peer Y. Recent developments in computational approaches for uncovering genomic homology. Bioessays 2004; 26:1225-35. [PMID: 15499578 DOI: 10.1002/bies.20127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identifying genomic homology within and between genomes is essential when studying genome evolution. In the past years, different computational techniques have been developed to detect homology even when the actual similarity between homologous segments is low. Depending on the strategy used, these methods search for pairs of chromosomal segments between which either both gene content and order are conserved or gene content only. However, due to fact that, after their divergence, homologous segments can lose a different set of genes, these methods still often fail to detect genomic homology. Recently, more advanced approaches have been developed that can combine gene order and content information of multiple genomic segments.
Collapse
Affiliation(s)
- Cedric Simillion
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Belgium
| | | | | |
Collapse
|
41
|
Abstract
Complete genome sequence data led rapidly to the conclusion that ancient genome duplications had shaped the genomes of the model organisms Saccharomyces cerevisiae and Arabidopsis thaliana. Recent contributions have gone on to refine date estimates for these duplications and, in the case of Arabidopsis, to infer additional, more ancient, rounds of duplication by reconstructing gene order before the most recent duplication event. It is becoming widely accepted that an ancient duplication occurred before the radiation of the ray-finned fish. However, despite methodological advances and the availability of complete genome sequence data the debate over whether very ancient genome duplications have occurred early in the vertebrate lineage has not yet been fully resolved.
Collapse
Affiliation(s)
- Cathal Seoighe
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa.
| |
Collapse
|
42
|
Selvi S, Cardinali G, Ciani M. Variability of at the protein and gene level among the sensu stricto group. FEMS Yeast Res 2003; 4:247-52. [PMID: 14654428 DOI: 10.1016/s1567-1356(03)00165-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Variability of HXT2 at the protein and gene level was investigated among Saccharomyces sensu stricto and other yeast species. Results showed that the HXT2 gene is probably present in yeast genera other than Saccharomyces, suggesting that this gene is widely distributed in the yeast world. Chromosomal analyses indicated the stable location of HXT2 on the same chromosome and with the same copy number throughout the entire sensu stricto group. Results of the immunoblotting assay demonstrated that all strains tested (with the exception of S. cerevisiae DBVPG 6042) exhibited a lower level of Hxt2p expression than that shown by laboratory wild-type. Moreover, Hxt2p expression seems to reinforce the taxonomical differences between the two pairs of species (S. cerevisiae and S. paradoxus vs. S. pastorianus and S. bayanus) within the sensu stricto group of the genus of Saccharomyces that also reflect their different ecological niche.
Collapse
Affiliation(s)
- Sabrina Selvi
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali, Università di Perugia, via Borgo XX Giugno 74, 06100, Perugia, Italy
| | | | | |
Collapse
|
43
|
Abstract
Are biological networks different from other large complex networks? Both large biological and nonbiological networks exhibit power-law graphs (number of nodes with degree k, N(k) approximately k(-beta)), yet the exponents, beta, fall into different ranges. This may be because duplication of the information in the genome is a dominant evolutionary force in shaping biological networks (like gene regulatory networks and protein-protein interaction networks) and is fundamentally different from the mechanisms thought to dominate the growth of most nonbiological networks (such as the Internet). The preferential choice models used for nonbiological networks like web graphs can only produce power-law graphs with exponents greater than 2. We use combinatorial probabilistic methods to examine the evolution of graphs by node duplication processes and derive exact analytical relationships between the exponent of the power law and the parameters of the model. Both full duplication of nodes (with all their connections) as well as partial duplication (with only some connections) are analyzed. We demonstrate that partial duplication can produce power-law graphs with exponents less than 2, consistent with current data on biological networks. The power-law exponent for large graphs depends only on the growth process, not on the starting graph.
Collapse
Affiliation(s)
- Fan Chung
- Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
44
|
Hughes AL, Friedman R. Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Res 2003; 13:794-9. [PMID: 12727899 PMCID: PMC430932 DOI: 10.1101/gr.714603] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 03/04/2003] [Indexed: 11/25/2022]
Abstract
Phylogenetic analysis of conserved gene families in fission yeast Schizosaccharomyces pombe and brewer's yeast Saccharomyces cerevisiae showed that gene duplications have occurred independently in the same families in each of these two lineages to a far greater extent than expected by chance. These species represent distinct lineages of the phylum Ascomycota that independently evolved a "yeast" life cycle with a unicellular thallus that reproduces by budding, and many of the genes that have duplicated independently in the two lineages are known to be involved in crucial aspects of this life cycle. Parallel gene duplication thus appears to have played a role in the independent origin of similar adaptations in the two species. The results indicate that using phylogenetic analysis to test for parallel gene duplication in different species may help in identifying genes responsible for similar but independently evolved adaptations.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
45
|
Langkjaer RB, Cliften PF, Johnston M, Piskur J. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 2003; 421:848-52. [PMID: 12594514 DOI: 10.1038/nature01419] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Accepted: 01/03/2003] [Indexed: 11/09/2022]
Abstract
Gene redundancy has been observed in yeast, plant and human genomes, and is thought to be a consequence of whole-genome duplications. Baker's yeast, Saccharomyces cerevisiae, contains several hundred duplicated genes. Duplication(s) could have occurred before or after a given speciation. To understand the evolution of the yeast genome, we analysed orthologues of some of these genes in several related yeast species. On the basis of the inferred phylogeny of each set of genes, we were able to deduce whether the gene duplicated and/or specialized before or after the divergence of two yeast lineages. Here we show that the gene duplications might have occurred as a single event, and that it probably took place before the Saccharomyces and Kluyveromyces lineages diverged from each other. Further evolution of each duplicated gene pair-such as specialization or differentiation of the two copies, or deletion of a single copy--has taken place independently throughout the evolution of these species.
Collapse
Affiliation(s)
- Rikke B Langkjaer
- BioCentrum-DTU, Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
46
|
Day RE, Higgins VJ, Rogers PJ, Dawes IW. Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 2002; 19:1015-27. [PMID: 12210897 DOI: 10.1002/yea.894] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maltose permease family of Saccharomyces cerevisiae comprises five proteins, three of which are characterized, MAL31, MAL61 and AGT1 and two putative permeases, YDL247w (MPH2) and YJR160c (MPH3). The two uncharacterized permeases share 100% identity and have 75% identity with MAL31 and MAL61 and 55% identity with AGT1. Characterization of the genes YDL247w and YJR160c confirmed that they encode alpha-glucoside permeases capable of transporting maltose, maltotriose, alpha-methylglucoside and turanose. Analysis of the promoter regions identified regulatory elements, binding sites for the transcriptional activator, Malx3p and the inhibitory protein, Mig1p. Further analysis of the flanking sequences located blocks of identity covering five open reading frames, indicating that this region was involved in chromosomal block duplication. The members of the maltose permease family are proteins that have strongly overlapping but nevertheless distinct functions, which is a selective advantage for yeast, as it reflects successful adaptation to the variety of environmental conditions to which the yeast cells are exposed; such adaptability is very important in an industrial context.
Collapse
Affiliation(s)
- Rachel E Day
- Clive and Vera Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
47
|
Huang W, Nettleton D, Gu X. Expression pattern of yeast sporulation: a case study for regulatory changes after yeast genome duplication. Inf Sci (N Y) 2002. [DOI: 10.1016/s0020-0255(02)00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Harrison PM, Gerstein M. Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 2002; 318:1155-74. [PMID: 12083509 DOI: 10.1016/s0022-2836(02)00109-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein families can be used to understand many aspects of genomes, both their "live" and their "dead" parts (i.e. genes and pseudogenes). Surveys of genomes have revealed that, in every organism, there are always a few large families and many small ones, with the overall distribution following a power-law. This commonality is equally true for both genes and pseudogenes, and exists despite the fact that the specific families that are enlarged differ greatly between organisms. Furthermore, because of family structure there is great redundancy in proteomes, a fact linked to the large number of dispensable genes for each organism and the small size of the minimal, indispensable sub-proteome. Pseudogenes in prokaryotes represent families that are in the process of being dispensed with. In particular, the genome sequences of certain pathogenic bacteria (Mycobacterium leprae, Yersinia pestis and Rickettsia prowazekii) show how an organism can undergo reductive evolution on a large scale (i.e. the dying out of families) as a result of niche change. There appears to be less pressure to delete pseudogenes in eukaryotes. These can be divided into two varieties, duplicated and processed, where the latter involves reverse transcription from an mRNA intermediate. We discuss these collectively in yeast, worm, fly, and human. The fly has few pseudogenes apparently because of its high rate of genomic DNA deletion. In the other three organisms, the distribution of pseudogenes on the chromosome and amongst different families is highly non-uniform. Pseudogenes tend not to occur in the middle of chromosome arms, and tend to be associated with lineage-specific (as opposed to highly conserved) families that have environmental-response functions. This may be because, rather than being dead, they may form a reservoir of diverse "extra parts" that can be resurrected to help an organism adapt to its surroundings. In yeast, there may be a novel mechanism involving the [PSI+] prion that potentially enables this resurrection. In worm, the pseudogenes tend to arise out of families (e.g. chemoreceptors) that are greatly expanded in it compared to the fly. The human genome stands out in having many processed pseudogenes. These have a character very different from those of the duplicated variety, to a large extent just representing random insertions. Thus, their occurrence tends to be roughly in proportion to the amount of mRNA for a particular protein and to reflect the extent of the intergenic sequences. Further information about pseudogenes is available at http://genecensus.org/pseudogene
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
49
|
Hjelmqvist L, Tuson M, Marfany G, Herrero E, Balcells S, Gonzàlez-Duarte R. ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol 2002; 3:RESEARCH0027. [PMID: 12093374 PMCID: PMC116724 DOI: 10.1186/gb-2002-3-6-research0027] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Revised: 03/12/2002] [Accepted: 04/10/2002] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. RESULTS While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. CONCLUSIONS From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.
Collapse
Affiliation(s)
- Lars Hjelmqvist
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
50
|
Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 2002; 19:256-62. [PMID: 11861885 DOI: 10.1093/oxfordjournals.molbev.a004079] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We conducted a detailed analysis of duplicate genes in three complete genomes: yeast, Drosophila, and Caenorhabditis elegans. For two proteins belonging to the same family we used the criteria: (1) their similarity is > or =I (I = 30% if L > or = 150 a.a. and I = 0.01n + 4.8L(-0.32(1 + exp(-L/1000))) if L < 150 a.a., where n = 6 and L is the length of the alignable region), and (2) the length of the alignable region between the two sequences is > or = 80% of the longer protein. We found it very important to delete isoforms (caused by alternative splicing), same genes with different names, and proteins derived from repetitive elements. We estimated that there were 530, 674, and 1,219 protein families in yeast, Drosophila, and C. elegans, respectively, so, as expected, yeast has the smallest number of duplicate genes. However, for the duplicate pairs with the number of substitutions per synonymous site (K(S)) < 0.01, Drosophila has only seven pairs, whereas yeast has 58 pairs and nematode has 153 pairs. After considering the possible effects of codon usage bias and gene conversion, these numbers became 6, 55, and 147, respectively. Thus, Drosophila appears to have much fewer young duplicate genes than do yeast and nematode. The larger numbers of duplicate pairs with K(S) < 0.01 in yeast and C. elegans were probably largely caused by block duplications. At any rate, it is clear that the genome of Drosophila melanogaster has undergone few gene duplications in the recent past and has much fewer gene families than C. elegans.
Collapse
Affiliation(s)
- Zhenglong Gu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|