1
|
Song Q, Li Y, Zhou T, Xiao M, Xiao B, Wang M, Zhu Y. Maternal vitamin D status during pregnancy and infant's gut microbiota: a prospective cohort study. Front Nutr 2024; 11:1428356. [PMID: 39135559 PMCID: PMC11317374 DOI: 10.3389/fnut.2024.1428356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives To prospectively explore the association of maternal serum 25(OH)D levels with the infant's gut microbiota in Chinese populations, and to evaluate its potential influence on the dynamic change patterns of offspring's gut microbiota from 1 to 6 months old. Methods Eighty-seven mother-infant dyads (vitamin D insufficient group vs. normal group = 59 vs. 28) were included in this longitudinal study. Two fecal samples were collected for the included infant at home by the parents at 1 month of age ("M1 phase") and 6 months of age ("M6 phase"). Gut microbiota were profiled by 16S rRNA gene sequencing. We performed mixed effects models on alpha diversity metrics, PERMANOVA tests on beta diversity distances, and linear discriminant analysis (LDA) to identify differently abundant taxa. Results We observed significantly lower Pielou's evenness and Shannon diversity in the vitamin D insufficient group in the M6 phase (p = 0.049 and 0.015, respectively), but not in the M1 phase (p > 0.05), and the dynamic changes in alpha diversity from 1 to 6 months old were significantly different according to maternal vitamin D status (p < 0.05). There were also significant differences in gut microbiota composition between the vitamin D insufficient group and normal group, both in the M1 and M6 phases (LDA score > 2.0, p < 0.05). Moreover, among the predicted metagenome functions, pathways related to amino acid biosynthesis, starch degradation, and purine nucleotides biosynthesis were enriched in the vitamin D insufficient group. Conclusion Our findings highlight that maternal vitamin D status plays a pivotal role in shaping the early-life gut microbiota of the next generation.
Collapse
Affiliation(s)
- Qiying Song
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Yao Li
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Tao Zhou
- Department of Epidemiology and Biostatistics, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Meiqun Xiao
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Bin Xiao
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Mengying Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yuanfang Zhu
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Yang X, Fan X, Jiang H, Zhang Q, Basangwangdui, Zhang Q, Dang S, Long R, Huang X. Simulated seasonal diets alter yak rumen microbiota structure and metabolic function. Front Microbiol 2022; 13:1006285. [PMID: 36212853 PMCID: PMC9538157 DOI: 10.3389/fmicb.2022.1006285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Yak is the only ruminant on the Qinghai-Tibetan Plateau that grazes year-round. Although previous research has shown that yak rumen microbiota fluctuates in robust patterns with seasonal foraging, it remains unclear whether these dynamic shifts are driven by changes in environment or nutrient availability. The study examines the response of yak rumen microbiota (bacteria, fungi, and archaea) to simulated seasonal diets, excluding the contribution of environmental factors. A total of 18 adult male yaks were randomly divided into three groups, including a nutrition stress group (NSG, simulating winter pasture), a grazing simulation group (GSG, simulating warm season pasture), and a supplementation group (SG, simulating winter pasture supplemented with feed concentrates). Volatile fatty acids (VFAs) profiling showed that ruminal acetate, propionate and total VFA contents were significantly higher (p < 0.05) in GSG rumen. Metagenomic analysis showed that Bacteroidetes (53.9%) and Firmicutes (37.1%) were the dominant bacterial phyla in yak rumen across dietary treatments. In GSG samples, Actinobacteriota, Succinivibrionaceae_UCG-002, and Ruminococcus albus were the most abundant, while Bacteroides was significantly more abundant in NSG samples (p < 0.05) than that in GSG. The known fiber-degrading fungus, Neocallimastix, was significantly more abundant in NSG and SG samples, while Cyllamyces were more prevalent in NSG rumen than in the SG rumen. These findings imply that a diverse consortium of microbes may cooperate in response to fluctuating nutrient availability, with depletion of known rumen taxa under nutrient deficiency. Archaeal community composition showed less variation between treatments than bacterial and fungal communities. Additionally, Orpinomyces was significantly positively correlated with acetate levels, both of which are prevalent in GSG compared with other groups. Correlation analysis between microbial taxa and VFA production or between specific rumen microbes further illustrated a collective response to nutrient availability by gut microbiota and rumen VFA metabolism. PICRUSt and FUNGuild functional prediction analysis indicated fluctuation response of the function of microbial communities among groups. These results provide a framework for understanding how microbiota participate in seasonal adaptations to forage availability in high-altitude ruminants, and form a basis for future development of probiotic supplements to enhance nutrient utilization in livestock.
Collapse
|
3
|
Song Q, Xiao B, Huang H, Ma L, Zhang JV, Zhu Y. Influences of gestational diabetes mellitus on the oral microbiota in offspring from birth to 1 month old. BMC Pregnancy Childbirth 2022; 22:289. [PMID: 35387603 PMCID: PMC8988340 DOI: 10.1186/s12884-022-04630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maternal gestational diabetes mellitus (GDM) had long-term influences on the health of their children. However, the influences of GDM on the oral microbiota, which was closely related to oral and systemic health in offspring, were less documented. The present study aimed to explore the oral microbiota of neonates born to mothers with GDM is differentially colonized compared with those born to mothers without GDM, and whether any such differences persist to 1 month of age. METHODS Oral samples were collected from children of mothers with (n = 20) and without GDM (n = 34) at birth and again at an average age of 1 month. The oral microbiota was characterized by 16S rRNA sequencing (V3-V4). Differences in diversity and composition according to maternal GDM status were assessed, and different metabolic functional pathways and microbial ecological networks were also analyzed. RESULTS Although no significant differences were observed in diversity metrics between GDM and non-GDM groups (P > 0.05), we found significant differences in the taxonomic composition of oral microbiota from phylum to genus level between the two groups, with the GDM group exhibiting less abundance of Veillonella in both "Day 1" (P < 0.001) and "Day 30" (P < 0.05) phases. Metabolic pathways analysis showed that 5-aminoimidazole ribonucleotide biosynthesis and inosine-5'-phosphate biosynthesis were enriched in GDM subjects in the "Day 30" phase. Moreover, ecological network analysis revealed apparent differences between GDM and control groups, with the non-GDM group containing more high-degree nodes and microbial interactions compared with the GDM group. CONCLUSION Maternal GDM was associated with an altered oral microbial composition in neonates, although the distinct difference between GDM and non-GDM groups diminished in infancy. The oral microbiota functions and ecological networks differed dramatically between the two groups, highlighting the importance of maternal GDM status on initial oral microbiota in offspring.
Collapse
Affiliation(s)
- Qiying Song
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, No.56 Yulv Road, Baoan, 518100, Shenzhen, China.,Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No.1068 Xueyuan Avenue, Nanshan, 518055, Shenzhen, China
| | - Bin Xiao
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, No.56 Yulv Road, Baoan, 518100, Shenzhen, China
| | - Hongli Huang
- Shenzhen Luohu Maternity and Child Health Care Hospital, Luohu, Shenzhen, 518019, China
| | - Liya Ma
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, No.56 Yulv Road, Baoan, Shenzhen, 518100, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No.1068 Xueyuan Avenue, Nanshan, 518055, Shenzhen, China.
| | - Yuanfang Zhu
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, No.56 Yulv Road, Baoan, 518100, Shenzhen, China.
| |
Collapse
|
4
|
Qi K, Men X, Wu J, Xu Z. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity. BMC Microbiol 2019; 19:181. [PMID: 31387544 PMCID: PMC6683424 DOI: 10.1186/s12866-019-1556-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Chinese believe that the meat of pigs reared in the past with free range tastes better than that of the pigs reared indoor on a large scale today. Gastrointestinal microflora is closely associated with the main factor of meat flavour, including fibre characteristics and lipid metabolism. Our method in this study involved different raising patterns within the semi free-grazing farm (FF) or indoor feeding farm (DF), the measurement of fat deposition and myofiber type by paraffin section and reverse transcription polymerase chain reaction and the identification of microbiome and functional capacities associated with meat quality through metagenomic sequencing. RESULTS Results showed that the fat area in muscle and adipose tissue and the myofiber density significantly increased in the pigs of the FF group. The relative abundance of bacteria associated with lipid metabolism, such as g_Oscillibacter, in the feces of the FF group was higher than that in DF group, and the relative abundance of some bacteria with probiotic function, including g_Lactobacillus and g_Clostridium, was lower than that in DF group. The abundance of g_Clostridium was significantly positively correlated with the intramuscular fat area, whereas health-related bacteria, such as g_Butyricicoccus, g_Eubacterium, g_Phascolarctobacterium and g_Oribacterium, was significantly negatively correlated with abdominal fat area, myofiber density and adipose triglyceride lipase (ATGL) mRNA expression. KEGG analysis showed that pigs raised in semi free-grazing farm can activate the pathway of inosine monophosphate (IMP) biosynthesis, glycolysis/gluconeogenesis and alanine, aspartate and glutamate metabolism. CONCLUSIONS Free range feeding improves meat quality by changing the fibre type, myofiber density and metabolic pathways related to flavour amino acids, IMP or glycolysis/gluconeogenesis in muscle. However, prolonged feeding cycle increases fat deposition and associated microbial communities.
Collapse
Affiliation(s)
- Keke Qi
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Jianggan, Hangzhou, 310021 People’s Republic of China
| | - Xiaoming Men
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Jianggan, Hangzhou, 310021 People’s Republic of China
| | - Jie Wu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Jianggan, Hangzhou, 310021 People’s Republic of China
| | - Ziwei Xu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Jianggan, Hangzhou, 310021 People’s Republic of China
| |
Collapse
|
5
|
Abstract
Protein deamidation has been considered a nonenzymatic process associated with protein functional decay or "aging." Recent studies implicate protein deamidation in regulating signal transduction in fundamental biological processes, such as innate immune responses. Work investigating gammaherpesviruses and bacterial pathogens indicates that microbial pathogens deploy deamidases or enzyme-deficient homologues (pseudoenzymes) to induce deamidation of key signaling components and evade host immune responses. Here, we review studies on protein deamidation in innate immune signaling and present several imminent questions concerning the roles of protein deamidation in infection and immunity.
Collapse
|
6
|
Tsai K, Messick TE, Lieberman PM. Disruption of host antiviral resistances by gammaherpesvirus tegument proteins with homology to the FGARAT purine biosynthesis enzyme. Curr Opin Virol 2015; 14:30-40. [PMID: 26256000 DOI: 10.1016/j.coviro.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022]
Abstract
All known gammaherpesviruses encode at least one conserved tegument protein that contains sequence homology to the cellular purine biosynthesis enzyme: phosphoribosylformylglycineamide amidotransferase (FGARAT, or PFAS). While no enzymatic activity have been found on these viral FGARAT-homology proteins (vFGARAT), they are important for disarming host intrinsic antiviral machinery. Most vFGARAT proteins disrupt the intrinsic antiviral response-associated cellular subnuclear structure: ProMyelocytic Leukemia (PML) associated nuclear body (PML-NB). vFGARATs from different viruses target different components of PML-NB to prevent cellular repression of viral infection. In addition, vFGARATs of rhadinoviruses were recently found to oligomerize with the cellular FGARAT to deamidate RIG-I and repress inflammatory cytokine production. In this review we discuss the diverse mechanisms of antiviral response disruption by gammaherpesvirus vFGARATs and the significance of the enzyme homology domain.
Collapse
Affiliation(s)
- Kevin Tsai
- The Wistar Institute, Philadelphia, PA 19104, United States; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Troy E Messick
- The Wistar Institute, Philadelphia, PA 19104, United States
| | | |
Collapse
|
7
|
Laursen T, Møller BL, Bassard JE. Plasticity of specialized metabolism as mediated by dynamic metabolons. TRENDS IN PLANT SCIENCE 2015; 20:20-32. [PMID: 25435320 DOI: 10.1016/j.tplants.2014.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 05/02/2023]
Abstract
The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in multienzyme clusters termed metabolons. Dynamic assembly and disassembly enable the plant to rapidly switch the product profile and thereby prioritize its resources. The lifetime of metabolons is largely unknown mainly due to technological limitations. This review focuses on the factors that facilitate and stimulate the dynamic assembly of metabolons, including microenvironments, noncatalytic proteins, and allosteric regulation. Understanding how plants organize carbon fluxes within their metabolic grids would enable targeted bioengineering of high-value specialized metabolites.
Collapse
Affiliation(s)
- Tomas Laursen
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, 10 Gamle Carlsberg Vej, DK-1799 Copenhagen V, Denmark.
| | - Jean-Etienne Bassard
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
8
|
Duval N, Luhrs K, Wilkinson TG, Baresova V, Skopova V, Kmoch S, Vacano GN, Zikanova M, Patterson D. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders. Mol Genet Metab 2013; 108:178-189. [PMID: 23394948 PMCID: PMC4296673 DOI: 10.1016/j.ymgme.2013.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 02/06/2023]
Abstract
Purines are molecules essential for many cell processes, including RNA and DNA synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism and transfer, essential coenzyme function, and cell signaling. Purines are produced via the de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans have been associated with various types of cancer. Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical symptoms, including developmental delay, severe neurological symptoms, and autistic features. The pathogenetic mechanism is unknown for these conditions, and no effective treatments exist. The study of cells carrying mutations in the various de novo purine biosynthesis pathway genes provides one approach to analysis of purine disorders. Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method for detection of purine de novo biosynthesis intermediates based on high performance liquid chromatography with electrochemical detection. Using this technique we detected accumulation of AIR in AdeD cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential for metabolite profiling of de novo purine biosynthesis pathway mutants, identification of novel genetic defects of purine metabolism in humans, and elucidating the regulation of this critical metabolic pathway.
Collapse
Affiliation(s)
- Nathan Duval
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Kyleen Luhrs
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Terry G. Wilkinson
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Veronika Baresova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Vaclava Skopova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Stanislav Kmoch
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Guido N. Vacano
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Marie Zikanova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - David Patterson
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| |
Collapse
|
9
|
Ling PD, Tan J, Sewatanon J, Peng R. Murine gammaherpesvirus 68 open reading frame 75c tegument protein induces the degradation of PML and is essential for production of infectious virus. J Virol 2008; 82:8000-12. [PMID: 18508901 PMCID: PMC2519593 DOI: 10.1128/jvi.02752-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 05/19/2008] [Indexed: 01/27/2023] Open
Abstract
Promyelocytic Leukemia nuclear body (PML NB) proteins mediate an intrinsic cellular host defense response against virus infections. Herpesviruses express proteins that modulate PML or PML-associated proteins by a variety of strategies, including degradation of PML or relocalization of PML NB proteins. The consequences of PML-herpesvirus interactions during infection in vivo have yet to be investigated in detail, largely because of the species-specific tropism of many human herpesviruses. Murine gammaherpesvirus 68 (gammaHV68) is emerging as a suitable model to study basic biological questions of virus-host interactions because it naturally infects mice. Therefore, we sought to determine whether gammaHV68 targets PML NBs as part of its natural life cycle. We found that gammaHV68 induces PML degradation through a proteasome-dependent mechanism and that loss of PML results in more robust virus replication in mouse fibroblasts. Surprisingly, gammaHV68-mediated PML degradation was mediated by the virion tegument protein ORF75c, which shares homology with the cellular formylglycinamide ribotide amidotransferase enzyme. In addition, we show that ORF75c is essential for production of infectious virus. ORF75 homologs are conserved in all rhadinoviruses but so far have no assigned functions. Our studies shed light on a potential role for this unusual protein in rhadinovirus biology and suggest that gammaHV68 will be a useful model for investigation of PML-herpesvirus interactions in vivo.
Collapse
Affiliation(s)
- Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Mail Stop BCM-385, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
10
|
Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS One 2008; 3:e2781. [PMID: 18648660 PMCID: PMC2464709 DOI: 10.1371/journal.pone.0002781] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/01/2008] [Indexed: 11/23/2022] Open
Abstract
All gamma-herpesviruses encode at least one homolog of the cellular enzyme formyl-glycineamide-phosphoribosyl-amidotransferase. Murid herpesvirus-4 (MuHV-4) encodes 3 (ORFs 75a, 75b and 75c), suggesting that at least some copies have acquired new functions. Here we show that the corresponding proteins are all present in virions and localize to infected cell nuclei. Despite these common features, ORFs 75a and 75b did not substitute functionally for a lack of ORF75c, as ORF75c virus knockouts were severely impaired for lytic replication in vitro and for host colonization in vivo. They showed 2 defects: incoming capsids failed to migrate to the nuclear margin following membrane fusion, and genomes that did reach the nucleus failed to initiate normal gene expression. The latter defect was associated with a failure of in-coming virions to disassemble PML bodies. The capsid transport deficit seemed to be functionally more important, since ORF75c− MuHV-4 infected both PML+ and PML− cells poorly. The original host enzyme has therefore evolved into a set of distinct and multi-functional viral tegument proteins. One important function is moving incoming capsids to the nuclear margin for viral genome delivery.
Collapse
|
11
|
Bechtel JT, Winant RC, Ganem D. Host and viral proteins in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol 2005; 79:4952-64. [PMID: 15795281 PMCID: PMC1069574 DOI: 10.1128/jvi.79.8.4952-4964.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of cultured cells with Kaposi's sarcoma associated herpesvirus (KSHV) typically establishes a latent infection, in which only a few viral genes are expressed. Recently, it has been reported that a subset of lytic genes are transiently expressed very early after viral entry but that this burst of abortive lytic gene expression is terminated with the supervention of latency (H. H. Krishnan, P. P. Naranatt, M. S. Smith, L. Zeng, C. Bloomer, and B. Chandran, J. Virol. 78:3601-3620, 2004). To identify molecules imported into cells by KSHV that might influence this gene expression program, we have examined the protein composition of the KSHV particle. Immunoblotting of virus particles demonstrated that RTA, the lytic switch protein, and RAP, a viral protein that is a transcriptional and cell cycle modulator, were both incorporated into virus particles. In a second approach, polypeptides isolated from purified virions were identified by mass-spectrometric analysis of their constituent tryptic peptides. With this approach we were able to identify 18 major virion proteins, including structural, regulatory, and signaling proteins of both viral and cellular origin.
Collapse
Affiliation(s)
- Jill T Bechtel
- Department of Microbiology and G. W. Hooper Foundation, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0552, USA.
| | | | | |
Collapse
|
12
|
Bønsdorff T, Gautier M, Farstad W, Rønningen K, Lingaas F, Olsaker I. Mapping of the bovine genes of the de novo AMP synthesis pathway. Anim Genet 2005; 35:438-44. [PMID: 15566465 DOI: 10.1111/j.1365-2052.2004.01201.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Summary The purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) are critical for energy metabolism, cell signalling and cell reproduction. Despite their essential function, little is known about the regulation and in vivo expression pattern of the genes involved in the de novo purine synthesis pathway. The complete coding region of the bovine phosphoribosylaminoimidazole carboxylase gene (PAICS), which catalyses steps 6 and 7 of the de novo purine biosynthesis pathway, as well as bovine genomic sequences of the six other genes in the pathway producing inosine monophosphate (IMP) and AMP [phosphoribosyl pyrophosphate amidotransferase (PPAT), phosphoribosylglycinamide formyltransferase (GART), phosphoribosylformylglycinamidine synthase (PFAS), adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) and adenylosuccinate synthase (ADSS)], were identified. The genes were mapped to segments of six different bovine chromosomes using a radiation hybrid (RH) cell panel. The gene PPAT, coding for the presumed rate-limiting enzyme of the purine de novo pathway was closely linked to PAICS on BTA6. These, and the other bovine locations i.e. GART at BTA1, PFAS at BTA19, ADSL at BTA5, ATIC at BTA2 and ADSS at BTA16, are in agreement with published comparative maps of cattle and man. PAICS and PPAT genes are known to be closely linked in human, rat and chicken. Previously, an expressed sequence fragment of PAICS (Bos taurus corpus luteum, BTCL9) was mapped to BTA13. By isolation and characterization of a BAC clone, we have now identified a PAICS processed pseudogene sequence (psiPAICS) on BTA13. Processed pseudogene sequences of PAICS and other genes of the purine biosynthesis pathway were identified in several mammalian species, indicating that the genes of this pathway have been susceptible to retrotransposition. The seven bovine genes are expressed at a higher level in testicular and ovary tissues compared with skeletal muscle.
Collapse
Affiliation(s)
- T Bønsdorff
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., 0033 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
13
|
Holzerlandt R, Orengo C, Kellam P, Albà MM. Identification of new herpesvirus gene homologs in the human genome. Genome Res 2002; 12:1739-48. [PMID: 12421761 PMCID: PMC187546 DOI: 10.1101/gr.334302] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses are intracellular parasites that use many cellular pathways during their replication. Large DNA viruses, such as herpesviruses, have captured a repertoire of cellular genes to block or mimic host immune responses, apoptosis regulation, and cell-cycle control mechanisms. We have conducted a systematic search for all homologs of herpesvirus proteins in the human genome using position-specific scoring matrices representing herpesvirus protein sequence domains, and pair-wise sequence comparisons. The analysis shows that approximately 13% of the herpesvirus proteins have clear sequence similarity to products of the human genome. Different human herpesviruses vary in their numbers of human homologs, indicating distinct rates of gene acquisition in different lineages. Our analysis has identified new families of herpesvirus/human homologs from viruses including human herpesvirus 5 (human cytomegalovirus; HCMV) and human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus; KSHV), which may play important roles in host-virus interactions.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Cytomegalovirus/genetics
- Databases, Genetic
- Databases, Protein
- Gene Transfer, Horizontal/genetics
- Genes, Viral/genetics
- Genome, Human
- Herpesviridae/genetics
- Herpesvirus 2, Gallid/genetics
- Herpesvirus 8, Human/genetics
- Humans
- Molecular Sequence Data
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transformation, Genetic/genetics
- Viral Proteins/genetics
- Viral Structural Proteins/genetics
Collapse
Affiliation(s)
- Ria Holzerlandt
- Wohl Virion Centre, Department of Immunology and Molecular Pathology, University College London, London W1T 4JF, United Kingdom
| | | | | | | |
Collapse
|
14
|
Coulter LJ, Wright H, Reid HW. Molecular genomic characterization of the viruses of malignant catarrhal fever. J Comp Pathol 2001; 124:2-19. [PMID: 11428184 DOI: 10.1053/jcpa.2000.0524] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- L J Coulter
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | | | | |
Collapse
|