1
|
Khusro A, Aarti C, Rivas-Caceres RR, Barbabosa-Pliego A. Equine Herpesvirus-I Infection in Horses: Recent Updates on its Pathogenicity, Vaccination, and Preventive Management Strategies. J Equine Vet Sci 2020; 87:102923. [PMID: 32172913 DOI: 10.1016/j.jevs.2020.102923] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most common and ubiquitous viral pathogens infecting equines, particularly horses worldwide. The EHV-1 is known to induce not only humoral but also cellular immune responses in horses. Respiratory distress, abortion in pregnant mares, neurological disorders, and neonatal foal deaths represent EHV-1 infection. Despite the limited success of inactivated, subunit, live, and DNA vaccines, over the past few decades, vaccination remains the prime preventive option to combat EHV-1 infection in horses. However, current vaccines lack the potentiality to protect the neurological form of infections in horses. There is desperate necessity to search effectual EHV-1 vaccines that may stimulate not only mucosal and systemic cellular immunity but also humoral immunity in the horses. This review highlights the state of knowledge regarding EHV-1 biology, EHV-1 pathogenesis, and disparate vaccines studied in the past to prevent EHV-1 infection. The review also underlines the best management strategies which certainly need to be adopted by veterinarians in order to avoid and prevent EHV-1 infection and outbreak in horses in the future.
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | | | - Alberto Barbabosa-Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
| |
Collapse
|
2
|
An Equine Herpesvirus Type 1 (EHV-1) Ab4 Open Reading Frame 2 Deletion Mutant Provides Immunity and Protection from EHV-1 Infection and Disease. J Virol 2019; 93:JVI.01011-19. [PMID: 31462575 DOI: 10.1128/jvi.01011-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) outbreaks continue to occur despite widely used vaccination. Therefore, development of EHV-1 vaccines providing improved immunity and protection is ongoing. Here, an open reading frame 2 deletion mutant of the neuropathogenic EHV-1 strain Ab4 (Ab4ΔORF2) was tested as a vaccine candidate. Three groups of horses (n = 8 each) were infected intranasally with Ab4ΔORF2 or the parent Ab4 virus or were kept as noninfected controls. Horses infected with Ab4ΔORF2 had reduced fever and nasal virus shedding compared to those infected with Ab4 but mounted similar adaptive immunity dominated by antibody responses. Nine months after the initial infection, all horses were challenged intranasally with Ab4. Previously noninfected horses (control/Ab4) displayed clinical signs, shed large amounts of virus, and developed cell-associated viremia. In contrast, 5/8 or 3/8 horses previously infected with Ab4ΔORF2 or Ab4, respectively, were fully protected from challenge infection as indicated by the absence of fever, clinical disease, nasal virus shedding, and viremia. All of these outcomes were significantly reduced in the remaining, partially protected 3/8 (Ab4ΔORF2/Ab4) and 5/8 (Ab4/Ab4) horses. Protected horses had EHV-1-specific IgG4/7 antibodies prior to challenge infection, and intranasal antibodies increased rapidly postchallenge. Intranasal inflammatory markers were not detectable in protected horses but quickly increased in control/Ab4 horses during the first week after infection. Overall, our data suggest that preexisting nasal IgG4/7 antibodies neutralize EHV-1, prevent viral entry, and thereby protect from disease, viral shedding, and cell-associated viremia. In conclusion, improved protection from challenge infection emphasizes further evaluation of Ab4ΔORF2 as a vaccine candidate.IMPORTANCE Nasal equine herpesvirus type 1 (EHV-1) shedding is essential for virus transmission during outbreaks. Cell-associated viremia is a prerequisite for the most severe disease outcomes, abortion and equine herpesvirus myeloencephalopathy (EHM). Thus, protection from viremia is considered essential for preventing EHM. Ab4ΔORF2 vaccination prevented EHV-1 challenge virus replication in the upper respiratory tract in fully protected horses. Consequently, these neither shed virus nor developed cell-associated viremia. Protection from virus shedding and viremia during challenge infection in combination with reduced virulence at the time of vaccination emphasizes ORF2 deletion as a promising modification for generating an improved EHV-1 vaccine. During this challenge infection, full protection was linked to preexisting local and systemic EHV-1-specific antibodies combined with rapidly increasing intranasal IgG4/7 antibodies and lack of nasal type I interferon and chemokine induction. These host immune parameters may constitute markers of protection against EHV-1 and be utilized as indicators for improved vaccine development and informed vaccination strategies.
Collapse
|
3
|
TLR-5 agonist Salmonella abortus equi flagellin FliC enhances FliC-gD-based DNA vaccination against equine herpesvirus 1 infection. Arch Virol 2019; 164:1371-1382. [PMID: 30888564 DOI: 10.1007/s00705-019-04201-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
Equine herpesvirus 1 (EHV-1) induces serious respiratory infections, viral abortion, neurological signs, and neonatal mortality in horses. Despite the use of vaccines, EHV-1 infection also causes a high annual economic burden to the equine industry. The poor immunogenicity of and protection conferred by EHV-1 vaccines are the major factors responsible for the spread of EHV-1 infection. The present study examined the immunogenicity of a novel DNA vaccine co-expressing FliC, a flagellin protein, in Salmonella abortus equi and the gD protein of EHV-1. Mice and horses were immunized intramuscularly with the vaccine, and mice were challenged with EHV-1. Immunofluorescence and western blotting revealed that FliC and gD can be efficiently expressed in cells. This novel vaccine significantly increased gD-specific antibody and interferon gamma (IFN-γ) levels in immunized mice and horses. Compared with controls, the viral load and morbidity were markedly reduced in FliC-gD-immunized mice after they were challenged with EHV-1. Furthermore, the immunogenicity of FliC-gD in a natural host was tested. Our results indicate that vaccinated mice and horses exhibit increased humoral and improved cellular immune responses.
Collapse
|
4
|
Fuentealba NA, Sguazza GH, Zanuzzi CN, Bravi ME, Scrochi MR, Valera AR, Corva SG, Gimeno EJ, Pecoraro MR, Galosi CM. Immunoprotective response induced by recombinant glycoprotein D in the BALB/c respiratory mouse model of Equid alphaherpesvirus 1 infection. Rev Argent Microbiol 2018; 51:119-129. [PMID: 30385072 DOI: 10.1016/j.ram.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 10/28/2022] Open
Abstract
Equid alphaherpesvirus 1 (EHV-1) infection causes abortion, respiratory disease, perinatal deaths and neurological disorders in horses. The natural infection and available vaccines provide only partial and short-lived protection against reinfections. In the present study, we analyzed the ability of purified baculovirus-expressed glycoprotein D (gD) administered by different routes to induce protective immunity in BALB/c mice after challenge with the EHV-1 AR8 strain. Clinical signs varied among the different groups of mice immunized by parenteral routes, and, although gD induced a specific serum IgG response, it did not prevent the virus from reaching the lungs. Intranasally immunized mice showed no clinical signs, and virus isolation from lungs, histological lesions and antigen detection by immunohistochemistry were negative. In addition, by this route, gD did not stimulate the production of serum IgG and IgA. However, a specific IgA response in the respiratory tract was confirmed in intranasally immunized mice. Thus, we conclude that the mucosal immune response could reduce the initial viral attachment and prevent the virus from reaching the lungs. Our findings provide additional data to further study new immunization strategies in the natural host.
Collapse
Affiliation(s)
- Nadia A Fuentealba
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina; National Research Council (CCT-CONICET-La Plata), Buenos Aires, Argentina.
| | - Guillermo H Sguazza
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina
| | - Carolina N Zanuzzi
- Histology and Embryology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina; National Research Council (CCT-CONICET-La Plata), Buenos Aires, Argentina
| | - Maria E Bravi
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina; National Research Council (CCT-CONICET-La Plata), Buenos Aires, Argentina
| | - Mariela R Scrochi
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina; Histology and Embryology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina; National Research Council (CCT-CONICET-La Plata), Buenos Aires, Argentina
| | - Alejandro R Valera
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina
| | - Santiago G Corva
- Epidemiology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina
| | - Eduardo J Gimeno
- National Research Council (CCT-CONICET-La Plata), Buenos Aires, Argentina
| | - Marcelo R Pecoraro
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina
| | - Cecilia M Galosi
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, P.O. Box 296, 1900 La Plata, Buenos Aires, Argentina; Scientific Research Commission of Buenos Aires Province (CIC-PBA), Buenos Aires, Argentina
| |
Collapse
|
5
|
Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice. J Virol 2017; 91:JVI.02445-16. [PMID: 28404844 DOI: 10.1128/jvi.02445-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/14/2017] [Indexed: 11/20/2022] Open
Abstract
Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHVXP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals (P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations (P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge (P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4+ T cells and CD8+ T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals.IMPORTANCE A novel virus-vectored VC2-EHV-1-gD vaccine was constructed using the live-attenuated HSV-1 VC2 vaccine strain. This vaccine stimulated strong humoral and cellular immune responses in mice, suggesting that it could protect horses against EHV-1 infection.
Collapse
|
6
|
Rusli ND, Mat KB, Harun HC. A Review: Interactions of Equine Herpesvirus-1 with Immune System and Equine Lymphocyte. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojvm.2014.412036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
BANNAI H, TSUJIMURA K, KONDO T, NEMOTO M, YAMANAKA T, SUGIURA T, MAEDA K, MATSUMURA T. Induction of a Th-1-Biased IgG Subclass Response against Equine Herpesvirus Type 1 in Horses Previously Infected with Type 4 Virus. J Vet Med Sci 2011; 73:535-9. [DOI: 10.1292/jvms.10-0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hiroshi BANNAI
- Epizootic Research Center, Equine Research Institute, Japan Racing Association
| | - Koji TSUJIMURA
- Epizootic Research Center, Equine Research Institute, Japan Racing Association
| | - Takashi KONDO
- Epizootic Research Center, Equine Research Institute, Japan Racing Association
| | - Manabu NEMOTO
- Epizootic Research Center, Equine Research Institute, Japan Racing Association
| | - Takashi YAMANAKA
- Epizootic Research Center, Equine Research Institute, Japan Racing Association
| | - Takeo SUGIURA
- Epizootic Research Center, Equine Research Institute, Japan Racing Association
| | - Ken MAEDA
- Department of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University
| | - Tomio MATSUMURA
- Epizootic Research Center, Equine Research Institute, Japan Racing Association
| |
Collapse
|
8
|
Mealey R, Stone D, Hines M, Alperin D, Littke M, Leib S, Leach S, Hines S. Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: effect of IL-12, dose, and route. Vaccine 2007; 25:7582-97. [PMID: 17889970 PMCID: PMC3342688 DOI: 10.1016/j.vaccine.2007.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 07/24/2007] [Accepted: 07/28/2007] [Indexed: 11/15/2022]
Abstract
Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates.
Collapse
Affiliation(s)
- R.H. Mealey
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - D.M. Stone
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - M.T. Hines
- Department of Veterinary Clinical Sciences, Washington State University, College of Veterinary Medicine, P.O. Box 646010, Pullman, WA 99164-6010, United States
| | - D.C. Alperin
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - M.H. Littke
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.R. Leib
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.E. Leach
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.A. Hines
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
- Corresponding author. Tel.: +1 509 335 6030; fax: +1 509 335 8529. (S.A. Hines)
| |
Collapse
|
9
|
Brown VA, Wilkins PA. Advanced Techniques in the Diagnosis and Management of Infectious Pulmonary Diseases in Horses. Vet Clin North Am Equine Pract 2006; 22:633-51, xi. [PMID: 16882489 DOI: 10.1016/j.cveq.2006.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Techniques for novel approaches to the diagnosis and management of equine pulmonary disease continue to be developed and used in clinical practice. Diagnostic techniques involving immunoassays and nucleic acid-based tests not only decrease the time in which results become available but increase the sensitivity and specificity of test results. These assays do not substitute for careful clinical evaluation but can shorten the time to a confirmed accurate diagnosis, and thus allow for early initiation of therapeutic strategies and prevention protocols. With further understanding of the molecular biology and immunology of equine pulmonary disease, diagnostic and management techniques should become further refined.
Collapse
Affiliation(s)
- Valerie A Brown
- New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Road, Kennett Square, PA 19348, USA.
| | | |
Collapse
|
10
|
Rosas CT, Goodman LB, von Einem J, Osterrieder N. Equine herpesvirus type 1 modified live virus vaccines: quo vaditis? Expert Rev Vaccines 2006; 5:119-31. [PMID: 16451114 DOI: 10.1586/14760584.5.1.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infections of horses with equine herpesvirus type 1 (EHV-1) have garnered new attention over the last few years. Devastating outbreaks occurring worldwide, primarily of the neurologic form of the disease, have resulted in a reassessment of the control strategies, and particularly the prophylactic measures, that are necessary to keep the infection and spread of disease in check. Most of the available EHV-1 vaccines are based on preparations of inactivated virus, which are applied monovalently for prevention of EHV-1-caused abortion in pregnant mares or as part of multivalent vaccines to prevent respiratory disease. Despite the importance of an induction of cytotoxic immune responses for protection against EHV-1-induced disease, only two modified live virus vaccine preparations, which are both based on the avirulent EHV-1 strain RacH and were developed more than 40 years ago, are commercially available. Current efforts focus on exploiting the available infectious bacterial artificial chromosome clones of various EHV-1 strains to engineer a new generation of modified live virus vaccines. Both more efficient and long-lasting anti-EHV-1 immunity and delivery of immunogens of other pathogens are attempted and within immediate reach. The improvement of modified live virus vaccines will likely be a major focus of research in the future, and will hopefully help to more completely protect horses against one of the most important and devastating viral diseases.
Collapse
Affiliation(s)
- Cristina T Rosas
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
11
|
Soboll G, Hussey SB, Whalley JM, Allen GP, Koen MT, Santucci N, Fraser DG, Macklin MD, Swain WF, Lunn DP. Antibody and cellular immune responses following DNA vaccination and EHV-1 infection of ponies. Vet Immunol Immunopathol 2006; 111:81-95. [PMID: 16549215 DOI: 10.1016/j.vetimm.2006.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is the cause of serious disease with high economic impact on the horse industry, as outbreaks of EHV-1 disease occur every year despite the frequent use of vaccines. Cytotoxic T-lymphocytes (CTLs) are important for protection from primary and reactivating latent EHV-1 infection. DNA vaccination is a powerful technique for stimulating CTLs, and the aim of this study was to assess antibody and cellular immune responses and protection resulting from DNA vaccination of ponies with combinations of EHV-1 genes. Fifteen ponies were divided into three groups of five ponies each. Two vaccination groups were DNA vaccinated on four different occasions with combinations of plasmids encoding the gB, gC, and gD glycoproteins or plasmids encoding the immediate early (IE) and early proteins (UL5) of EHV-1, using the PowderJect XR research device. Total dose of DNA/plasmid/vaccination were 25 microg. A third group comprised unvaccinated control ponies. All ponies were challenge infected with EHV-1 6 weeks after the last vaccination, and protection from clinical disease, viral shedding, and viremia was determined. Virus neutralizing antibodies and isotype specific antibody responses against whole EHV-1 did not increase in either vaccination group in response to vaccination. However, glycoprotein gene vaccinated ponies showed gD and gC specific antibody responses. Vaccination did not affect EHV-1 specific lymphoproliferative or CTL responses. Following challenge infection with EHV-1, ponies in all three groups showed clinical signs of disease. EHV-1 specific CTLs, proliferative responses, and antibody responses increased significantly in all three groups following challenge infection. In summary, particle-mediated EHV-1 DNA vaccination induced limited immune responses and protection. Future vaccination strategies must focus on generating stronger CTL responses.
Collapse
Affiliation(s)
- G Soboll
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, 300W. Drake Rd., Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Weerasinghe CU, Learmonth GS, Gilkerson JR, Foote CE, Wellington JE, Whalley JM. Equine herpesvirus 1 glycoprotein D expressed in E. coli provides partial protection against equine herpesvirus infection in mice and elicits virus-neutralizing antibodies in the horse. Vet Immunol Immunopathol 2006; 111:59-66. [PMID: 16473414 DOI: 10.1016/j.vetimm.2006.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The envelope glycoprotein D of EHV-1 (EHV-1 gD) is essential for virus infectivity and entry of virus into cells and is a potent inducer of virus-neutralizing antibody. In this study, truncated EHV-1 gD (gDt) was expressed with a C-terminal hexahistidine tag in E. coli using a pET vector. Western blot analysis using an anti-gD monoclonal antibody demonstrated the presence of gDt bands at 37.5, 36, 29.5 and 28 kDa. The immunogenicity and protective efficacy of partially purified gDt was compared with gD expressed in insect cells by a recombinant baculovirus (Bac gD) using a BALB/c mouse model of EHV-1 respiratory infection. The proteins were also compared in a prime-boost protocol following an initial inoculation with gD DNA. gDt elicited similar levels of gD-specific antibody and neutralizing antibody compared with Bac gD and also provided a similar level of protection against EHV-1 challenge in mice. Inoculation of horses with gDt elicited EHV-1 gD-specific antibodies including virus-neutralizing antibody, suggesting that despite the lack of glycosylation, E. coli may be a useful vehicle for large scale production of EHV-1 gD for vaccine studies.
Collapse
Affiliation(s)
- C U Weerasinghe
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Foote CE, Raidal SL, Pecenpetelovska G, Wellington JE, Whalley JM. Inoculation of mares and very young foals with EHV-1 glycoproteins D and B reduces virus shedding following respiratory challenge with EHV-1. Vet Immunol Immunopathol 2006; 111:97-108. [PMID: 16504306 DOI: 10.1016/j.vetimm.2006.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have previously demonstrated that intramuscular inoculation of EHV-1 glycoprotein D (gD) and glycoprotein B (gB) produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD- and gB-specific ELISA antibody in adult horses. In this study, 14 mares and their very young foals were inoculated with a combination of baculovirus-expressed EHV-1 gD and EHV-1 gB (EHV-1 gDBr) and challenged with a respiratory strain of EHV-1. Following experimental challenge, inoculated mares and foals shed virus in nasal secretions on significantly fewer occasions compared to uninoculated mares and foals. Uninoculated foals born from inoculated mares were no more protected against experimental challenge than uninoculated foals born from uninoculated mares. The results suggest that it is indeed possible to induce partial protection in very young foals through vaccination, and while the inoculation did not prevent infection, it did reduce the frequency of viral shedding with the potential to thereby reduce the risk and prevalence of infection in a herd situation.
Collapse
Affiliation(s)
- C E Foote
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | | | | | | | | |
Collapse
|
14
|
Foote CE, Love DN, Gilkerson JR, Rota J, Trevor-Jones P, Ruitenberg KM, Wellington JE, Whalley JM. Serum antibody responses to equine herpesvirus 1 glycoprotein D in horses, pregnant mares and young foals. Vet Immunol Immunopathol 2005; 105:47-57. [PMID: 15797474 DOI: 10.1016/j.vetimm.2004.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 11/22/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.
Collapse
Affiliation(s)
- C E Foote
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Haghighi HR, Prescott JF. Assessment in mice of vapA–DNA vaccination against Rhodococcus equi infection. Vet Immunol Immunopathol 2005; 104:215-25. [PMID: 15734542 DOI: 10.1016/j.vetimm.2004.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 11/15/2004] [Accepted: 12/01/2004] [Indexed: 11/25/2022]
Abstract
There is a need to produce a vaccine against Rhodococcus equi pneumonia in foals in which immunity against infection is largely based on a type 1, cell-mediated, immune response. The VapA protein of the virulence plasmid of R. equi is highly immunogenic. To assess the potential of vapA-DNA to produce immunity, C57BL/6 and BALB/c mice were immunized with a DNA vaccine constructed from vapA incorporated into pcDNA3.1. The plasmid construct expressed VapA in a COS-7 cell line. Intramuscular immunization of mice resulted in enhanced clearance of R. equi from the liver of intravenously challenged mice compared to non-immunized controls. This effect was more marked when pORF-IL-12, a plasmid expressing murine IL12, was included with the vaccine. Antibody developed to VapA, with an IgG2a response being more marked in mice immunized with pcDNA-vapA than in non-immunized or in mice immunized with the mixed vapA and IL-12 plasmid constructs. In conclusion, this study has shown for the first time that DNA immunization with vapA enhances the immune responses of mice against R. equi infection, that the IgG subisotype response is consistent with a type 1-based immune response, and that this can be enhanced by injection of the IL-12 gene.
Collapse
Affiliation(s)
- H R Haghighi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | |
Collapse
|
16
|
Zhang Y, Smith PM, Frampton AR, Osterrieder N, Jennings SR, O'Callaghan DJ. Cytokine profiles and long-term virus-specific antibodies following immunization of CBA mice with equine herpesvirus 1 and viral glycoprotein D. Viral Immunol 2004; 16:307-20. [PMID: 14583146 DOI: 10.1089/088282403322396118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Equine herpesvirus 1 (EHV-1)-specific antibody-secreting cells (ASC) isolated from the lung and spleen of mice at 12 months after immunization with attenuated EHV-1 KyA, heat-killed KyA, or recombinant viral glycoprotein D (rgD) assessed by ELISPOT showed a three- to fivefold increase in three immunoglobulin isotypes at 3 days post-challenge with pathogenic EHV-1 RacL11 as compared to control mice. ELISPOT assays demonstrated a high frequency of cells secreting proinflammatory tumor necrosis factor-alpha (TNF-alpha), interferon gamma (IFN-gamma), and interleukin 4 (IL-4) in the lungs in response to infection with KyA or RacL11 or immunization with rgD. Cytokine production elicited by EHV-1 KyA or RacL11 infection revealed similar frequencies of EHV-1-specific IFN-gamma and IL-4 spot forming cells in the mediastinal lymph nodes and spleen. However, KyA induced significantly greater amounts of IFN-gamma producing cells in the lungs than did RacL11. Intranasal immunization with KyA or rgD induced long-term immunity that provided protection against pathogenic EHV-1 challenge infection at 12 months post-immunization. Overall, the data indicate that immunization with infectious KyA or rgD induces significant levels of cytokines, virus-specific ASC in the lungs and spleen, and long-term virus specific B-cell responses.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kondo T, McGregor M, Chu Q, Chen D, Horimoto T, Kawaoka Y. A protective effect of epidermal powder immunization in a mouse model of equine herpesvirus-1 infection. Virology 2004; 318:414-9. [PMID: 14972566 DOI: 10.1016/j.virol.2003.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 09/22/2003] [Accepted: 09/25/2003] [Indexed: 11/17/2022]
Abstract
To evaluate the protective effect of epidermal powder immunization (EPI) against equine herpesvirus-1 (EHV-1) infection, we prepared a powder vaccine in which formalin-inactivated virions were embedded in water-soluble, sugar-based particles. A PowderJect device was used to immunize mice with the powder vaccine via their abdominal skin. We found that twice-immunized mice were protected against challenge with the wild-type virus. This protective effect was equivalent to or better than that observed in mice immunized with other types of vaccines, including a gene gun-mediated DNA vaccine containing the glycoprotein D (gD) gene or conventional inactivated virus vaccines introduced via intramuscular or intranasal injections. These findings indicate that the powder vaccine is a promising approach for the immunological control of EHV-1 infection, either alone or as a part of prime-boost vaccination strategies.
Collapse
Affiliation(s)
- Takashi Kondo
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
18
|
Soboll G, Whalley JM, Koen MT, Allen GP, Fraser DG, Macklin MD, Swain WF, Lunn DP. Identification of equine herpesvirus-1 antigens recognized by cytotoxic T lymphocytes. J Gen Virol 2003; 84:2625-2634. [PMID: 13679596 DOI: 10.1099/vir.0.19268-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) causes serious disease in horses throughout the world, despite the frequent use of vaccines. CTLs are thought to be critical for protection from primary and reactivating latent EHV-1 infections. However, the antigen-specificity of EHV-1-specific CTLs is unknown. The aim of this study was to identify EHV-1 genes that encode proteins containing CTL epitopes and to determine their MHC I (or ELA-A in the horse) restriction. Equine dendritic cells, transfected with a series of EHV-1 genes, were used to stimulate autologous CTL precursor populations derived from previously infected horses. Cytotoxicity was subsequently measured against EHV-1-infected PWM lymphoblast targets. Dendritic cells were infected with EHV-1 (positive control) or transfected with plasmids encoding the gB, gC, gD, gE, gH, gI, gL, immediate-early (IE) or early protein of EHV-1 using the PowderJect XR-1 research device. Dendritic cells transfected with the IE gene induced CTL responses in four of six ponies. All four of these ponies shared a common ELA-A3.1 haplotype. Dendritic cells transfected with gC, gD, gI and gL glycoproteins induced CTLs in individual ponies. The cytotoxic activity was ELA-A-restricted, as heterologous targets from ELA-A mismatched ponies were not killed and an MHC I blocking antibody reduced EHV-1-specific killing. This is the first identification of an EHV-1 protein containing ELA-A-restricted CTL epitopes. This assay can now be used to study CTL specificity for EHV-1 proteins in horses with a broad range of ELA-A haplotypes, with the goal of developing a multi-epitope EHV-1 vaccine.
Collapse
Affiliation(s)
- Gisela Soboll
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - J Millar Whalley
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Mathew T Koen
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - George P Allen
- Department of Veterinary Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Darrilyn G Fraser
- Department of Veterinary Microbiology and Immunology, Washington State University, Pullman, WA 99164, USA
| | - Michael D Macklin
- PowderJect Vaccines Inc., 585 Science Drive, Suite C, Madison, WI 53711, USA
| | - William F Swain
- PowderJect Vaccines Inc., 585 Science Drive, Suite C, Madison, WI 53711, USA
| | - D Paul Lunn
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
19
|
Foote CE, Love DN, Gilkerson JR, Whalley JM. Serological responses of mares and weanlings following vaccination with an inactivated whole virus equine herpesvirus 1 and equine herpesvirus 4 vaccine. Vet Microbiol 2002; 88:13-25. [PMID: 12119135 DOI: 10.1016/s0378-1135(02)00100-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Equine herpesvirus 1 (EHV-1) is a major cause of respiratory disease and abortion in horses worldwide. Although some vaccines have been shown experimentally to reduce disease, there are few reports of the responses to vaccination in the field. This study measured antibody responses to vaccination of 159 mares (aged 4-17 years) and 101 foals (aged 3-6 months) on a large stud farm with a killed whole virus EHV-1/4 vaccine used as per the manufacturer's recommendations. Using an EHV glycoprotein D (gD)-specific ELISA and a type-specific glycoprotein G (gG) ELISA, respectively 13.8 and 28.9% of mares, and 42.6 and 46.6% of foals were classed as responding to vaccination. Additionally, 16.4 and 17.6% of mares were classified as persistently seropositive mares. Using both assays, responder mares and foals had lower week 0 mean ELISA absorbances than non-responder mares and foals. Responder mares were ten times more likely to have responder foals, and non-responder mares were six times more likely to have non-responder foals than other mares using the gG ELISA. Mares aged 7 years or less and foals aged 4 months or more were more likely to respond to vaccination than animals in other age groups. There was no association between response of mares and the number of previous vaccinations received and persistently seropositive mares did not respond to vaccination. This study documents the responses of mares and foals to vaccination in a large scale commercial environment in 2000, and suggests that knowledge of antibody status may allow a more selective vaccination strategy, representing considerable savings to industry.
Collapse
Affiliation(s)
- C E Foote
- Faculty of Veterinary Science, University of Sydney, 2006, New South Wales, Australia
| | | | | | | |
Collapse
|
20
|
TAKAI S, NAKATA I, FUJII N, KIMURA Y, SASAKI Y, KAKUDA T, TSUBAKI S, KONDO T, SUGIURA T. Isotype-specific Antibody Responses to Rhodococcus equi in Foals on a Horse-breeding Farm with a Persistent Incidence of R. equi Infection. J Equine Sci 2002. [DOI: 10.1294/jes.13.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Shinji TAKAI
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University
| | - Izumi NAKATA
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University
| | - Naoto FUJII
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University
| | | | - Yukako SASAKI
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University
| | - Tsutomu KAKUDA
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University
| | - Shiro TSUBAKI
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University
| | - Takashi KONDO
- Epizootic Research Station, Equine Research Institute, Japan Racing Association
| | - Takeo SUGIURA
- Epizootic Research Station, Equine Research Institute, Japan Racing Association
| |
Collapse
|
21
|
|
22
|
Ruitenberg KM, Gilkerson JR, Wellington JE, Love DN, Whalley JM. Equine herpesvirus 1 glycoprotein D expressed in Pichia pastoris is hyperglycosylated and elicits a protective immune response in the mouse model of EHV-1 disease. Virus Res 2001; 79:125-35. [PMID: 11551653 DOI: 10.1016/s0168-1702(01)00337-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Equine herpesvirus 1 glycoprotein D (EHV-1 gD) has been shown in mouse models and in the natural host to have potential as a subunit vaccine, using various expression systems that included Escherichia coli, baculovirus and plasmid DNA. With the aim of producing secreted recombinant protein, we have cloned and expressed EHV-1 gD, lacking its native signal sequence and C-terminal transmembrane region, into the methylotrophic yeast Pichia pastoris. The truncated glycoprotein D (gD) gene was placed under the control of the methanol inducible alcohol oxidase 1 promoter and directed for secretion with the Saccharomyces cerevisiae alpha-factor prepro secretion signal. SDS-PAGE and Western blot analysis of culture supernatant fluid 24 h after induction revealed gD-specific protein products between 40 and 200 kDa. After treatment with PNGase F and Endo H, three predominant bands of 34, 45 and 48 kDa were detected, confirming high mannose N-linked glycosylation of Pichia-expressed gD (Pic-gD). N-terminal sequence analysis of PNGase F-treated affinity-purified protein showed that the native signal cleavage site of gD was being recognised by P. pastoris and the 34 kDa band could be explained by internal proteolytic cleavage effected by a putative Kex2-like protease. Pic-gD, when used in a DNA prime/protein boost inoculation schedule, induced high EHV-1 ELISA and virus neutralizing antibodies and provided protection from challenge infection in BALB/c mice.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/isolation & purification
- Antigens, Viral/metabolism
- Disease Models, Animal
- Female
- Gene Expression
- Glycosylation
- Herpesviridae Infections/prevention & control
- Herpesvirus 1, Equid/genetics
- Herpesvirus 1, Equid/immunology
- Horses/virology
- Mice
- Mice, Inbred BALB C
- Pichia/metabolism
- Vaccination
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Vaccines, Synthetic/metabolism
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/isolation & purification
- Viral Envelope Proteins/metabolism
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/isolation & purification
- Viral Vaccines/metabolism
Collapse
Affiliation(s)
- K M Ruitenberg
- Department of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, NSW 2109, Sydney, Australia
| | | | | | | | | |
Collapse
|