1
|
Ke CH, Lai PY, Hsu FY, Hsueh PR, Chiou MT, Lin CN. Antimicrobial susceptibility and resistome of Actinobacillus pleuropneumoniae in Taiwan: a next-generation sequencing analysis. Vet Q 2024; 44:1-13. [PMID: 38688482 PMCID: PMC11064736 DOI: 10.1080/01652176.2024.2335947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Actinobacillus pleuropneumoniae infection causes a high mortality rate in porcine animals. Antimicrobial resistance poses global threats to public health. The current study aimed to determine the antimicrobial susceptibilities and probe the resistome of A. pleuropneumoniae in Taiwan. Herein, 133 isolates were retrospectively collected; upon initial screening, 38 samples were subjected to next-generation sequencing (NGS). Over the period 2017-2022, the lowest frequencies of resistant isolates were found for ceftiofur, cephalexin, cephalothin, and enrofloxacin, while the highest frequencies of resistant isolates were found for oxytetracycline, streptomycin, doxycycline, ampicillin, amoxicillin, kanamycin, and florfenicol. Furthermore, most isolates (71.4%) showed multiple drug resistance. NGS-based resistome analysis revealed aminoglycoside- and tetracycline-related genes at the highest prevalence, followed by genes related to beta-lactam, sulfamethoxazole, florphenicol, and macrolide. A plasmid replicon (repUS47) and insertion sequences (IS10R and ISVAp11) were identified in resistant isolates. Notably, the multiple resistance roles of the insertion sequence IS10R were widely proposed in human medicine; however, this is the first time IS10R has been reported in veterinary medicine. Concordance analysis revealed a high consistency of phenotypic and genotypic susceptibility to florphenicol, tilmicosin, doxycycline, and oxytetracycline. The current study reports the antimicrobial characterization of A. pleuropneumoniae for the first time in Taiwan using NGS.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pan-Yun Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Feng-Yang Hsu
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Tang Chiou
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
2
|
Osemeke OH, Cezar GA, Paiva RC, Moraes DCA, Machado IF, Magalhaes ES, Poeta Silva APS, Mil-Homens M, Peng L, Jayaraman S, Trevisan G, Silva GS, Gauger PC, Linhares DCL. A cross-sectional assessment of PRRSV nucleic acid detection by RT-qPCR in serum, ear-vein blood swabs, nasal swabs, and oral swabs from weaning-age pigs under field conditions. Front Vet Sci 2023; 10:1200376. [PMID: 37635762 PMCID: PMC10449646 DOI: 10.3389/fvets.2023.1200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The porcine reproductive and respiratory syndrome virus (PRRSV) continues to challenge swine production in the US and most parts of the world. Effective PRRSV surveillance in swine herds can be challenging, especially because the virus can persist and sustain a very low prevalence. Although weaning-age pigs are a strategic subpopulation in the surveillance of PRRSV in breeding herds, very few sample types have been validated and characterized for surveillance of this subpopulation. The objectives of this study, therefore, were to compare PRRSV RNA detection rates in serum, oral swabs (OS), nasal swabs (NS), ear-vein blood swabs (ES), and family oral fluids (FOF) obtained from weaning-age pigs and to assess the effect of litter-level pooling on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of PRRSV RNA. Methods Three eligible PRRSV-positive herds in the Midwestern USA were selected for this study. 666 pigs across 55 litters were sampled for serum, NS, ES, OS, and FOF. RT-qPCR tests were done on these samples individually and on the litter-level pools of the swabs. Litter-level pools of each swab sample type were made by combining equal volumes of each swab taken from the pigs within a litter. Results Ninety-six piglets distributed across 22 litters were positive by PRRSV RT-qPCR on serum, 80 piglets distributed across 15 litters were positive on ES, 80 piglets distributed across 17 litters were positive on OS, and 72 piglets distributed across 14 litters were positive on NS. Cohen's kappa analyses showed near-perfect agreement between all paired ES, OS, NS, and serum comparisons (). The serum RT-qPCR cycle threshold values (Ct) strongly predicted PRRSV detection in swab samples. There was a ≥ 95% probability of PRRSV detection in ES-, OS-, and NS pools when the proportion of positive swab samples was ≥ 23%, ≥ 27%, and ≥ 26%, respectively. Discussion ES, NS, and OS can be used as surveillance samples for detecting PRRSV RNA by RT-qPCR in weaning-age pigs. The minimum number of piglets to be sampled by serum, ES, OS, and NS to be 95% confident of detecting ≥ 1 infected piglet when PRRSV prevalence is ≥ 10% is 30, 36, 36, and 40, respectively.
Collapse
Affiliation(s)
| | - Guilherme A. Cezar
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Rodrigo C. Paiva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Daniel C. A. Moraes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Isadora F. Machado
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Edison S. Magalhaes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | | | - Mafalda Mil-Homens
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Li Peng
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Swaminathan Jayaraman
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Giovani Trevisan
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Gustavo S. Silva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine Department of the College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C. L. Linhares
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| |
Collapse
|
3
|
Nahar N, Tram G, Jen FEC, Phillips ZN, Weinert L, Bossé J, Jabbari J, Gouil Q, Du MM, Ritchie M, Bowden R, Langford P, Tucker A, Jennings M, Turni C, Blackall P, Atack J. Actinobacillus pleuropneumoniae encodes multiple phase-variable DNA methyltransferases that control distinct phasevarions. Nucleic Acids Res 2023; 51:3240-3260. [PMID: 36840716 PMCID: PMC10123105 DOI: 10.1093/nar/gkad091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Zachary N Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Jafar S Jabbari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Mei R M Du
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
4
|
Kleinmans M, Fiebig K, Tabeling R, Swam H, Duivelshof-Crienen A, Ritzmann M, Eddicks M. Explorative Field Study on the Use of Oral Fluids for the Surveillance of Actinobacillus pleuropneumoniae Infections in Fattening Farms by an Apx-Real-Time PCR. Vet Sci 2022; 9:vetsci9100552. [PMID: 36288165 PMCID: PMC9607612 DOI: 10.3390/vetsci9100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Oral fluid sampling (OFS) is an animal friendly and easy way for surveillance purposes in domestic swine populations, especially concerning respiratory diseases. In case of Actinobacillus (A.) pleuropneumoniae surveillance, measures are usually combined with burdensome sampling for animals and humans. In the present study, we evaluated the suitability of oral fluids (OFs) for surveillance purposes of A. pleuropneumoniae infections in fattening pigs using an Apx-toxin real-time PCR. We were able to demonstrate that the examination of OFs by an Apx-toxin real-time PCR is suitable for A. pleuropneumoniae surveillance in the field in an animal friendly and easy way. These results might contribute to an increased compliance of laboratory diagnostic measures on pig farms and thereby to increased animal welfare due to less burdensome sampling and improved animal health. Abstract Oral fluids (OFs) represent a cost effective and reliable tool for surveillance purposes, mostly regarding viruses. In the present study, we evaluated the suitability of OFs for surveillance purposes concerning Actinobacillus (A.) pleuropneumoniae infections in fattening pigs under field conditions. OFs were examined with an Apx-toxin real-time PCR that detects the genes encoding for Apx I-, Apx III-, and Apx IV-toxin. For this purpose, we conducted a pen-wise collection of OFs over one fattening period from fattening pigs of two farms (farm A and B) with a known history of A. pleuropneumoniae infection. Lung lesions were determined at slaughter to estimate the extend of pulmonary lesions and pleural affection. Apx III- and Apx IV-toxin DNA were present in the OFs of both farms whereas Apx I-toxin DNA was present on farm A only. We were able to detect Apx I-, Apx III-, and Apx IV-toxin DNA in different patterns directly after introduction of the new pigs in the farms and over the entire study period. In summary, or results indicate the suitability of OFS for the early detection and surveillance of A. pleuropneumoniae in fattening farms.
Collapse
Affiliation(s)
| | - Kerstin Fiebig
- Intervet Deutschland GmbH, MSD Animal Health, 85716 Unterschleissheim, Germany
| | - Robert Tabeling
- Intervet Deutschland GmbH, MSD Animal Health, 85716 Unterschleissheim, Germany
| | - Hanny Swam
- Intervet International B.V., 5831 AK Boxmeer, The Netherlands
| | | | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Matthias Eddicks
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Correspondence:
| |
Collapse
|
5
|
Sahoo M, Pathak M, Patel SK, Saikumar G, Upmanyu V, Thakor JC, Kumar P, Singh R, Singh K, Sahoo NR. Pathomorphology, immunohistochemical, and molecular detection of an atypical porcine dermatitis and nephropathy syndrome (PDNS) due to PCV-2d-2 in naturally affected grower pigs of India. Microb Pathog 2022; 171:105738. [PMID: 36038085 DOI: 10.1016/j.micpath.2022.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
Porcine circovirus type 2 (PCV-2) is of great economic significance to porcine industry worldwide. PCV-2 variants and genotypes, alternating world over, are the etiological agent of several clinical syndromes such as porcine dermatitis and nephropathy syndrome (PDNS), post-weaning multi-systemic wasting syndrome (PMWS) and others in pigs. This study is reporting an atypical manifestation of PDNS in twelve grower pigs, 3- to - 4.5 months age and either sex, died of the disease, with predominant lesions of nephropathy and no obvious clinical lesions in skin. Necropsy examination of pigs showed lesions of petechial -to- ecchymotic hemorrhages in the kidneys and in the right auricular musculature of the hearts. Microscopic lesions in H & E sections of the kidneys showed acute glomerulonephritis, interstitial nephritis, and vasculitis, but the skin morphology and architecture remained unaltered in contrast to the pathognomonic lesions of PDNS described in the literature. Other syndromic associations of PDNS in these cases included-perimyocarditis, interstitial pneumonia, depleted lymphoid tissues, tonsillitis, enteritis, and meningo-encephalitis. The lesional sites in duplicate paraffin tissue sections of kidneys, heart, lungs, spleen, lymph nodes, intestine, and brain demonstrated PCV-2 antigen in the cytoplasm of cells as highlighted by the intense immunolabeling on IHC staining. The PCV-2 positive organs reconfirmed by PCR, targeting ORF2 gene, which yielded 481bp size of products. The sequencing results of 481bp products on phylogenetic analysis showed 94% similarity with that of PCV-2 sequences in the database that grouped into PCV2d-2 genotype. The present report confirms, probably for the first time, the atypical PDNS cases due to PCV2d-2 genotype in naturally affected grower pigs of India.
Collapse
Affiliation(s)
- Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India.
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India; Department of Veterinary Pathology, College of Veterinary Science & Animal Husbandry, Rewa, Madhya Pradesh, India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India.
| | - Vikramaditya Upmanyu
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | | | - Pradeep Kumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India; Veterinary Pathology, Institute of Veterinary Science and Animal Husbandry, Siksha "O" Anusandhan, Ghatikia, Bhubaneswar, Odisha, India
| | - Karampal Singh
- ICAR-CADRAD, Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Nihar Ranjan Sahoo
- ICAR-DFMD-International Centre for Foot and Mouth Disease, Arugul, Jatni, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Abstract
Actinobacillus pleuropneumoniae causes porcine pleuropneumonia, an important disease in the pig industry. Accurate and sensitive diagnostics such as DNA-based diagnostics are essential for preventing or responding to an outbreak. The specificity of DNA-based diagnostics depends on species-specific markers. Previously, an insertion element was found within an A. pleuropneumoniae-specific gene commonly used for A. pleuropneumoniae detection, prompting the need for additional species-specific markers. Herein, 12 marker candidates highly conserved (99 - 100% identity) among 34 A. pleuropneumoniae genomes (covering 13 serovars) were identified to be A. pleuropneumoniae-specific in silico, as these sequences are distinct from 30 genomes of 13 other Actinobacillus and problematic [Actinobacillus] species and more than 1700 genomes of other bacteria in the Pasteurellaceae family. Five marker candidates are within the apxIVA gene, a known A. pleuropneumoniae-specific gene, validating our in silico marker discovery method. Seven other A. pleuropneumoniae-specific marker candidates within the eamA, nusG, sppA, xerD, ybbN, ycfL, and ychJ genes were validated by polymerase chain reaction (PCR) to be specific to 129 isolates of A. pleuropneumoniae (covering all 19 serovars), but not to four closely related Actinobacillus species, four [Actinobacillus] species, or seven other bacterial species. This is the first study to identify A. pleuropneumoniae-specific markers through genome mining. Seven novel A. pleuropneumoniae-specific DNA markers were identified by a combination of in silico and molecular methods and can serve as additional or alternative targets for A. pleuropneumoniae diagnostics, potentially leading to better control of the disease. IMPORTANCE Species-specific markers are crucial for infectious disease diagnostics. Mutations within a marker sequence can lead to false-negative results, inappropriate treatment, and economic loss. The availability of several species-specific markers is therefore desirable. In this study, 12 DNA markers specific to A. pleuropneumoniae, a pig pathogen, were simultaneously identified. Five marker candidates are within a known A. pleuropneumoniae-specific gene. Seven novel markers can be used as additional targets in DNA-based diagnostics, which in turn can expedite disease diagnosis, assist farm management, and lead to better animal health and food security. The marker discovery strategy outlined herein requires less time, effort, and cost, and results in more markers compared with conventional methods. Identification of species-specific markers of other pathogens and corresponding infectious disease diagnostics are possible, conceivably improving health care and the economy.
Collapse
|
7
|
Immunological and molecular techniques used for determination of serotypes in Pasteurellaceae. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Aper D, Frömbling J, Bağcıoğlu M, Ehling-Schulz M, Hennig-Pauka I. Comparison of metabolic adaptation and biofilm formation of Actinobacillus pleuropneumoniae field isolates from the upper and lower respiratory tract of swine with respiratory disease. Vet Microbiol 2019; 240:108532. [PMID: 31902502 DOI: 10.1016/j.vetmic.2019.108532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
Most outbreaks of disease due to infection with Actinobacillus (A.) pleuropneumoniae are caused by pigs already pre-colonised in tonsillar tissue, where the pathogen is protected from exposure to antibiotic substances administered for treatment. As it has been shown recently under experimental conditions, A. pleuropneumoniae displays host tissue-specific metabolic adaptation. In this study, pairs of A. pleuropneumoniae field isolates were recovered from lung as well as from tonsillar and nasal tissue from 20 pigs suffering from acute clinical signs of pleuropneumonia and showing characteristic pathological lung alterations. Metabolic adaptation to the porcine lower and upper respiratory tract of 32 A. pleuropneumoniae serotype 2 field isolates was examined using Fourier transform infrared (FTIR) spectroscopy as a high resolution metabolic fingerprinting method. All strains showed metabolic adaptations to organ tissue reflected by hierarchical cluster analysis of FTIR spectra similar to those previously observed under experimental conditions. Notably, differences in antimicrobial resistance patterns and minimal inhibitory concentrations of isolates from different tissues in the same animal, but not in biofilm production capability in a microtiter plate assay were found. Overall, biofilm formation was observed for 71 % of the isolates, confirming that A. pleuropneumoniae field isolates are generally able to form biofilms, although rather in a serotype-specific than in an organ-specific manner. A. pleuropneumoniae serotype 6 isolates formed significantly more biofilm than the other serotypes. Furthermore, biofilm production was negatively correlated to the lung lesion scores and tonsillar isolates tended to be more susceptible to antimicrobial substances with high bioavailability than lung isolates.
Collapse
Affiliation(s)
- Doris Aper
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, D-49456 Bakum, Germany
| | - Janna Frömbling
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Murat Bağcıoğlu
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, D-49456 Bakum, Germany.
| |
Collapse
|
9
|
Hoeltig D, Nietfeld F, Strutzberg-Minder K, Rohde J. Evaluation of the predictive value of tonsil examination by bacteriological culture for detecting positive lung colonization status of nursery pigs exposed to Actinobacillus pleuropneumoniae by experimental aerosol infection. BMC Vet Res 2018; 14:211. [PMID: 29954395 PMCID: PMC6022346 DOI: 10.1186/s12917-018-1542-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/24/2018] [Indexed: 11/27/2022] Open
Abstract
Background Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia. For control of the disease the detection of sub-clinically infected pigs is of major importance to avoid transmitting of subclinical infections. One method recommended is the testing of tonsillar samples for the presence of A. pleuropneumoniae. This is routinely done by PCR techniques. However, based upon PCR susceptibility testing and monitoring of resistance development is impossible. Therefore, in this study the informative values of bacteriological culture of tonsilar samples for the colonisation status of pigs were tested. In total, 163 German Landrace nursery pigs were experimentally exposed to A. pleuropneumoniae serotype 7 by aerosol and the rate of isolation from lung tissue and tonsils and the corresponding degree of lung lesions were investigated. Results Overall a significant correlation (p < 0.001) between degree of clinical disease, degree of lung alterations and degree of A. pleuropneumoniae isolation from tonsillar and lung tissue after exposure was detected. Of these animals tested, 74.8% were tested positive in tonsillar and lung samples, 7.4% remained completely negative and in 4.3% the tonsils were tested positive despite negative isolation results from lung tissue. In 13.5% of the pigs A. pleuropneumoniae could be isolated in lung tissue but not in tonsillar samples. In 36.4% of these animals a heavy colonization of the lungs and in 40.9% moderate to severe lung alterations were proven. Hence, the diagnostic sensitivity for the detection of a positive colonization status of the pigs by bacterial culture examination of tonsillar samples was 84.7%, the diagnostic specificity was 66.7% and the predictive values were 94.6% (positive) and 35.3% (negative). The overall sensitivity for A. pleuropneumoniae exposure was 78.2% (tonsils) and 88.0% (lung tissue). Conclusions In conclusion, tonsil examination alone for the detection of a positive colonization status of pigs performed might lead to false negative results as lungs might be heavily colonized despite negative tonsillar isolation results. Therefore culture of tonsillar samples should not be the sole test for the confirmation of a pigs’ status but used in combination with methods also evaluating the colonization status of the lower respiratory tract.
Collapse
Affiliation(s)
- Doris Hoeltig
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany.
| | - Florian Nietfeld
- Clinic for Swine, Department of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Str. 112, D- 35392, Giessen, Germany
| | | | - Judith Rohde
- Institute for Microbiology, University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany
| |
Collapse
|
10
|
Abstract
The introduction into a naïve herd of animals sub-clinically infected with Actinobacillus pleuropneumoniae (App) is frequently the cause of clinical pleuropneumonia and the identification of such infected herds is a priority in the control of disease. Different serological tests for App have been developed and a number of these are routinely used. Some are species-specific whereas others identify more specifically the serotype/serogroup involved which requires updated information about important serotypes recovered from diseased pigs in a given area/country. Serotyping methods based on molecular techniques have been developed lately and are ready to be used by most diagnostic laboratories. When non-conclusive serological results are obtained, direct detection of App from tonsils is sometimes attempted. This review addresses different techniques and approaches used to monitor herds sub-clinically infected by this important pathogen.
Collapse
Affiliation(s)
- Marcelo Gottschalk
- Department of Pathology and Microbiology, Swine and Poultry Infectious Disease Center (CRIPA), Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Québec, Canada J2S 2M2.
| |
Collapse
|
11
|
Ji H, Li H, Zhu L, Zhang H, Wang Y, Zuo Z, Guo W, Xu Z. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Actinobacillus pleuropneumoniae based the dsbE-like gene. PESQUISA VETERINÁRIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012000800014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongwei Ji
- Sichuan Agricultural University, P.R. China
| | - Haitao Li
- Sichuan Agricultural University, P.R. China
| | - Ling Zhu
- Sichuan Agricultural University, P.R. China
| | - Hui Zhang
- Sichuan Agricultural University, P.R. China
| | - Yin Wang
- Sichuan Agricultural University, P.R. China
| | - Zhicai Zuo
- Sichuan Agricultural University, P.R. China
| | - Wanzhu Guo
- Sichuan Agricultural University, P.R. China
| | - Zhiwen Xu
- Sichuan Agricultural University, P.R. China
| |
Collapse
|
12
|
Detection of Actinobacillus pleuropneumoniae in pigs by real-time quantitative PCR for the apxIVA gene. Vet J 2012; 193:557-60. [PMID: 22445313 DOI: 10.1016/j.tvjl.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
Abstract
A real-time quantitative PCR (qPCR) for detection of the apxIVA gene of Actinobacillus pleuropneumoniae was validated using pure cultures of A. pleuropneumoniae and tonsillar and nasal swabs from experimentally inoculated Caesarean-derived/colostrum-deprived piglets and naturally infected conventional pigs. The analytical sensitivity was 5colony forming units/reaction. In comparison with selective bacterial examination using tonsillar samples from inoculated animals, the diagnostic sensitivity of the qPCR was 0.98 and the diagnostic specificity was 1.0. The qPCR showed consistent results in repeatedly sampled conventional pigs. Tonsillar brush samples and apxIVA qPCR analysis may be useful for further epidemiological studies and monitoring for A. pleuropneumoniae.
Collapse
|
13
|
Maldonado J, Blanco M, Martínez E, Navas J. Comparison of three typing assays for nicotinamide adenine dinucleotide-independent Actinobacillus pleuropneumoniae. J Vet Diagn Invest 2012; 23:812-6. [PMID: 21908330 DOI: 10.1177/1040638711407895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Three tests for typing clinical isolates of Actinobacillus pleuropneumoniae biovar 2 were compared: 1) standard coagglutination with type-specific antisera against serovars 1-12 of biovar 1 of A. pleuropneumoniae; 2) a previously described polymerase chain reaction system for detecting the apx genes encoding the ApxI, ApxII, and ApxIII toxins in A. pleuropneumoniae; and 3) a restriction fragment length polymorphism analysis of the transferrin-binding protein B gene. The panel of strains tested included 112 field isolates of biovar 2 recovered from pigs between 1979 and 2007 in Italy and Spain, and reference strains for all described serovars of both biovars. The values of Simpson index of diversity obtained for the 3 methods were 0.68, 0.20, and 0.60, respectively. Coagglutination assays identified the field isolates as belonging to serovars 2 (9 strains), 4 (13 strains), 7 (61 strains), 9 (17 strains), and 11 (1 strain). Eleven strains were not typeable, and cross-reactivity was observed between serovars 2 and 4, 4 and 7, and 9 and 11. Isolates of A. pleuropneumoniae biovar 2 displayed 2 apx patterns: ApxII(+) (94 strains) and ApxI(+)/ApxII(+) (18 strains). The restriction fragment length polymorphism analysis assigned the strains tested to 3 different patterns. This method distinguished between biovar 2 reference strains and field strains that could not be identified by other methods, thus constituting a useful complementary test for the typing of A. pleuropneumoniae biovar 2.
Collapse
Affiliation(s)
- Jaime Maldonado
- Diagnostic Laboratory, Laboratorios HIPRA S.A., Paratge Arbusset s/n, Girona 17170, Spain.
| | | | | | | |
Collapse
|
14
|
Multiplex PCR assay for detection of Actinobacillus pleuropneumoniae, Pasteurella multocida and Haemophilus parasuis in lungs of pigs from a slaughterhouse. Folia Microbiol (Praha) 2011; 55:635-40. [PMID: 21253912 DOI: 10.1007/s12223-010-0103-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/21/2010] [Indexed: 10/18/2022]
Abstract
Multiplex PCR has been developed for parallel identification of Actinobacillus pleuropneumoniae, Pasteurella multocida and Haemophilus parasuis, important pathogens of swine, responsible for considerable economic losses in swine industry. Multiplex PCR and bacteriological cultivation was used to analyze lung samples from slaughterhouse pigs. From a total of 219 lung samples, 164 (74.9 %) were positive for P. multocida, 45 (20.5 %) for A. pleuropneumoniae and 4 (1.83 %) for H. parasuis. Bacteriological examination revealed that 145 samples (66.2 %) were positive for P. multocida, 31 (14.2 %) for A. pleuropneumoniae and 2 (0.91 %) for H. parasuis.
Collapse
|
15
|
Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by sigmaE and H-NS. J Bacteriol 2010; 192:2414-23. [PMID: 20207760 DOI: 10.1128/jb.01513-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clinical isolates of the porcine pathogen Actinobacillus pleuropneumoniae often form adherent colonies on agar plates due to expression of an operon, pgaABCD, encoding a poly-beta-1,6-N-acetyl-D-glucosamine (PGA) extracellular matrix. The adherent colony phenotype, which correlates with the ability to form biofilms on the surfaces of polystyrene plates, is lost following serial passage in broth culture, and repeated passage of the nonadherent variants on solid media does not result in reversion to the adherent colony phenotype. In order to investigate the regulation of PGA expression and biofilm formation in A. pleuropneumoniae, we screened a bank of transposon mutants of the nonadherent serovar 1 strain S4074(T) and identified mutations in two genes, rseA and hns, which resulted in the formation of the adherent colony phenotype. In other bacteria, including the Enterobacteriaceae, H-NS acts as a global gene regulator, and RseA is a negative regulator of the extracytoplasmic stress response sigma factor sigma(E). Transcription profiling of A. pleuropneumoniae rseA and hns mutants revealed that both sigma(E) and H-NS independently regulate expression of the pga operon. Transcription of the pga operon is initiated from a sigma(E) promoter site in the absence of H-NS, and upregulation of sigma(E) is sufficient to displace H-NS, allowing transcription to proceed. In A. pleuropneumoniae, H-NS does not act as a global gene regulator but rather specifically regulates biofilm formation via repression of the pga operon. Positive regulation of the pga operon by sigma(E) indicates that biofilm formation is part of the extracytoplasmic stress response in A. pleuropneumoniae.
Collapse
|
16
|
Ohba T, Shibahara T, Kobayashi H, Takashima A, Nagoshi M, Araki M, Takizawa K, Kubo M. Prevalence of granulomatous pleuropneumonia associated with Actinobacillus pleuropneumoniae serotype 2 in slaughter pigs. J Vet Med Sci 2010; 71:1089-92. [PMID: 19721364 DOI: 10.1292/jvms.71.1089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A total of 14,818 slaughtered pigs were examined macroscopically. Of these, 25 pigs with porcine pleuropneumonia were collected and the relations among Actinobacillus spp. and granulomatous lesions in organs (lungs and tonsils) were evaluated. In the lungs, only Actinobacillus pleuropneumoniae serotype 2 was isolated from 20 of the pigs. Histologically, granulomatous pneumonia with A. pleuropneumoniae antigen was detected in 8 of the pigs. The antigen was visible in the centers of the lesions along with asteroid bodies, epithelioid cells and multinucleated giant cells. In the tonsils, granulomatous lesions were not detected, although A. pleuropneumoniae serotype 2 (5 pigs), serotype 7 (1 pig), Actinobacillus porcitonsillarum (1 pig) and Actinobacillus minor (1 pig) were isolated. The present survey suggests that multifocal granulomatous pneumonia in slaughter pigs could be highly associated with A. pleuropneumoniae serotype 2 infection.
Collapse
Affiliation(s)
- Takemi Ohba
- Toyama Prefectural Meat Inspection Center, Imizu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang W, Pin C, Haibing G, Yang C, Hui L, Qigai H. Loop-mediated isothermal amplification targeting the apxIVA gene for detection of Actinobacillus pleuropneumoniae. FEMS Microbiol Lett 2009; 300:83-9. [PMID: 19765085 DOI: 10.1111/j.1574-6968.2009.01779.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method performed under isothermal conditions with high specificity and efficiency. We developed a diagnostic method based on LAMP for detection of Actinobacillus pleuropneumoniae. Using six specific primers targeting the apxIVA gene, the LAMP assay rapidly amplified the target gene within 30 min, requiring only a laboratory water bath for the reaction to occur. The resulting amplificon was visualized by adding SYBR Green I to the mixture. The results obtained from testing 15 A. pleuropneumoniae reference strains and other seven bacterial species strains showed that the LAMP was as specific as and 10 times more sensitive than nested PCR. Sixty-five tonsil samples were collected from 65 healthy pigs. All the samples were negative for A. pleuropneumoniae by immunomagnetic separation-based (IMS) bacterial isolation, nested PCR and LAMP, respectively. Meanwhile, 115 tonsil samples were also collected from 115 pigs with apparent respiratory problems. Twenty-two were positive by IMS bacterial isolation. All the samples that were positive by IMS bacterial isolation were also positive by nested PCR and LAMP. The LAMP assay demonstrated exceptionally higher sensitivity than nested PCR by picking up 14 additional positive cases (chi(2) test, P<0.0001); we concluded that LAMP was a highly sensitive and reliable method for detection of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Wang Yang
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
18
|
Serrano-Rubio LE, Tenorio-Gutiérrez V, Suárez-Güemes F, Reyes-Cortés R, Rodríguez-Mendiola M, Arias-Castro C, Godínez-Vargas D, de la Garza M. Identification of Actinobacillus pleuropneumoniae biovars 1 and 2 in pigs using a PCR assay. Mol Cell Probes 2008; 22:305-12. [DOI: 10.1016/j.mcp.2008.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/14/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
19
|
Xu F, Chen X, Shi A, Yang B, Wang J, Li Y, Guo X, Blackall PJ, Yang H. Characterization and immunogenicity of an apxIA mutant of Actinobacillus pleuropneumoniae. Vet Microbiol 2006; 118:230-9. [PMID: 16930871 DOI: 10.1016/j.vetmic.2006.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 07/09/2006] [Accepted: 07/13/2006] [Indexed: 12/01/2022]
Abstract
Actinobacillus pleuropneumoniae is the aetiological agent of porcine pleuropneumonia, a highly contagious and often fatal disease. A candidate live vaccine strain, potentially capable of cross-serovar protection, was constructed by deleting the section of the apxIA gene coding for the C-terminal segment of ApxI toxin of the A. pleuropneumoniae serovar 10 reference strain (D13039) and inserting a chloramphenicol resistance gene cassette. The mutant strain (termed D13039A(-)Chl(r)) produced an approximately 48kDa protein corresponding to the N-terminus of the ApxI toxin, and exhibited no haemolytic activity and lower virulence in mice compared with the parental strain. The mutant was evaluated in a vaccination-challenge trial in which pigs were given two intra-nasal doses of the mutant at 14 days intervals and then challenged 14 days after the last vaccination with either A. pleuropneumoniae serovar 1 (4074) or serovar 2 (S1536) or serovar 10 (D13039) reference strains. The haemolysin neutralisation titres of the pre-challenge sera were significantly higher in the vaccinated pigs than in the unvaccinated pigs. The mortalities, clinical signs and lung lesion scores in the vaccinated pigs were significantly lower than those in the unvaccinated pigs for the serovar 1 challenge. A significantly lower lung lesion score was also observed in the vaccinated pigs, compared with unvaccinated pigs, for serovar 2 challenge. Our work suggests that the mutant strain offers potential as a live attenuated pleuropneumonia vaccine that can provide cross-serovar protection.
Collapse
Affiliation(s)
- Fuzhou Xu
- Key Laboratory of Preventive Veterinary Medicine of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fittipaldi N, Broes A, Harel J, Kobisch M, Gottschalk M. Evaluation and field validation of PCR tests for detection of Actinobacillus pleuropneumoniae in subclinically infected pigs. J Clin Microbiol 2004; 41:5085-93. [PMID: 14605143 PMCID: PMC262496 DOI: 10.1128/jcm.41.11.5085-5093.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight PCR tests were evaluated for their abilities to detect Actinobacillus pleuropneumoniae in swine tonsils. At first they were compared regarding their specificities by using A. pleuropneumoniae and related bacterial species and their analytical sensitivities by using tonsils experimentally infected in vitro. PCRs were carried out both directly with tonsil homogenates (direct PCR) and after culture of the sample (after-culture PCR). Most tests demonstrated good specificities; however, some tests gave false-positive results with some non-A. pleuropneumoniae species. High degrees of variation in the analytical sensitivities among the tests were observed for the direct PCRs (10(9) to 10(2) CFU/g of tonsil), whereas those of most of the after-culture PCRs were similar (10(2) CFU/g of tonsil). In a second phase, the effects of sample storage time and storage conditions were evaluated by using tonsils from experimentally infected animals. Storage at -20 degrees C allowed the detection of the organism for at least 4 months. Finally, the omlA PCR test described by Savoye et al. (C. Savoye et al., Vet. Microbiol. 73:337-347, 2000) and the commercially available Adiavet App PCR test were further validated with field samples. Their effectiveness was compared to those of standard and immunomagnetic separation-based methods of bacterial isolation. In addition, a comparison of tonsil biopsy specimens (from living animals) and whole tonsils (collected at the slaughterhouse) was also conducted. A. pleuropneumoniae was neither isolated nor detected by PCR from a herd serologically negative for A. pleuropneumoniae. PCR was more sensitive than the standard isolation method with whole tonsils from three infected herds. After-culture PCR offered the highest degree of sensitivity (93 and 83% for the omlA and Adiavet App PCRs, respectively). The PCR detection rate was higher with whole tonsils than with tonsil biopsy specimens. Good agreement (kappa = 0.65) was found between the presence of A. pleuropneumoniae in tonsils and the individual serological status of the animals.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | |
Collapse
|
21
|
Jessing SG, Angen Ø, Inzana TJ. Evaluation of a multiplex PCR test for simultaneous identification and serotyping of Actinobacillus pleuropneumoniae serotypes 2, 5, and 6. J Clin Microbiol 2003; 41:4095-100. [PMID: 12958231 PMCID: PMC193807 DOI: 10.1128/jcm.41.9.4095-4100.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serotype-specific DNA regions involved in the biosynthesis of capsular polysaccharides (cps region) were used to develop a multiplex PCR test for the simultaneous species identification and serotyping of Actinobacillus pleuropneumoniae serotypes 2, 5, and 6. Primers specific for serotypes 2, 5, and 6 were combined with the already existing species-specific primers used in a PCR test based on the omlA gene. The PCR test was evaluated with serotype reference strains of A. pleuropneumoniae as well as 182 Danish field isolates previously serotyped by latex agglutination or immunodiffusion. For all serologically typeable strains, a complete correspondence was found between the results obtained by the multiplex PCR test and the results obtained by the traditional serotyping methods. Six of eight serologically nontypeable strains could be allocated to a serotype on the basis of the multiplex PCR results. The species specificity of the assay was evaluated with a collection of 93 strains representing 29 different species within the family Pasteurellaceae, as well as species normally found in the respiratory tracts of swine. All of these strains were negative by the multiplex PCR test, including 50 field isolates of the phylogenetically closely related species Actinobacillus lignieresii. When the multiplex PCR test was used to test Danish field strains, it was able to identify the serotypes of approximately 94% of all strains isolated from swine with clinical disease. More than 90% of the isolates that cross-reacted by the latex agglutination test were of serotype 2, 5, or 6. Determination of the serotype by PCR represents a convenient and specific method for the serotyping of A. pleuropneumoniae in diagnostic laboratories.
Collapse
|
22
|
Gottschalk M, Broes A, Mittal KR, Kobisch M, Kuhnert P, Lebrun A, Frey J. Non-pathogenic Actinobacillus isolates antigenically and biochemically similar to Actinobacillus pleuropneumoniae: a novel species? Vet Microbiol 2003; 92:87-101. [PMID: 12488073 DOI: 10.1016/s0378-1135(02)00341-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two unusual Actinobacillus isolates were recovered from pigs with no clinical signs, no lesions and no history of swine pleuropneumonia. Two representative strains (9953L55 and 0347) analyzed in this study were initially biochemically and antigenically identified as A. pleuropneumoniae serotypes 1 and 9, respectively, by traditional identification methods. Both strains presented, however, negative results with three A. pleuropneumoniae-specific PCR tests and revealed in particular the absence of the apxIV toxin genes. However, both strains produced and secreted ApxII toxin although they only harbored the toxin genes apxIICA, which is an uncommon feature for any of the known A. pleuropneumoniae serotypes. Upon experimental inoculation of pigs, these strains proved to be totally non-pathogenic. Animals infected with one of the strains produced antibodies that cross-react with A. pleuropneumoniae serotypes 1-9-11-specific LC-LPS ELISA. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that these strains form a separate phylogenetic group that is distinct from other Actinobacillus species and is particularly different from A. pleuropneumoniae.
Collapse
Affiliation(s)
- M Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Département de Pathologie et Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Quebec, Canada J2S 7C6.
| | | | | | | | | | | | | |
Collapse
|
23
|
Chiers K, Donné E, Van Overbeke I, Ducatelle R, Haesebrouck F. Evaluation of serology, bacteriological isolation and polymerase chain reaction for the detection of pigs carrying Actinobacillus pleuropneumoniae in the upper respiratory tract after experimental infection. Vet Microbiol 2002; 88:385-92. [PMID: 12220813 DOI: 10.1016/s0378-1135(02)00150-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pigs, asymptomatically infected with Actinobacillus pleuropneumoniae in their upper respiratory tract, can transmit the infection. Detection of such animals is indispensable to prevent the intake of the disease in a herd. This study was conducted to evaluate bacteriology, polymerase chain reaction (PCR) and serology for the detection of subclinically infected pigs. Pigs were inoculated onto the tonsils with an A. pleuropneumoniae serotype 9 strain (n=12, group 1) or phosphate buffered saline solution (PBSS) (n=5, group 2). To prevent infection of the lungs, pigs of group 1 were treated three times with sodium ceftiofur as an aerosol. A third group (n=5) was inoculated intranasally with the same strain. All animals were euthanized 30 days post-inoculation (dpi). In pigs of group 1, clinical signs were not observed. A small lung lesion was found in only one pig and A. pleuropneumoniae was isolated from this lesion. The bacterium was not isolated from the lungs of animals that did not develop lung lesions. A. pleuropneumoniae was demonstrated in tonsils of 9/12 animals using bacteriological isolation, whereas it was demonstrated in mixed bacterial cultures from tonsils of all 12 animals by PCR. In non-infected animals (group 2), clinical signs were not observed and A. pleuropneumoniae was not demonstrated in any sample. All intranasally infected animals (group 3) developed disease signs and lung lesions. High antibody titers against ApxI, ApxII and heat-stable antigens were detected in animals that developed lung lesions. Antibody titers against these antigens were low or absent in all other pigs. It was concluded that pigs carrying A. pleuropneumoniae in the upper respiratory tract generally do not show measurable antibodies in serum. Therefore, sensitive methods for the detection of the etiological agent such as PCR are required to identify carrier animals, while serological methods are not suitable.
Collapse
Affiliation(s)
- Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Chiers K, Donné E, Van Overbeke I, Ducatelle R, Haesebrouck F. Actinobacillus pleuropneumoniae infections in closed swine herds: infection patterns and serological profiles. Vet Microbiol 2002; 85:343-52. [PMID: 11856584 DOI: 10.1016/s0378-1135(01)00518-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many farrow-to-finish herds are endemically infected with Actinobacillus pleuropneumoniae. In order to control the disease efficiently, a better knowledge of the ages at which pigs become infected is necessary. Furthermore, no information is available concerning the influence of maternally derived antibodies on the colonization of the upper respiratory tract. Therefore, A. pleuropneumoniae infection patterns were studied in five farrow-to-finish pig herds (A-E) with a history of pleuropneumonia. A longitudinal study was carried out in herds A and B. In these herds, piglets from sows carrying A. pleuropneumoniae in their noses or tonsils were sampled. Nasal and tonsillar swabs as well as sera, were collected from these animals at the age of 4, 8, 12, 16 (herds A and B) and 23 weeks (herd B). At these ages other pigs from the same sows were euthanized. The lungs were macroscopically examined and samples from nose, tonsils and lungs were collected at necropsy. A cross-sectional study was performed in herds C-E. In these herds nasal and tonsillar swabs, as well as sera, were taken from 10 animals of 4, 8, 12 and 16 weeks of age. Lung, nasal and tonsillar samples were tested for the presence of A. pleuropneumoniae by routine bacteriology and PCR with mixed bacterial cultures. The sera were examined for the presence of Apx toxin neutralizing antibodies. In herd A, A. pleuropneumoniae serotype 2 and 10 strains were isolated, whereas serotype 2, 3, 5b and 8 strains were demonstrated in herd B. In most herds, A. pleuropneumoniae was detected in mixed bacterial cultures of tonsillar and/or nasal samples by PCR from the age of 4 weeks onwards. Colonization of the lungs and development of lung lesions was observed in 12- and 16-week-old animals of herd A and 23-week-old animals of herd B. In most herds, high antibody titres were detected in 4-week-old piglets. These titres decreased during the first 12 weeks of age, but thereafter, increased. It was concluded that PCR with mixed bacterial cultures from tonsillar swabs is a valuable tool for the detection of infected animals. It was also concluded that colonization of tonsils and nasal mucosae can occur in the presence of maternally derived antibodies. Infection of the upper respiratory tract without lung involvement did not result in development of Apx toxin neutralizing antibodies. Therefore, such serological assays cannot be used for the detection of subclinically infected animals.
Collapse
Affiliation(s)
- Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|