1
|
da Silva GC, Rossi CC, Rosa JN, Sanches NM, Cardoso DL, Li Y, Witney AA, Gould KA, Fontes PP, Callaghan AJ, Bossé JT, Langford PR, Bazzolli DMS. Identification of small RNAs associated with RNA chaperone Hfq reveals a new stress response regulator in Actinobacillus pleuropneumoniae. Front Microbiol 2022; 13:1017278. [PMID: 36267174 PMCID: PMC9577009 DOI: 10.3389/fmicb.2022.1017278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ciro César Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Newton Moreno Sanches
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Lopes Cardoso
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Yanwen Li
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Adam A. Witney
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Kate A. Gould
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | | | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Janine Thérèse Bossé
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul Richard Langford
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
2
|
Sadilkova L, Nepereny J, Vrzal V, Sebo P, Osicka R. Type IV fimbrial subunit protein ApfA contributes to protection against porcine pleuropneumonia. Vet Res 2012; 43:2. [PMID: 22240397 PMCID: PMC3276438 DOI: 10.1186/1297-9716-43-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/12/2012] [Indexed: 11/28/2022] Open
Abstract
Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae accounts for serious economic losses in the pig farming industry worldwide. We examined here the immunogenicity and protective efficacy of the recombinant type IV fimbrial subunit protein ApfA as a single antigen vaccine against pleuropneumonia, or as a component of a multi-antigen preparation comprising five other recombinant antigens derived from key virulence factors of A. pleuropneumoniae (ApxIA, ApxIIA, ApxIIIA, ApxIVA and TbpB). Immunization of pigs with recombinant ApfA alone induced high levels of specific serum antibodies and provided partial protection against challenge with the heterologous A. pleuropneumoniae serotype 9 strain. This protection was higher than that engendered by vaccination with rApxIVA or rTbpB alone and similar to that observed after immunization with the tri-antigen combination of rApxIA, rApxIIA and rApxIIIA. In addition, rApfA improved the vaccination potential of the penta-antigen mixture of rApxIA, rApxIIA, rApxIIIA, rApxIVA and rTbpB proteins, where the hexa-antigen vaccine containing rApfA conferred a high level of protection on pigs against the disease. Moreover, when rApfA was used for vaccination alone or in combination with other antigens, such immunization reduced the number of pigs colonized with the challenge strain. These results indicate that ApfA could be a valuable component of an efficient subunit vaccine for the prevention of porcine pleuropneumonia.
Collapse
Affiliation(s)
- Lenka Sadilkova
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, v,v,i,, Videnska 1083, CZ-142 20 Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
3
|
Zou HY, Liu XJ, Ma FY, Chen P, Zhou R, He QG. Attenuated Actinobacillus pleuropneumoniae as a bacterial vector for expression of Mycoplasma hyopneumoniae P36 gene. J Gene Med 2011; 13:221-9. [PMID: 21432947 DOI: 10.1002/jgm.1556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae and Mycoplasma hyopneumoniae are causative agents of porcine pneumonia. Over the last few years, attenuated A. pleuropneumoniae live vaccines have been shown to provide protection against A. pleuropneumoniae infection. We postulated that attenuated A. pleuropneumoniae could additionally be used as a vaccine vector for protection against M. hyopneumoniae. METHODS A mutant strain of A. pleuropneumoniae, SLW36, was constructed by replacing the urease structural gene of mutant strain SLW03 of A. pleuropneumoniae with the L-lactate dehydrogenase gene (p36) of M. hyopneumoniae by transconjugation and counter selection. The urease function and the growth kinetics of SLW36 were measured. Protein expression of P36 was analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and western blotting. The attenuated virulence and immunity of SLW36 were analyzed in a mouse model. RESULTS The mutant strain SLW36 was urease negative and four-fold less virulent than the parental strain SLW03. There were no differences in expression levels of p36 at different culture time-points and the foreign gene was stable after in vitro passage. Immunoglobulin G responses against p36 antigen and M. hyopneumoniae whole-cell antigen were detected. CONCLUSIONS The mutant strain SLW36 can induce antibody against p36 and M. hyopneumoniae. The mutant strain SLW36 has the potential to be used as a live vaccine for protection against A. pleuropneumoniae and M. hyopneumoniae. Studies in pigs are needed to confirm protective levels of antibodies and to check for rare side-effects of the vaccine.
Collapse
Affiliation(s)
- Hao-Yong Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
4
|
Park C, Ha Y, Kim S, Chae C, Ryu DY. Construction and characterization of an Actinobacillus pleuropneumoniae serotype 2 mutant lacking the Apx toxin secretion protein genes apxIIIB and apxIIID. J Vet Med Sci 2009; 71:1317-23. [PMID: 19887737 DOI: 10.1292/jvms.001317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apx toxins have been identified as important virulence factors of Actinobacillus pleuropneumoniae, the etiologic agent of porcine pleuropneumonia. In some A. pleuropneumoniae serotypes, Apx toxins are secreted by the cell membrane proteins encoded by apxIIIB and apxIIID genes. In an effort to develop a live vaccine strain against A. pleuropneumoniae, we inactivated the apxIIIB and apxIIID genes in A. pleuropneumoniae 1536, a serotype 2 strain, resulting in the DeltaapxIIIB/DapxIIID mutant strain (1536DeltaBDeltaD). Immunization of pigs with live 1536DeltaBDeltaD A. pleuropneumoniae conferred protection against homologous challenge with wild-type A. pleuropneumoniae 1536. Thus, impaired Apx toxin secretion may decrease the virulence of A. pleuropneumoniae and may be an effective strategy for the development of a live-attenuated A. pleuropneumoniae vaccine.
Collapse
Affiliation(s)
- Changbo Park
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
5
|
Actinobacillus pleuropneumoniaevaccines: from bacterins to new insights into vaccination strategies. Anim Health Res Rev 2008; 9:25-45. [DOI: 10.1017/s1466252307001338] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWith the growing emergence of antibiotic resistance and rising consumer demands concerning food safety, vaccination to prevent bacterial infections is of increasing relevance.Actinobacillus pleuropneumoniaeis the etiological agent of porcine pleuropneumonia, a respiratory disease leading to severe economic losses in the swine industry. Despite all the research and trials that were performed withA. pleuropneumoniaevaccination in the past, a safe vaccine that offers complete protection against all serotypes has yet not reached the market. However, recent advances made in the identification of new potential vaccine candidates and in the targeting of specific immune responses, give encouraging vaccination perspectives. Here, we review past and current knowledge onA. pleuropneumoniaevaccines as well as the newly available genomic tools and vaccination strategies that could be useful in the design of an efficient vaccine againstA. pleuropneumoniaeinfection.
Collapse
|
6
|
Lin L, Bei W, Sha Y, Liu J, Guo Y, Liu W, Tu S, He Q, Chen H. Construction and immunogencity of a DeltaapxIC/DeltaapxIIC double mutant of Actinobacillus pleuropneumoniae serovar 1. FEMS Microbiol Lett 2007; 274:55-62. [PMID: 17608699 DOI: 10.1111/j.1574-6968.2007.00813.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The apxIC and apxIIC genes of the Actinobacillus pleuropneumoniae serovar 1 strain SLW01, encoding the ApxI- and ApxII-activating proteins, respectively, were deleted successively by a method involving sucrose counterselection. The resulting strain, SLW03, contained no foreign DNA and could secrete unactivated ApxIA and ApxIIA RTX toxins with complete antigenicity. Strain SLW03 was attenuated at least 1000-fold in Balb/C mice and caused no adverse effects in pigs at doses of up to 1 x 10(9) CFU mL(-1). SLW03 was able to induce a significant immune response and provide complete protection from clinical signs upon homologous (serovar 1) and heterologous (serovar 9) challenge of A. pleuropneumoniae. Pigs vaccinated via the intranasal (i.n.) route had significantly higher serum titers and fewer pulmonary lesions than pigs vaccinated via the intramuscular route postchallenge. These results suggest that the mutant strain SLW03 could be used as a candidate live vaccine that can induce reliable cross-serovar protection following i.n. immunization.
Collapse
Affiliation(s)
- Liwen Lin
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fittipaldi N, Harel J, D'Amours B, Lacouture S, Kobisch M, Gottschalk M. Potential use of an unencapsulated and aromatic amino acid-auxotrophic Streptococcus suis mutant as a live attenuated vaccine in swine. Vaccine 2007; 25:3524-35. [PMID: 17296252 DOI: 10.1016/j.vaccine.2007.01.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/14/2007] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
Streptococcus suis is responsible for severe economic losses to the swine industry. Prevention of the diseases caused by this pathogen is hampered by the inability of available vaccines to generate a protective response in pigs. A non-virulent, aromatic amino acid-auxotrophic and unencapsulated mutant strain of S. suis was generated in this study and a preliminary evaluation of its protective capacities was conducted in swine. Deletion of the cognate promoter of the aro operon in S. suis virulent strain S735 resulted in the abolishment of the expression of the four members of the operon, aroA, aroK, pheA and orf10. The resulting mutant strain BD101 was auxotrophic for aromatic amino acids as demonstrated by its failure to grow in a chemically defined medium unless it was supplemented with these compounds. In addition, as a result of the deletion of the cognate promoter of the aro operon, mutant BD101 lost its encapsulated phenotype. A protection assay was performed by immunisation of pigs with live strain BD101. Vaccination resulted in minor clinical signs but did not substantially impair the growth of vaccinated animals. Immunisation of animals with live mutant BD101 induced a considerable antibody response against S. suis. Vaccinated pigs presented only minor clinical signs and a survival rate of 100%, while 57% of non-vaccinated animals died, after a challenge with the virulent parent strain S735. In order to prevent S. suis infections in swine, it may be useful to further evaluate strain BD101 as a vaccine candidate.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Centre de Recherche en Infectiologie Porcine and Canadian Research Network on Swine Infectious Diseases, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Parish T, Stoker NG. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3069-3077. [PMID: 12368440 DOI: 10.1099/00221287-148-10-3069] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attempts to construct Mycobacterium tuberculosis strains with a defect in the common aromatic amino acid biosynthesis pathway were made. In other bacteria the genes of this pathway (aro) can be disrupted in the presence of suitable media supplements. The genomic organization of the aro genes in M. tuberculosis reveals that there is one operon (aroCKBQ) and three isolated aro genes (aroE, aroG and aroA). The aroK gene was chosen as a target for disruption; this encodes shikimate kinase, which catalyses the fifth step in chorismate biosynthesis. Attempts to replace the wild-type aroK gene with a disrupted allele (aroKDelta::hyg) by a two-step homologous recombination procedure were unsuccessful in a wild-type strain. When a second functional copy of aroK was integrated into the chromosome, it was possible to isolate a strain carrying the disrupted gene. Excision of the L5-integrated copy of aroK by the L5 excisionase could be not be achieved in the strain carrying the disrupted copy, but was possible in a strain carrying a wild-type copy. These results demonstrate that the chorismate pathway is essential for the viability of M. tuberculosis.
Collapse
Affiliation(s)
- Tanya Parish
- Department of Medical Microbiology, Barts and the London, Queen Mary's School of Medicine and Dentistry, 32 Newark Street, London E1 2AA, UK2
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK1
| | - Neil G Stoker
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK1
| |
Collapse
|