1
|
Girault G, Freddi L, Jay M, Perrot L, Dremeau A, Drapeau A, Delannoy S, Fach P, Ferreira Vicente A, Mick V, Ponsart C, Djokic V. Combination of in silico and molecular techniques for discrimination and virulence characterization of marine Brucella ceti and Brucella pinnipedialis. Front Microbiol 2024; 15:1437408. [PMID: 39360323 PMCID: PMC11444999 DOI: 10.3389/fmicb.2024.1437408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Mammals are the main hosts for Brucella sp., agents of worldwide zoonosis. Marine cetaceans and pinnipeds can be infected by Brucella ceti and B. pinnipedialis, respectively. Besides classical bacteriological typing, molecular approaches such as MLVA, MLSA, and whole-genome sequencing (WGS) can differentiate these species but are cumbersome to perform. Methods We compared the DNA and genome sequences of 12 strains isolated from nine marine mammals, with highly zoonotic B. melitensis, B. abortus, and B. suis, and the publicly available genomes of B. ceti and B. pinnipedialis. In silico pipelines were used to detect the antimicrobial resistance (AMR), plasmid, and virulence genes (VGs) by screening six open-source and one home-made library. Results and discussion Our results show that easier-to-use HRM-PCR, Bruce-ladder, and Suis-ladder can separate marine Brucella sp., and the results are fully concordant with other molecular methods, such as WGS. However, the restriction fragment length polymorphism (RFLP) method cannot discriminate between B. pinnipedialis and B. ceti B1-94-like isolates. MLVA-16 results divided the investigated strains into three clades according to their preferred host, which was confirmed in WGS. In silico analysis did not find any AMR and plasmid genes, suggesting antimicrobial susceptibility of marine Brucella, while the presence of the VGs btpA gene was variable dependent on the clade. Conclusion The HRM-PCR and Suis-ladder are quick, easy, and cost-effective methods to identify marine Brucella sp. Moreover, in silico genome analyses can give useful insights into the genetic virulence and pathogenicity potential of marine Brucella strains.
Collapse
Affiliation(s)
- Guillaume Girault
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Luca Freddi
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Maryne Jay
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Ludivine Perrot
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Alexandre Dremeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Antoine Drapeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Sabine Delannoy
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Acacia Ferreira Vicente
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Virginie Mick
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Claire Ponsart
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Vitomir Djokic
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
2
|
Ferrer Florensa A, Almagro Armenteros J, Nielsen H, Aarestrup F, Clausen P. SpanSeq: similarity-based sequence data splitting method for improved development and assessment of deep learning projects. NAR Genom Bioinform 2024; 6:lqae106. [PMID: 39157582 PMCID: PMC11327874 DOI: 10.1093/nargab/lqae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
The use of deep learning models in computational biology has increased massively in recent years, and it is expected to continue with the current advances in the fields such as Natural Language Processing. These models, although able to draw complex relations between input and target, are also inclined to learn noisy deviations from the pool of data used during their development. In order to assess their performance on unseen data (their capacity to generalize), it is common to split the available data randomly into development (train/validation) and test sets. This procedure, although standard, has been shown to produce dubious assessments of generalization due to the existing similarity between samples in the databases used. In this work, we present SpanSeq, a database partition method for machine learning that can scale to most biological sequences (genes, proteins and genomes) in order to avoid data leakage between sets. We also explore the effect of not restraining similarity between sets by reproducing the development of two state-of-the-art models on bioinformatics, not only confirming the consequences of randomly splitting databases on the model assessment, but expanding those repercussions to the model development. SpanSeq is available at https://github.com/genomicepidemiology/SpanSeq.
Collapse
Affiliation(s)
- Alfred Ferrer Florensa
- Research Group for Genomic Epidemiology, DTU National Food Institute, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark
| | - Jose Juan Almagro Armenteros
- Informatics and Predictive Sciences Research, Bristol Myers Squibb Company, Calle Isaac Newton 4, 41092 Sevilla, Spain
| | - Henrik Nielsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark
| | - Frank Møller Aarestrup
- Research Group for Genomic Epidemiology, DTU National Food Institute, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark
| | - Philip Thomas Lanken Conradsen Clausen
- Research Group for Genomic Epidemiology, DTU National Food Institute, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Elizalde-Bielsa A, Muñoz PM, Zúñiga-Ripa A, Conde-Álvarez R. A Review on the Methodology and Use of the Pregnant Mouse Model in the Study of Brucella Reproductive Pathogenesis and Its Abortifacient Effect. Microorganisms 2024; 12:866. [PMID: 38792696 PMCID: PMC11123383 DOI: 10.3390/microorganisms12050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Brucellosis is one of the most common and widespread bacterial zoonoses and is caused by Gram-negative bacteria belonging to the genus Brucella. These organisms are able to infect and replicate within the placenta, resulting in abortion, one of the main clinical signs of brucellosis. Although the mouse model is widely used to study Brucella virulence and, more recently, to evaluate the protection of new vaccines, there is no clear consensus on the experimental conditions (e.g., mouse strains, doses, routes of inoculation, infection/pregnancy time) and the natural host reproducibility of the pregnant mouse model for reproductive brucellosis. This lack of consensus calls for a review that integrates the major findings regarding the effect of Brucella wild-type and vaccine strains infections on mouse pregnancy. We found sufficient evidence on the utility of the pregnant mouse model to study Brucella-induced placentitis and abortion and propose suitable experimental conditions (dose, time of infection) and pregnancy outcome readouts for B. abortus and B. melitensis studies. Finally, we discuss the utility and limitations of the pregnant mouse as a predictive model for the abortifacient effect of live Brucella vaccines.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| | - Pilar M. Muñoz
- Department of Animal Science, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
4
|
Bugeza JK, Roesel K, Mugizi DR, Alinaitwe L, Kivali V, Kankya C, Moriyon I, Cook EAJ. Sero-prevalence and risk factors associated with occurrence of anti-Brucella antibodies among slaughterhouse workers in Uganda. PLoS Negl Trop Dis 2024; 18:e0012046. [PMID: 38498555 PMCID: PMC10977895 DOI: 10.1371/journal.pntd.0012046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/28/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
INTRODUCTION Brucellosis is a febrile zoonosis occurring among high-risk groups such as livestock keepers and abattoir workers and is a public health priority in Uganda. The technical complexities of bacteriological and molecular methods make serological approaches the cornerstone of diagnosis of human brucellosis in resource limited settings. Therefore, proper application and interpretation of serological tests is central to achieve a correct diagnosis. MATERIALS AND METHODS We conducted a cross-sectional study to estimate the seroprevalence and factors associated with anti-Brucella antibodies among slaughterhouse workers processing ruminants and pigs in three regions of the country with serial testing using a combination of the Rose Bengal Test (RBT) and the BrucellaCapt test. An authorized clinician collected 543 blood samples from consenting abattoir workers as well as attribute medical and social demographic data. Univariable and multivariable logistic regression were used to determine factors associated with anti-Brucella sero-positivity. RESULTS AND DISCUSSION The sero-prevalence among ruminant slaughterhouse workers ranged from 7.3% (95% CI: 4.8-10.7) using BrucellaCapt to 9.0% (95% CI: 6.3-12.7) using RBT. Slaughterhouse workers from the Eastern regions (AOR = 9.84, 95%CI 2.27-69.2, p = 0.006) and those who graze animals for alternative income (AOR = 2.36, 95% CI: 1.91-6.63, p = 0.040) were at a higher risk of exposure to Brucella. Similarly, those who wore Personal Protective Equipment (AOR = 4.83, 95%CI:1.63-18.0, p = 0.009) and those who slaughter cattle (AOR = 2.12, 95%CI: 1.25-6.0, p = 0.006) were at a higher risk of exposure to Brucella. Those who slaughter small ruminants (AOR = 1.54, 95%CI: 1.32-4.01, p = 0.048) were also at a higher risk of exposure to Brucella. CONCLUSIONS AND RECOMMENDATIONS Our study demonstrates the combined practical application of the RBT and BrucellaCapt in the diagnosis of human brucellosis in endemic settings. Both pharmaceutical (e.g., routine testing and timely therapeutic intervention), and non-pharmaceutical (e.g., higher index of suspicion of brucellosis when investigating fevers of unknown origin and observation of strict abattoir hygiene) countermeasures should be considered for control of the disease in high-risk groups.
Collapse
Affiliation(s)
- James Katamba Bugeza
- International Livestock Research Institute (ILRI), Kampala, Uganda
- National Livestock Resources Research Institute (NaLIRRI), Kampala, Uganda
- College of Veterinary Medicine, Animal Resources and Biosecurity (CoVAB), Makerere University, Kampala, Uganda
| | - Kristina Roesel
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | - Lordrick Alinaitwe
- International Livestock Research Institute (ILRI), Kampala, Uganda
- Veterinary Public Health Institute, Vetsuisse faculty, University of Bern, Bern, Switzerland
| | - Velma Kivali
- International Livestock Research Institute (ILRI), Kampala, Uganda
- Institute of Animal Hygiene and Environmental Health, Freie University of Berlin, Berlin, Germany
| | - Clovice Kankya
- College of Veterinary Medicine, Animal Resources and Biosecurity (CoVAB), Makerere University, Kampala, Uganda
| | - Ignacio Moriyon
- Departamento Microbiología y Parasitología, Universidad de Navarra, Edificio de Investigación c/Irunlarrea 1, Pamplona, Spain
| | | |
Collapse
|
5
|
Alakavuklar MA, Fiebig A, Crosson S. The Brucella Cell Envelope. Annu Rev Microbiol 2023; 77:233-253. [PMID: 37104660 PMCID: PMC10787603 DOI: 10.1146/annurev-micro-032521-013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
Collapse
Affiliation(s)
- Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
6
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
7
|
Dorneles EMS, Santana JA, Costa ACTRB, Júnior DGJ, Heinemann MB, Lage AP. Equine brucellosis: current understanding and challenges. J Equine Vet Sci 2023:104298. [PMID: 37072072 DOI: 10.1016/j.jevs.2023.104298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
Brucellosis in equines, including horses, donkeys, and mules, is characterized by abscesses in tendons, bursae, and joints. Reproductive disorders, which are common in other animals, are rare in both males and females. Joint breeding of horses, cattle, and pigs was found as the main risk factor for equine brucellosis, with the transmission from equines to cattle or among equines possible, although unlikely. Hence, evaluation of the disease in equines can be considered an indirect indicator of the effectiveness of brucellosis control measures employed for other domestic species. Generally, the disease in equines reflects disease status in the sympatric domestic species, mainly cattle. It is important to note that in equines, the disease has no validated diagnostic test, which limits the interpretation of available data. Finally, it is important to mention that equines also represent significant Brucella spp. infection sources for humans. Considering the zoonotic aspect of brucellosis, the significant losses due to infection, and the representativeness of horses, mules, and donkeys in the society, as well as the continuous efforts to control and eradicate the disease in livestock, in this review, we covered the various aspects of brucellosis in equines and compile the sparse and diffuse information on the subject.
Collapse
Affiliation(s)
- Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais. Caixa Postal 3037, Campus Universitário, 37200-900, Brazil.
| | - Jordana Almeida Santana
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Anna Cecília Trolesi Reis Borges Costa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais. Caixa Postal 3037, Campus Universitário, 37200-900, Brazil
| | - Danilo Guedes Junqueira Júnior
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcos Bryan Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Professor Orlando Marques de Paiva, 87. Butantã. São Paulo, São Paulo, 05508-270, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil..
| |
Collapse
|
8
|
Shevtsov A, Cloeckaert A, Berdimuratova K, Shevtsova E, Shustov AV, Amirgazin A, Karibayev T, Kamalova D, Zygmunt MS, Ramanculov Y, Vergnaud G. Brucella abortus in Kazakhstan, population structure and comparison with worldwide genetic diversity. Front Microbiol 2023; 14:1106994. [PMID: 37032899 PMCID: PMC10073595 DOI: 10.3389/fmicb.2023.1106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes.
Collapse
Affiliation(s)
- Alexandr Shevtsov
- National Center for Biotechnology, Astana, Kazakhstan
- *Correspondence: Alexandr Shevtsov,
| | | | | | | | | | | | | | | | | | - Yerlan Ramanculov
- National Center for Biotechnology, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Gilles Vergnaud
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Gilles Vergnaud,
| |
Collapse
|
9
|
Jalal K, Khan K, Uddin R. Immunoinformatic-guided designing of multi-epitope vaccine construct against Brucella Suis 1300. Immunol Res 2022; 71:247-266. [PMID: 36459272 PMCID: PMC9716126 DOI: 10.1007/s12026-022-09346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
Abstract
Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis. Hence, we aimed to explore the whole proteome of Brucella suis to predict antigenic proteins as a vaccine target and designed a novel chimeric vaccine (multi-epitope vaccine) through subtractive genomics-based reverse vaccinology approaches. The applied subsequent hierarchical shortlisting resulted in the identification of Multidrug efflux Resistance-nodulation-division (RND) transporter outer membrane subunit (gene BepC) that may act as a potential vaccine target. T-cell and B-cell epitopes have been predicted from target proteins using a number of immunoinformatic methods. Six MHC I, ten MHC II, and four B-cell epitopes were used to create a 324-amino-acid MEV construct, which was coupled with appropriate linkers and adjuvant. To boost the immunological response to the vaccine, the vaccine was combined with the TLR4 agonist HBHA protein. The MEV structure predicted was found to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. To confirm the interactions with the receptors, a molecular docking simulation of the MEV was done using the human TLR4 (toll-like receptor 4) and HLAs. The stability and binding of the MEV-docked complexes with TLR4 were assessed using molecular dynamics (MD) simulation. Finally, MEV was reverse translated, its cDNA structure was evaluated, and then, in silico cloning into an E. coli expression host was conducted to promote maximum vaccine protein production with appropriate post-translational modifications. These comprehensive computer calculations backed up the efficacy of the suggested MEV in protecting against B. suis infections. However, more experimental validations are needed to adequately assess the vaccine candidate's potential. HIGHLIGHTS: • Subtractive genomic analysis and reverse vaccinology for the prioritization of novel vaccine target • Examination of chimeric vaccine in terms of allergenicity, antigenicity, MHC I, II binding efficacy, and structural-based studies • Molecular docking simulation method to rank based vaccine candidate and understand their binding modes.
Collapse
Affiliation(s)
- Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Reaz Uddin
- Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
10
|
Madzingira O, Byaruhanga C, Fasina FO, van Heerden H. Assessment of knowledge, attitudes and practices relating to brucellosis among cattle farmers, meat handlers and medical professionals in Namibia. Vet Med Sci 2022; 9:535-547. [PMID: 36382350 PMCID: PMC9857002 DOI: 10.1002/vms3.937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Brucellosis is a re-emerging zoonosis of significant socio-economic, animal and public health importance. It is principally a foodborne or occupation-associated infection of humans, whose effective control depends on maximum cooperation of high-risk populations. OBJECTIVES The study assessed knowledge, attitudes and practices relating to brucellosis among cattle farmers (communal and commercial), meat handlers (abattoir and butchery workers) and medical professionals (nurses and doctors) in Namibia. METHODS Between June 2019 and September 2020, self-administered questionnaires and questionnaire interviews were carried out in cattle farmers (n = 264), meat handlers (n = 143) and medical professionals (n = 124) in Namibia. RESULTS Overall, 43.50% (231/531) of respondents were aware of brucellosis, with the highest awareness among medical professionals (73.39%, 91/124) and the least in meat handlers (13.99%, 20/143). Awareness of brucellosis was associated with tertiary education (p < 0.001) and the medical profession (p < 0.001). However, most medical professionals (98.39%, 122/124) did not consider brucellosis as a differential diagnosis in cases of persistent febrile illness. A proportion of communal (85.60%) and commercial (71.00%) farmers; abattoir workers (44.40%); butchers (53.50%); nurses (55.60%); and medical doctors (28.00%) consumed raw milk. CONCLUSIONS The study identified the purchase of animals of unknown health status; assisting cow delivery; handling of aborted fetuses with no protective wear; consumption of raw milk, homemade cheese, cattle testes and undercooked livers, as risk factors for Brucella infection in cattle and humans. Thus, intensified risk communication, including public health education, is recommended, in particular, among meat handlers and communal farmers, to promote awareness and discourage risky practices.
Collapse
Affiliation(s)
- Oscar Madzingira
- Faculty of Agriculture and Natural Resources, School of Veterinary MedicineUniversity of NamibiaWindhoekNamibia,Department of Veterinary Tropical DiseasesFaculty of Veterinary Science, University of PretoriaOnderstepoortSouth Africa
| | - Charles Byaruhanga
- Department of Veterinary Tropical DiseasesFaculty of Veterinary Science, University of PretoriaOnderstepoortSouth Africa
| | - Folorunso Oludayo Fasina
- Emergency Centre for Transboundary Animal Diseases‐Food and Agriculture Organisation of the United Nations (ECTAD‐FAO)Dar es SalaamTanzania
| | - Henriette van Heerden
- Department of Veterinary Tropical DiseasesFaculty of Veterinary Science, University of PretoriaOnderstepoortSouth Africa
| |
Collapse
|
11
|
Khan K, Alhar MSO, Abbas MN, Abbas SQ, Kazi M, Khan SA, Sadiq A, Hassan SSU, Bungau S, Jalal K. Integrated Bioinformatics-Based Subtractive Genomics Approach to Decipher the Therapeutic Drug Target and Its Possible Intervention against Brucellosis. Bioengineering (Basel) 2022; 9:633. [PMID: 36354544 PMCID: PMC9687753 DOI: 10.3390/bioengineering9110633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2023] Open
Abstract
Brucella suis, one of the causative agents of brucellosis, is Gram-negative intracellular bacteria that may be found all over the globe and it is a significant facultative zoonotic pathogen found in livestock. It may adapt to a phagocytic environment, reproduce, and develop resistance to harmful environments inside host cells, which is a crucial part of the Brucella life cycle making it a worldwide menace. The molecular underpinnings of Brucella pathogenicity have been substantially elucidated due to comprehensive methods such as proteomics. Therefore, we aim to explore the complete Brucella suis proteome to prioritize the novel proteins as drug targets via subtractive proteo-genomics analysis, an effort to conjecture the existence of distinct pathways in the development of brucellosis. Consequently, 38 unique metabolic pathways having 503 proteins were observed while among these 503 proteins, the non-homologs (n = 421), essential (n = 350), drug-like (n = 114), virulence (n = 45), resistance (n = 42), and unique to pathogen proteins were retrieved from Brucella suis. The applied subsequent hierarchical shortlisting resulted in a protein, i.e., isocitrate lyase, that may act as potential drug target, which was finalized after the extensive literature survey. The interacting partners for these shortlisted drug targets were identified through the STRING database. Moreover, structure-based studies were also performed on isocitrate lyase to further analyze its function. For that purpose, ~18,000 ZINC compounds were screened to identify new potent drug candidates against isocitrate lyase for brucellosis. It resulted in the shortlisting of six compounds, i.e., ZINC95543764, ZINC02688148, ZINC20115475, ZINC04232055, ZINC04231816, and ZINC04259566 that potentially inhibit isocitrate lyase. However, the ADMET profiling showed that all compounds fulfill ADMET properties except for ZINC20115475 showing positive Ames activity; whereas, ZINC02688148, ZINC04259566, ZINC04232055, and ZINC04231816 showed hepatoxicity while all compounds were observed to have no skin sensitization. In light of these parameters, we recommend ZINC95543764 compound for further experimental studies. According to the present research, which uses subtractive genomics, proteins that might serve as therapeutic targets and potential lead options for eradicating brucellosis have been narrowed down.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi City 75270, Pakistan
| | | | - Muhammad Naseer Abbas
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, P.O. Box-2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi City 75270, Pakistan
| |
Collapse
|
12
|
Thompson LA, Goertz CEC, Quakenbush LT, Burek Huntington K, Suydam RS, Stimmelmayr R, Romano TA. Serological Detection of Marine Origin Brucella Exposure in Two Alaska Beluga Stocks. Animals (Basel) 2022; 12:ani12151932. [PMID: 35953921 PMCID: PMC9367357 DOI: 10.3390/ani12151932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Brucellosis, the disease caused by Brucella bacteria, is of emerging concern in marine-mammal populations worldwide due to its potential link to reproductive failure, yet is less well-studied than in terrestrial animals, such as cattle. To understand Brucella exposure and disease in two populations of beluga, in Bristol Bay and the eastern Chukchi Sea, Alaska, USA, this study screened animals for the presence of antibodies against the bacterium (serology), as well as tested for the direct presence of bacterial DNA or bacterial growth from tissue samples. More than half of all animals tested, from both populations, were positive for the presence of antibodies, providing evidence of exposure to Brucella. Few animals, however, were positive for the direct detection of Brucella DNA and none resulted in successful bacterial growth, suggesting a lack of active clinical disease. The high rate of exposure in these populations supports the need for long-term monitoring of beluga populations, particular those that are threatened or endangered, such as the Cook Inlet belugas. Abstract Among emerging threats to the Arctic is the introduction, spread, or resurgence of disease. Marine brucellosis is an emerging disease concern among free-ranging cetaceans and is less well-studied than terrestrial forms. To investigate marine-origin Brucella sp. exposure in two beluga stocks in Alaska, USA, this study used serological status as well as real-time polymerase chain reaction (rtPCR) and bacterial culture. In total, 55 live-captured–released belugas were tested for Brucella exposure in Bristol Bay (2008–2016) and 112 (8 live-captured; 104 subsistence-harvested) whales were tested in the eastern Chukchi Sea (2007–2017). In total, 73% percent of Bristol Bay live captures, 50% of Chukchi Sea live captures, and 66% of Chukchi Sea harvested belugas were positive on serology. Only 10 of 69 seropositive belugas were rtPCR positive in at least one tissue. Only one seropositive animal was PCR positive in both the spleen and mesenteric lymph node. All animals tested were culture negative. The high prevalence of seropositivity detected suggests widespread exposure in both stocks, however, the low level of rtPCR and culture positive results suggests clinical brucellosis was not prevalent in the belugas surveyed. Continued detection of Brucella exposure supports the need for long-term monitoring of these and other beluga populations.
Collapse
Affiliation(s)
- Laura A. Thompson
- Mystic Aquarium, Division of Sea Research Inc., Mystic, CT 06355, USA;
- Correspondence:
| | | | | | | | - Robert S. Suydam
- North Slope Borough Department of Wildlife Management, Utqiagvik, AK 99723, USA; (R.S.S.); (R.S.)
| | - Raphaela Stimmelmayr
- North Slope Borough Department of Wildlife Management, Utqiagvik, AK 99723, USA; (R.S.S.); (R.S.)
- Institute of Arctic Biology, University of Alaska Fairbanks, Utqiagvik, AK 99775, USA
| | - Tracy A. Romano
- Mystic Aquarium, Division of Sea Research Inc., Mystic, CT 06355, USA;
| |
Collapse
|
13
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
14
|
Moreno E, Blasco JM, Letesson JJ, Gorvel JP, Moriyón I. Pathogenicity and Its Implications in Taxonomy: The Brucella and Ochrobactrum Case. Pathogens 2022; 11:377. [PMID: 35335701 PMCID: PMC8954888 DOI: 10.3390/pathogens11030377] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
The intracellular pathogens of the genus Brucella are phylogenetically close to Ochrobactrum, a diverse group of free-living bacteria with a few species occasionally infecting medically compromised patients. A group of taxonomists recently included all Ochrobactrum organisms in the genus Brucella based on global genome analyses and alleged equivalences with genera such as Mycobacterium. Here, we demonstrate that such equivalencies are incorrect because they overlook the complexities of pathogenicity. By summarizing Brucella and Ochrobactrum divergences in lifestyle, structure, physiology, population, closed versus open pangenomes, genomic traits, and pathogenicity, we show that when they are adequately understood, they are highly relevant in taxonomy and not unidimensional quantitative characters. Thus, the Ochrobactrum and Brucella differences are not limited to their assignments to different "risk-groups", a biologically (and hence, taxonomically) oversimplified description that, moreover, does not support ignoring the nomen periculosum rule, as proposed. Since the epidemiology, prophylaxis, diagnosis, and treatment are thoroughly unrelated, merging free-living Ochrobactrum organisms with highly pathogenic Brucella organisms brings evident risks for veterinarians, medical doctors, and public health authorities who confront brucellosis, a significant zoonosis worldwide. Therefore, from taxonomical and practical standpoints, the Brucella and Ochrobactrum genera must be maintained apart. Consequently, we urge researchers, culture collections, and databases to keep their canonical nomenclature.
Collapse
Affiliation(s)
- Edgardo Moreno
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40101, Costa Rica
| | - José María Blasco
- Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, 50059 Zaragoza, Spain;
| | - Jean Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Faculty of Science, University of Namur, 5000 Namur, Belgium;
| | - Jean Pierre Gorvel
- Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, 13009 Marseille, France
| | - Ignacio Moriyón
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
15
|
High-Resolution Melting PCR as Rapid Genotyping Tool for Brucella Species. Microorganisms 2022; 10:microorganisms10020336. [PMID: 35208791 PMCID: PMC8876322 DOI: 10.3390/microorganisms10020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Brucella sp. are the causative agents of brucellosis. One of the main characteristics of the Brucella genus concerns its very high genetic homogeneity. To date, classical bacteriology typing is still considered as the gold standard assay for direct diagnosis of Brucella. Molecular approaches are routinely used for the identification of Brucella at the genus level. However, genotyping is more complex, and to date, no method exists to quickly assign a strain into species and biovar levels, and new approaches are required. Next generation sequencing (NGS) opened a new era into the diagnosis of bacterial diseases. In this study, we designed a high-resolution melting (HRM) method for the rapid screening of DNA and direct assignment into one of the 12 species of the Brucella genus. This method is based on 17 relevant single nucleotide polymorphisms (SNPs), identified and selected from a whole genome SNP (wgSNP) analysis based on 988 genomes (complete and drafts). These markers were tested against the collection of the European Reference Laboratory (EU-RL) for brucellosis (1440 DNAs extracted from Brucella strains). The results confirmed the reliability of the panel of 17 SNP markers, allowing the differentiation of each species of Brucella together with biovars 1, 2, and 3 of B. suis and vaccine strain Rev1 (B. melitensis) within 3 h, which is a considerable gain of time for brucellosis diagnosis. Therefore, this genotyping tool provides a new and quick alternative for Brucella identification based on SNPs with the HRM-PCR assay.
Collapse
|
16
|
Dadar M, Tiwari R, Sharun K, Dhama K. Importance of brucellosis control programs of livestock on the improvement of one health. Vet Q 2021; 41:137-151. [PMID: 33618618 PMCID: PMC7946044 DOI: 10.1080/01652176.2021.1894501] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/14/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
Brucellosis not only represents an important health restraint on livestock but also causes high economic losses in many developing countries worldwide. Despite considerable efforts made for the control of brucellosis, the disease is still spreading in many regions (such as the Middle East) where it represents one of the most important health hazards impacting both animals and humans. The present review aims to investigate the efficacy of veterinary control programs regarding brucellosis, with a special focus on current prevention, control, and eradication approaches. The reasons for unsuccessful control programs such as the absence of highly effective vaccines and non-certified bulls are also debated, to understand why the prevalence of brucellosis in livestock is not decreasing in many areas despite considerable efforts taken to date. The importance of governmental and regional investment in brucellosis control remains one of the main limiting factors owing to the limited budget allocated to tackle this disease. In this context, one health concept has generated novel comprehensive approaches with multiple economic implications across the livestock industry and public health. However, the implementation of such global preventive strategies appears to be a key issue for many endemic and low-income countries. According to the collected data, epidemiological contexts including management and trade systems along with well-defined agro-ecological zones should be evaluated in brucellosis endemic countries to improve milk production and to enhance the sustainability of the livestock sector at both national and regional levels.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadyaya Pashu Chikitsa Vigyan Vishwavidyalya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
17
|
Aragón-Aranda B, Palacios-Chaves L, Salvador-Bescós M, de Miguel MJ, Muñoz PM, Vences-Guzmán MÁ, Zúñiga-Ripa A, Lázaro-Antón L, Sohlenkamp C, Moriyón I, Iriarte M, Conde-Álvarez R. The Phospholipid N-Methyltransferase and Phosphatidylcholine Synthase Pathways and the ChoXWV Choline Uptake System Involved in Phosphatidylcholine Synthesis Are Widely Conserved in Most, but Not All Brucella Species. Front Microbiol 2021; 12:614243. [PMID: 34421831 PMCID: PMC8371380 DOI: 10.3389/fmicb.2021.614243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
The brucellae are facultative intracellular bacteria with a cell envelope rich in phosphatidylcholine (PC). PC is abundant in eukaryotes but rare in prokaryotes, and it has been proposed that Brucella uses PC to mimic eukaryotic-like features and avoid innate immune responses in the host. Two PC synthesis pathways are known in prokaryotes: the PmtA-catalyzed trimethylation of phosphatidylethanolamine and the direct linkage of choline to CDP-diacylglycerol catalyzed by the PC synthase Pcs. Previous studies have reported that B. abortus and B. melitensis possess non-functional PmtAs and that PC is synthesized exclusively via Pcs in these strains. A putative choline transporter ChoXWV has also been linked to PC synthesis in B. abortus. Here, we report that Pcs and Pmt pathways are active in B. suis biovar 2 and that a bioinformatics analysis of Brucella genomes suggests that PmtA is only inactivated in B. abortus and B. melitensis strains. We also show that ChoXWV is active in B. suis biovar 2 and conserved in all brucellae except B. canis and B. inopinata. Unexpectedly, the experimentally verified ChoXWV dysfunction in B. canis did not abrogate PC synthesis in a PmtA-deficient mutant, which suggests the presence of an unknown mechanism for obtaining choline for the Pcs pathway in Brucella. We also found that ChoXWV dysfunction did not cause attenuation in B. suis biovar 2. The results of these studies are discussed with respect to the proposed role of PC in Brucella virulence and how differential use of the Pmt and Pcs pathways may influence the interactions of these bacteria with their mammalian hosts.
Collapse
Affiliation(s)
- Beatriz Aragón-Aranda
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Leyre Palacios-Chaves
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | | | - Amaia Zúñiga-Ripa
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Leticia Lázaro-Antón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ignacio Moriyón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
18
|
Moreno E. The one hundred year journey of the genus Brucella (Meyer and Shaw 1920). FEMS Microbiol Rev 2021; 45:5917985. [PMID: 33016322 DOI: 10.1093/femsre/fuaa045] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Brucella, described by Meyer and Shaw in 1920, comprises bacterial pathogens of veterinary and public health relevance. For 36 years, the genus came to include three species that caused brucellosis in livestock and humans. In the second half of the 20th century, bacteriologists discovered five new species and several 'atypical' strains in domestic animals and wildlife. In 1990, the Brucella species were recognized as part of the Class Alphaproteobacteria, clustering with pathogens and endosymbionts of animals and plants such as Bartonella, Agrobacterium and Ochrobactrum; all bacteria that live in close association with eukaryotic cells. Comparisons with Alphaproteobacteria contributed to identify virulence factors and to establish evolutionary relationships. Brucella members have two circular chromosomes, are devoid of plasmids, and display close genetic relatedness. A proposal, asserting that all brucellae belong to a single species with several subspecies debated for over 70 years, was ultimately rejected in 2006 by the subcommittee of taxonomy, based on scientific, practical, and biosafety considerations. Following this, the nomenclature of having multiples Brucella species prevailed and defined according to their molecular characteristics, host preference, and virulence. The 100-year history of the genus corresponds to the chronicle of scientific efforts and the struggle for understanding brucellosis.
Collapse
Affiliation(s)
- Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Campues Benjamín Nuñez, Universidad Nacional, Heredia 40104, Costa Rica
| |
Collapse
|
19
|
Liu H, Ding Y, Tang H, Du Y, Zhang D, Tang Y, Liu C. Electrocatalytic deep dehalogenation of florfenicol using Fe-doped CoP nanotubes array for blocking resistance gene expression and microbial inhibition during biochemical treatment. WATER RESEARCH 2021; 201:117361. [PMID: 34171644 DOI: 10.1016/j.watres.2021.117361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Resistance gene expression and microbial inhibition by halogenated antibiotics is a major environmental concern. Although electrocatalytic dehalogenation can detoxify halogenated antibiotics, the effect of dehalogenation treatment on resistance gene expression and microbial inhibition is poorly understood. Herein, a novel electrocatalyst of Fe-doped CoP nanotubes array on nickel foam (Fe-CoP NTs/NiF) is prepared through a simple ultrasonication of Fe-doped CoP nanowires hydrothermally grown on NiF. The transformation from nanowires to nanotubes improves the crystallinity of CoP and fully exposes active sites, producing energetic atomic hydrogen for dehalogenation. Fe-CoP NTs/NiF exhibits a superior dehalogenation performance towards refractory florfenicol (FLO), achieving 100% removal within 20 min (‒1.2 V vs Ag/AgCl, C0 = 20 mg L‒1). The dechlorination ratio reaches nearly 100%, and the defluorination ratio achieves 36.8% within 50 min, showing the best electrocatalytic dehalogenation performance reported so far. Microbial community and correlation analysis show that Proteobacteria is the main potential host of FLO resistance gene. Electrocatalytic reductive dehalogenation pretreatment of FLO can reduce microbial inhibition, maintaining microbial richness and diversity in the subsequent biochemical treatment unit. The electrocatalytic reductive dehalogenation treatment can significantly reduce the relative abundance of FLO resistance gene, showing a reliable process for safe treatment of halogenated antibiotic containing wastewater.
Collapse
Affiliation(s)
- Huiling Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, P. R. China
| | - Haifang Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yi Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Danyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Yanhong Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
20
|
Bialer MG, Ferrero MC, Delpino MV, Ruiz-Ranwez V, Posadas DM, Baldi PC, Zorreguieta A. Adhesive Functions or Pseudogenization of Type Va Autotransporters in Brucella Species. Front Cell Infect Microbiol 2021; 11:607610. [PMID: 33987105 PMCID: PMC8111173 DOI: 10.3389/fcimb.2021.607610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Adhesion to host cells is a key step for successful infection of many bacterial pathogens and may define tropism to different host tissues. To do so, bacteria display adhesins on their surfaces. Brucella is an intracellular pathogen capable of proliferating in a wide variety of cell types. It has been described that BmaC, a large protein that belongs to the classical (type Va) autotransporter family, is required for efficient adhesion of Brucella suis strain 1330 to epithelial cells and fibronectin. Here we show that B. suis 1330 harbors two other type Va autotransporters (BmaA and BmaB), which, although much smaller, share significant sequence similarities with BmaC and contain the essential domains to mediate proper protein translocation to the bacterial surface. Gain and loss of function studies indicated that BmaA, BmaB, and BmaC contribute, to a greater or lesser degree, to adhesion of B. suis 1330 to different cells such as synovial fibroblasts, osteoblasts, trophoblasts, and polarized epithelial cells as well as to extracellular matrix components. It was previously shown that BmaC localizes to a single bacterial pole. Interestingly, we observed here that, similar to BmaC, the BmaB adhesin is localized mostly at a single cell pole, reinforcing the hypothesis that Brucella displays an adhesive pole. Although Brucella species have strikingly similar genomes, they clearly differ in their host preferences. Mainly, the differences identified between species appear to be at loci encoding surface proteins. A careful in silico analysis of the putative type Va autotransporter orthologues from several Brucella strains showed that the bmaB locus from Brucella abortus and both, the bmaA and bmaC loci from Brucella melitensis are pseudogenes in all strains analyzed. Results reported here evidence that all three autotransporters play a role in the adhesion properties of B. suis 1330. However, Brucella spp. exhibit extensive variations in the repertoire of functional adhesins of the classical autotransporter family that can be displayed on the bacterial surface, making them an interesting target for future studies on host preference and tropism.
Collapse
Affiliation(s)
- Magalí G Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Mariana C Ferrero
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Diana M Posadas
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Pablo C Baldi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Al Jindan R. Scenario of pathogenesis and socioeconomic burden of human brucellosis in Saudi Arabia. Saudi J Biol Sci 2021; 28:272-279. [PMID: 33424306 PMCID: PMC7783673 DOI: 10.1016/j.sjbs.2020.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is considered a prevailing endemic infectious disease in the Kingdom of Saudi Arabia and represents a health problem with socio-economic burden. There are two main Brucella species that cause human brucellosis; Brucella abortus, and Brucella melitensis. The clinical features range from asymptomatic to the acute symptoms of fever, joint pain, muscle pain, headache, nausea/vomiting, anorexia and malaise in addition to the subsequent complications that might occur. The endemicity of brucellosis might be explained due to obstacles in controlling the importation of animals for slaughtering during Hajj periods and for several other predisposing factors. The distribution of the disease is all over the country and the most prevalent part is the south followed by north and then the east and central parts. However, in the complexity of brucellosis control measures, there are several activities which have been implemented to tackle the disease such as mass vaccination of animals, regulating importation of slaughter animals, and improving public awareness. This review provides a detailed description of the status of brucellosis in Saudi Arabia, which includes epidemiology, clinical characteristics, virulence and pathophysiology, and prevention of the disease.
Collapse
Affiliation(s)
- Reem Al Jindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| |
Collapse
|
22
|
Development of a Genus-Specific Brucella Real-Time PCR Assay Targeting the 16S-23S rDNA Internal Transcribed Spacer from Different Specimen Types. Vet Sci 2020; 7:vetsci7040175. [PMID: 33187050 PMCID: PMC7712849 DOI: 10.3390/vetsci7040175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to develop a 16S-23S ribosomal deoxyribonucleic acid internal transcribed spacer (ITS) quantitative polymerase chain reaction (qPCR) assay for the early diagnosis and rapid screening of brucellosis. Blood, milk, and tissue samples were spiked with B. abortus biovar 1 (B01988-18 strain) to determine the analytical sensitivity and specificity of the assay. The 95% limit of detection of the ITS qPCR assay was highest in tissue, followed by blood, then milk, i.e., 0.48, 4.43, and 15.18 bacteria/PCR reaction, respectively. The diagnostic performance of the assay was compared to the Brucella cell surface protein (BCSP) 31 qPCR assay and bacterial culture. Out of 56 aborted foetal tissue samples from bovine, ovine, and caprine, 33% (19/56) were positive for Brucella spp. The sensitivity and specificity of the ITS qPCR assay was 87% and 95% respectively, compared to 92% and 89% for the BCSP31 qPCR assay and 47% and 55% for bacterial culture, respectively. The assay was efficient, sensitive, and specific, making it a valuable tool in the early detection of the Brucella pathogen.
Collapse
|
23
|
Suárez-Esquivel M, Chaves-Olarte E, Moreno E, Guzmán-Verri C. Brucella Genomics: Macro and Micro Evolution. Int J Mol Sci 2020; 21:E7749. [PMID: 33092044 PMCID: PMC7589603 DOI: 10.3390/ijms21207749] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens.
Collapse
Affiliation(s)
- Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| |
Collapse
|
24
|
Zhou JH, Li H, Li X, Gao J, Xu L, Han S, Liu Y, Shang Y, Cao X. Tracing Brucella evolutionary dynamics in expanding host ranges through nucleotide, codon and amino acid usages in genomes. J Biomol Struct Dyn 2020; 39:3986-3995. [PMID: 32448095 DOI: 10.1080/07391102.2020.1773313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The host range of Brucella organisms has expanded from terrestrial and marine mammals to fish and amphibians. The high homology genomes of different Brucella organisms promote us to investigate evolutionary patterns for nucleotide, codon and amino acid usage patterns at gene levels among Brucella species. Although the similar patterns for nucleotide and synonymous codon usages exist in gene population, GC composition at the first codon position has significant correlations to that of the second and third codon positions, respectively, suggesting that nucleotide usages surrounding one codon influence synonymous codon usage patterns. Evolutionary patterns represented by synonymous codon and amino acid usages reflect host factor impacting Brucella speciation. As for genetic variations of important virulent factors involved with different biological functions, genes encoding lipoplysaccharides (LPSs) display more distinctive codon adaptation to Brucella than those of the BvrR/BvrS system and type IV secretion system. By Bayesian analysis, the polygenetic constructions for these genes of virulent factors shared by Brucella species display the purifying/positive selections and partially host factor in mediating genetic variations of these genes. The systemic analyses for nucleotide, synonymous codon and amino acid usages at gene level and genetic variations of important virulent factor genes display that host limitation influences either genetic characterizations at gene level or a particular gene involved in virulent factors of Brucella.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Hua Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,China Agricultural Vet Biology and Technology limited liability company, Lanzhou, Gansu, P.R. China
| | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Jing Gao
- Gansu Center for Animal Disease Prevention and Control, Lanzhou, Gansu, P.R. China
| | - Long- Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P.R. China
| | - Shengyi Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P.R. China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| |
Collapse
|
25
|
Cloeckaert A, Vergnaud G, Zygmunt MS. Omp2b Porin Alteration in the Course of Evolution of Brucella spp. Front Microbiol 2020; 11:284. [PMID: 32153552 PMCID: PMC7050475 DOI: 10.3389/fmicb.2020.00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
The genus Brucella comprises major pathogenic species causing disease in livestock and humans, e.g. B. melitensis. In the past few years, the genus has been significantly expanded by the discovery of phylogenetically more distant lineages comprising strains from diverse wildlife animal species, including amphibians and fish. The strains represent several potential new species, with B. inopinata as solely named representative. Being genetically more distant between each other, relative to the “classical” Brucella species, they present distinct atypical phenotypes and surface antigens. Among surface protein antigens, the Omp2a and Omp2b porins display the highest diversity in the classical Brucella species. The genes coding for these proteins are closely linked in the Brucella genome and oriented in opposite directions. They share between 85 and 100% sequence identity depending on the Brucella species, biovar, or genotype. Only the omp2b gene copy has been shown to be expressed and genetic variation is extensively generated by gene conversion between the two copies. In this study, we analyzed the omp2 loci of the non-classical Brucella spp. Starting from two distinct ancestral genes, represented by Australian rodent strains and B. inopinata, a stepwise nucleotide reduction was observed in the omp2b gene copy. It consisted of a first reduction affecting the region encoding the surface L5 loop of the porin, previously shown to be critical in sugar permeability, followed by a nucleotide reduction in the surface L8 loop-encoding region. It resulted in a final omp2b gene size shared between two distinct clades of non-classical Brucella spp. (African bullfrog isolates) and the group of classical Brucella species. Further evolution led to complete homogenization of both omp2 gene copies in some Brucella species such as B. vulpis or B. papionis. The stepwise omp2b deletions seemed to be generated through recombination with the respective omp2a gene copy, presenting a conserved size among Brucella spp., and may involve short direct DNA repeats. Successive Omp2b porin alteration correlated with increasing porin permeability in the course of evolution of Brucella spp. They possibly have adapted their porin to survive environmental conditions encountered and to reach their final status as intracellular pathogen.
Collapse
Affiliation(s)
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
26
|
Allen AR, Milne G, Drees K, Presho E, Graham J, McAdam P, Jones K, Wright L, Skuce R, Whatmore AM, Graham J, Foster JT. Genomic epizootiology of a Brucella abortus outbreak in Northern Ireland (1997-2012). INFECTION GENETICS AND EVOLUTION 2020; 81:104235. [PMID: 32035245 DOI: 10.1016/j.meegid.2020.104235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the recent past (1997-2012), Northern Ireland in the United Kingdom suffered an outbreak of Brucella abortus, which at its height affected over 200 cattle herds. Initially, isolates were characterized using multi-locus variable number tandem repeats analysis (MLVA). While informative in this setting, hyper-variability in some loci limited the resolution necessary to infer fine-scale disease transmission networks. Consequently, we applied whole-genome sequencing to isolates from this outbreak to evaluate higher resolution markers for disease epizootiology. RESULTS Phylogenetic analysis revealed that the B. abortus outbreak in Northern Ireland was caused by two distinct pathogen lineages. One contained isolates consistent with the 1997-2012 outbreak being linked to a previous endemic infection thought eradicated. The dominant second lineage exhibited little genetic diversity throughout the recrudescent outbreak, with limited population sub-structure evident. This finding was inconsistent with prior MLVA molecular characterizations that suggested the presence of seven clonal complexes. Spatio-temporal modeling revealed a significant association of pairwise SNP differences between isolates and geographic distances. However, effect sizes were very small due to reduced pathogen diversity. CONCLUSIONS Genome sequence data suggested that hyper-variability in some MLVA loci contributed to an overestimate of pathogen diversity in the most recent outbreak. The low diversity observed in our genomic dataset made it inappropriate to apply phylodynamic methods to these data. We conclude that maintaining data repositories of genome sequence data will be invaluable for source attribution/epizootiological inference should recrudescence ever re-occur. However genomic epizootiological methods may have limited utility in some settings, such as when applied to recrudescent/re-emergent infections of slowly-evolving bacterial pathogens.
Collapse
Affiliation(s)
- Adrian R Allen
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom..
| | - Georgina Milne
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Kevin Drees
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Rudman Hall, 46 College Road, Durham, NH, USA
| | - Eleanor Presho
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Jordon Graham
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Paul McAdam
- Fios Genomics, Nine Edinburgh Bioquarter, 9 Little France Road, Edinburgh, United Kingdom
| | - Kerri Jones
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Lorraine Wright
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Robin Skuce
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Adrian M Whatmore
- Department of Bacteriology, Animal and Plant Health Agency (APHA), New Haw, Addlestone, Surrey, United Kingdom
| | - Judith Graham
- Department of Agriculture, Environment and Rural Affairs, Veterinary Service, Belfast, Northern Ireland, United Kingdom
| | - Jeffrey T Foster
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Rudman Hall, 46 College Road, Durham, NH, USA
| |
Collapse
|
27
|
Keyburn AL, Buller N. Brucella: not your ‘typical’ intracellular pathogen. MICROBIOLOGY AUSTRALIA 2020. [DOI: 10.1071/ma20010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Currently the genus Brucella consists of a group of bacteria that are genetically monospecific yet phenotypically diverse, and a recent genetic and phenotypic divergent group known as ‘atypical' Brucellae. The host range is extremely varied and includes mammals, including humans, terrestrial animals and marine mammals, but now extends to reptiles and amphibians. Almost all Brucella species are zoonotic. The disease collectively termed Brucellosis leads to abortion and reproductive disease in animals, whereas human infection presents as a non-specific undulating fever accompanied by general malaise, chills, joint pain, muscle aches, genitourinary disease and adverse pregnancy outcomes. These Gram-negative coccobacilli invade and replicate in the host macrophages where they can limit the effects of the host immune system and antibiotic treatment. Due to the phenotypic and genotypic diversity and close relationship with Ochrobactrum species, the genus Brucella presents challenges for accurate identification and recognition of new species.
Collapse
|
28
|
Dadar M, Shahali Y, Fakhri Y. A primary investigation of the relation between the incidence of brucellosis and climatic factors in Iran. Microb Pathog 2019; 139:103858. [PMID: 31712119 DOI: 10.1016/j.micpath.2019.103858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/07/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Brucella spp. are Gram-negative coccobacilli that may grow in different media and environmental conditions for extended periods of time. The survivals of these bacteria in the environment have an important impact on the epidemiology of brucellosis worldwide. The effect of climate on the incidence of certain zoonotic infectious diseases, (recently referred to as climate-sensitive zoonosis) is now well established. The aim of this study was to evaluate the relation between the incidence of brucellosis and climatic parameters in Iran, an important endemic region for brucellosis with diverse climate. The information on the incidence of human brucellosis in different Iranian provinces for 2016 has been provided by the Ministry of Health and Medical Education, Iran. Annual meteorological data collected between 2015 and 2016 were obtained from the Iranian Meteorological organization (IMO). A regression analysis of the incidence of brucellosis was performed via STATA 14.0 and the heterogeneity among observations was determined via Cochrane's Q-test and I2 statistic. If I2 index was higher than 50%, heterogeneity was considered as considerable. The results of regression analyses revealed a negative significant association between mean ambient air temperature and brucellosis incidence (C = - 0.022, P value = 0.004). Likewise, a positive significant association was found between number of frosty days and brucellosis incidence (C = 0.002, p value = 0.003). Other metrological parameters showed no significant effect on the human brucellosis incidence. Although our results suggest a high degree of temperature sensitivity in regards to the brucellosis incidence in Iran, this study opens up prospects for further investigations regarding environmental conditions and climatic changes influencing the spatial distributions and seasonal/annual cycle of this zoonotic pathogen worldwide.
Collapse
Affiliation(s)
- Maryam Dadar
- Brucellosis Department, Razi Vaccine and Serum Research Institute (RVSRI); Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Youcef Shahali
- Brucellosis Department, Razi Vaccine and Serum Research Institute (RVSRI); Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Qin L, Nan W, Wang Y, Zhang Y, Tan P, Chen Y, Mao K, Chen Y. A novel approach for detection of brucella using a real-time recombinase polymerase amplification assay. Mol Cell Probes 2019; 48:101451. [PMID: 31541671 DOI: 10.1016/j.mcp.2019.101451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Brucella, the etiological agent of brucellosis, is an important zoonosis pathogen worldwide. Brucella infects humans and various domestic and wild animals, and represents a great threat to public health and animal husbandry. In the present study, we developed a real-time recombinase polymerase amplification (RPA) assay for the detection of Brucella. The assay targeted the bcsp31 gene of Brucella, and an RPA exo probe and a pair of primers were selected for assay validation. RPA sensitivity and specificity were evaluated using plasmid standards, Brucella representative strains, and non-Brucella strains. The RPA assay achieved a detection limit of 17 molecules in 95% of cases based on probit analysis, and could successfully distinguish 18 representative Brucella strains (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae and B. ovis), and four Brucella vaccine strains (A19, S19, S2 and M5). A total of 52 Brucella field strains were detected by real-time PCR and RPA in parallel, and compared with real-time PCR, the sensitivity of the RPA assay was 94% (49/52). Thus, this RPA assay may be a rapid, sensitive, and specific tool for the prevention and control of Brucellosis.
Collapse
Affiliation(s)
- Lide Qin
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China
| | - Wenlong Nan
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China
| | - Yong Wang
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China; College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yueyong Zhang
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China
| | - Pengfei Tan
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China; College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yuqi Chen
- Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, Jiangsu Province, 215123, China
| | - Kairong Mao
- China Institute of Veterinary Drug Control, 8 Zhongguanchun South Street, Beijing, 100081, China
| | - Yiping Chen
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China.
| |
Collapse
|
30
|
Sidhu-Muñoz RS, Sancho P, Vizcaíno N. Evaluation of human trophoblasts and ovine testis cell lines for the study of the intracellular pathogen Brucella ovis. FEMS Microbiol Lett 2019; 365:5210084. [PMID: 30476113 DOI: 10.1093/femsle/fny278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/23/2018] [Indexed: 01/24/2023] Open
Abstract
Since pathogenic Brucella survive and replicate inside phagocytes, cellular models of infection constitute important tools in brucellosis research. We describe the behavior of B. ovis PA (which causes a type of ovine brucellosis mainly affecting the male reproductive tract) and representative attenuated mutants in two commercially available cell lines of non-professional phagocytes related to Brucella tissue preference: OA3.Ts ovine testis cells and JEG-3 human trophoblasts. In comparison with J774.A1 macrophages and HeLa cells, intracellular bacteria were enumerated at several post-infection time points and visualized by confocal microscopy. Replication of B. ovis in OA3.Ts and JEG-3 cells was equivalent to that observed in J774.A1 macrophages-despite the more efficient internalization in the latter-and better than in HeLa cells. Multiplication and/or survival in all phagocytes was dependent on virB2 and vjbR but independent of cgs, despite the attenuation in mice of the Δcgs mutant. However, Omp25c was required for B. ovis internalization only in HeLa cells, and removal of Omp31 increased bacterial internalization in human HeLa and JEG-3 cells. The results presented here demonstrate variability in the interaction of B. ovis with different host cells and provide advantageous models of non-professional phagocytes to study the intracellular behavior of B. ovis.
Collapse
Affiliation(s)
- Rebeca Singh Sidhu-Muñoz
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 52-182, 37007 Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 52-182, 37007 Salamanca, Spain
| |
Collapse
|
31
|
Guzmán-Verri C, Suárez-Esquivel M, Ruíz-Villalobos N, Zygmunt MS, Gonnet M, Campos E, Víquez-Ruiz E, Chacón-Díaz C, Aragón-Aranda B, Conde-Álvarez R, Moriyón I, Blasco JM, Muñoz PM, Baker KS, Thomson NR, Cloeckaert A, Moreno E. Genetic and Phenotypic Characterization of the Etiological Agent of Canine Orchiepididymitis Smooth Brucella sp. BCCN84.3. Front Vet Sci 2019; 6:175. [PMID: 31231665 PMCID: PMC6568212 DOI: 10.3389/fvets.2019.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
Members of the genus Brucella cluster in two phylogenetic groups: classical and non-classical species. The former group is composed of Brucella species that cause disease in mammals, including humans. A Brucella species, labeled as Brucella sp. BCCN84.3, was isolated from the testes of a Saint Bernard dog suffering orchiepididymitis, in Costa Rica. Following standard microbiological methods, the bacterium was first defined as “Brucella melitensis biovar 2.” Further molecular typing, identified the strain as an atypical “Brucella suis.” Distinctive Brucella sp. BCCN84.3 markers, absent in other Brucella species and strains, were revealed by fatty acid methyl ester analysis, high resolution melting PCR and omp25 and omp2a/omp2b gene diversity. Analysis of multiple loci variable number of tandem repeats and whole genome sequencing demonstrated that this isolate was different from the currently described Brucella species. The smooth Brucella sp. BCCN84.3 clusters together with the classical Brucella clade and displays all the genes required for virulence. Brucella sp. BCCN84.3 is a species nova taxonomical entity displaying pathogenicity; therefore, relevant for differential diagnoses in the context of brucellosis. Considering the debate on the Brucella species concept, there is a need to describe the extant taxonomical entities of these pathogens in order to understand the dispersion and evolution.
Collapse
Affiliation(s)
- Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.,Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Nazareth Ruíz-Villalobos
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Michel S Zygmunt
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Mathieu Gonnet
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Elena Campos
- Centro Nacional de Referencia en Bacteriología, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Cartago, Costa Rica
| | - Eunice Víquez-Ruiz
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Carlos Chacón-Díaz
- Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Beatriz Aragón-Aranda
- IDISNA and Departamento de Microbiología y Parasitología, Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- IDISNA and Departamento de Microbiología y Parasitología, Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- IDISNA and Departamento de Microbiología y Parasitología, Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - José María Blasco
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Kate S Baker
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Institute for Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Axel Cloeckaert
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
32
|
Li XM, Kang YX, Lin L, Jia EH, Piao DR, Jiang H, Zhang CC, He J, Chang YF, Guo XK, Zhu Y. Genomic Characterization Provides New Insights for Detailed Phage- Resistant Mechanism for Brucella abortus. Front Microbiol 2019; 10:917. [PMID: 31130926 PMCID: PMC6510165 DOI: 10.3389/fmicb.2019.00917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/11/2019] [Indexed: 01/18/2023] Open
Abstract
As the causative agent of cattle brucellosis, Brucella abortus commonly exhibits smooth phenotype (by virtue of colony morphology) that is characteristically sensitive to specific Brucella phages, playing until recently a major role in taxonomical classification of the Brucella species by the phage typing approach. We previously reported the discrepancy between traditional phenotypic typing and MLVA results of a smooth phage-resistant (SPR) strain Bab8416 isolated from a 45-year-old custodial worker with brucellosis in a cattle farm. Here, we performed whole genome sequencing and further obtained a complete genome sequence of strain Bab8416 by a combination of multiple NGS technologies and routine PCR sequencing. The detailed genetic differences between B. abortus SPR Bab8416 and large smooth phage-sensitive (SPS) strains were investigated in a comprehensively comparative genomic study. The large indels between B. abortus SPS strains and Bab8416 showed possible divergence between two evolutionary branches at a far phylogenetic node. Compared to B. abortus SPS strain 9-941 (Bab9-941), the specific re-arrangement event in Bab8416 displaying a closer linear relationship with B. melitensis 16M than other B. abortus strains resulted in the truncation of c-di-GMP synthesis, and 3 c-di-GMP-metabolizing genes, were present in Bab8416 and B. melitensis 16M, but absent in Bab9-941 and other B. abortus strains, indicating potential SPR-associated key determinants and novel molecular mechanisms. Moreover, despite almost completely intact smooth LPS related genes, only one mutated OmpA family protein of Bab8416, functionally related to flagellar and efflux pump, was newly identified. Several point mutations were identified to be Bab8416 specific while a majority of them were verified to be B. abortus ST2 characteristic. In conclusion, our study therefore identifies new SPR-associated factors that could play a role in refining and updating Brucella taxonomic schemes and provides resources for further detailed analysis of mechanism for Brucella phage resistance.
Collapse
Affiliation(s)
- Xu-Ming Li
- Stake Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yao-Xia Kang
- Baotou Municipal Center for Disease Control and Prevention, Baotou, China
| | - Liang Lin
- Baotou Municipal Center for Disease Control and Prevention, Baotou, China
| | - En-Hou Jia
- Baotou Municipal Center for Disease Control and Prevention, Baotou, China
| | - Dong-Ri Piao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Cui-Cai Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Jin He
- Stake Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xiao-Kui Guo
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YongZhang Zhu
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Kosoy M, Goodrich I. Comparative Ecology of Bartonella and Brucella Infections in Wild Carnivores. Front Vet Sci 2019; 5:322. [PMID: 30662899 PMCID: PMC6328487 DOI: 10.3389/fvets.2018.00322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/03/2018] [Indexed: 01/15/2023] Open
Abstract
Phylogenetic sister clades Bartonella and Brucella within the order Rhizobiales present some common biological characteristics as well as evident differences in adaptations to their mammalian reservoirs. We reviewed published data on Bartonella and Brucella infections in wild carnivores to compare the ecology of these bacteria in relatively similar host environments. Arthropod vectors are the main mechanism for Bartonella species transmission between mammalian hosts. The role of arthropods in transmission of Brucella remains disputed, however experimental studies and reported detection of Brucella in arthropods indicate potential vector transmission. More commonly, transmission of Brucella occurs via contact exposure to infected animals or the environment contaminated with their discharges. Of 26 species of carnivores tested for both Bartonella and Brucella, 58% harbored either. Among them were bobcats, African lions, golden jackals, coyotes, wolves, foxes, striped skunks, sea otters, raccoons, and harbor seals. The most common species of Bartonella in wild carnivores was B. henselae, found in 23 species, followed by B. rochalimae in 12, B. clarridgeiae in ten, and B. vinsonii subsp. berkhoffii in seven. Among Brucella species, Br. abortus was reported in over 30 terrestrial carnivore species, followed by Br. canis in seven. Marine carnivores, such as seals and sea lions, can host Br. pinnipedialis. In contrast, there is no evidence of a Bartonella strain specific for marine mammals. Bartonella species are present practically in every sampled species of wild felids, but of 14 Brucella studies of felids, only five reported Brucella and those were limited to detection of antibodies. We found no reports of Bartonella in bears while Brucella was detected in these animals. There is evident host-specificity of Bartonella species in wild carnivores (e.g., B. henselae in felids and B. vinsonii subsp. berkhoffii in canids). A co-adaptation of Brucella with terrestrial wild carnivore hosts is not as straightforward as in domestic animals. Wild carnivores often carry the same pathogens as their domesticated relatives (cats and dogs), but the risk of exposure varies widely because of differences in biology, distribution, and historical interactions.
Collapse
Affiliation(s)
- Michael Kosoy
- Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Irina Goodrich
- Centers for Disease Control and Prevention, Fort Collins, CO, United States
| |
Collapse
|
34
|
Acharya D, Hwang SD, Park JH. Seroreactivity and Risk Factors Associated with Human Brucellosis among Cattle Slaughterhouse Workers in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112396. [PMID: 30380642 PMCID: PMC6266338 DOI: 10.3390/ijerph15112396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/24/2022]
Abstract
The prevalence rate of human brucellosis in high-risk populations, as well as their risk factors, have not been well understood in South Korea. In this cross-sectional study, we investigated the seroreactivity and risk factors associated with human brucellosis among South Korean cattle slaughterhouse workers. We enrolled 922 subjects working in 71 slaughterhouses across the country in 2012. A structured questionnaire was used to obtain data from the subjects, following which blood samples were collected and tested using the microagglutination test; serum titers ≥ 1:20 were considered reactive. Independent risk factors were identified using multivariate logistic regression analysis with backward elimination. Overall, 62 of 922 participants (6.7%) exhibited seroreactivity for brucellosis, and 0.4% had a seroprevalence at a dilution of 1:160. Multivariate analysis revealed that the risk factors for human brucellosis seroreactivity included large-scale slaughtering (≥100 cattle per day; odds ratio (OR), 5.41; 95% confidence interval (CI), 2.95–9.91) and medium-scale slaughtering (50–99 cattle per day; OR, 2.53; 95% CI, 1.16–5.51). Moreover, the risk of brucellosis infection was significantly lower among slaughterhouse workers who always wear protective glasses (OR, 0.27; 95% CI, 0.11–0.69) than in those who sometimes or rarely wore such glasses. Regular and consistent use of personal protective equipment, especially protective glasses, should be encouraged among cattle slaughterhouse workers to reduce brucellosis infection.
Collapse
Affiliation(s)
- Dilaram Acharya
- Department of Preventive Medicine, College of Medicine, Dongguk University, Gyeongju 38066, Korea.
| | - Seon Do Hwang
- Division of Zoonoses, Center for Immunology and Pathology, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju 28159, Korea.
- Division of Bacterial Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju 28159, Korea.
| | - Ji-Hyuk Park
- Department of Preventive Medicine, College of Medicine, Dongguk University, Gyeongju 38066, Korea.
| |
Collapse
|
35
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
36
|
Vergnaud G, Hauck Y, Christiany D, Daoud B, Pourcel C, Jacques I, Cloeckaert A, Zygmunt MS. Genotypic Expansion Within the Population Structure of Classical Brucella Species Revealed by MLVA16 Typing of 1404 Brucella Isolates From Different Animal and Geographic Origins, 1974-2006. Front Microbiol 2018; 9:1545. [PMID: 30050522 PMCID: PMC6052141 DOI: 10.3389/fmicb.2018.01545] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/21/2018] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown the usefulness of MLVA16 as a rapid molecular identification and classification method for Brucella species and biovars including recently described novel Brucella species from wildlife. Most studies were conducted on a limited number of strains from limited geographic/host origins. The objective of this study was to assess genetic diversity of Brucella spp. by MLVA16 on a larger scale. Thus, 1404 animal or human isolates collected from all parts of the world over a period of 32 years (1974-2006) were investigated. Selection of the 1404 strains was done among the approximately 4000 strains collection of the BCCN (Brucella Culture Collection Nouzilly), based on classical biotyping and on the animal/human/geographic origin over the time period considered. MLVA16 was performed on extracted DNAs using high throughput capillary electrophoresis. The 16 loci were amplified in four multiplex PCR reactions. This large scale study firstly confirmed the accuracy of MLVA16 typing for Brucella species and biovar identification and its congruence with the recently described Extended Multilocus Sequence Analysis. In addition, it allowed identifying novel MLVA11 (based upon 11 slowly evolving VNTRs) genotypes representing an increase of 15% relative to the previously known Brucella MLVA11 genotypes. Cluster analysis showed that among the MLVA16 genotypes some were genetically more distant from the major classical clades. For example new major clusters of B. abortus biovar 3 isolated from cattle in Sub-Saharan Africa were identified. For other classical species and biovars this study indicated also genotypic expansion within the population structure of classical Brucella species. MLVA proves to be a powerful tool to rapidly assess genetic diversity of bacterial populations on a large scale, as here on a large collection of strains of the genomically homogeneous genus Brucella. The highly discriminatory power of MLVA appears of particular interest as a first step for selection of Brucella strains for whole-genome sequencing. The MLVA data of this study were added to the public Brucella MLVA database at http://microbesgenotyping.i2bc.paris-saclay.fr. Current version Brucella_4_3 comprises typing data from more than 5000 strains including in silico data analysis of public whole genome sequence datasets.
Collapse
Affiliation(s)
- Gilles Vergnaud
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yolande Hauck
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David Christiany
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brendan Daoud
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle Jacques
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France.,IUT de Tours, Tours, France
| | - Axel Cloeckaert
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Michel S Zygmunt
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| |
Collapse
|
37
|
An Overview of Brucellosis in Cattle and Humans, and its Serological and Molecular Diagnosis in Control Strategies. Trop Med Infect Dis 2018; 3:tropicalmed3020065. [PMID: 30274461 PMCID: PMC6073575 DOI: 10.3390/tropicalmed3020065] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 12/02/2022] Open
Abstract
Brucellosis is one of the most common contagious and communicable zoonotic diseases with high rates of morbidity and lifetime sterility. There has been a momentous increase over the recent years in intra/interspecific infection rates, due to poor management and limited resources, especially in developing countries. Abortion in the last trimester is a predominant sign, followed by reduced milk yield and high temperature in cattle, while in humans it is characterized by undulant fever, general malaise, and arthritis. While the clinical picture of brucellosis in humans and cattle is not clear and often misleading with the classical serological diagnosis, efforts have been made to overcome the limitations of current serological assays through the development of PCR-based diagnosis. Due to its complex nature, brucellosis remains a serious threat to public health and livestock in developing countries. In this review, we summarized the recent literature, significant advancements, and challenges in the treatment and vaccination against brucellosis, with a special focus on developing countries.
Collapse
|
38
|
BRUCELLA PINNIPEDIALIS IN GREY SEALS ( HALICHOERUS GRYPUS) AND HARBOR SEALS ( PHOCA VITULINA) IN THE NETHERLANDS. J Wildl Dis 2018; 54:439-449. [PMID: 29697310 DOI: 10.7589/2017-05-097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucellosis is a zoonotic disease with terrestrial or marine wildlife animals as potential reservoirs for the disease in livestock and human populations. The primary aim of this study was to assess the presence of Brucella pinnipedialis in marine mammals living along the Dutch coast and to observe a possible correlation between the presence of B. pinnipedialis and accompanying pathology found in infected animals. The overall prevalence of Brucella spp. antibodies in sera from healthy wild grey seals ( Halichoerus grypus; n=11) and harbor seals ( Phoca vitulina; n=40), collected between 2007 and 2013 ranged from 25% to 43%. Additionally, tissue samples of harbor seals collected along the Dutch shores between 2009 and 2012, were tested for the presence of Brucella spp. In total, 77% (30/39) seals were found to be positive for Brucella by IS 711 real-time PCR in one or more tissue samples, including pulmonary nematodes. Viable Brucella was cultured from 40% (12/30) real-time PCR-positive seals, and was isolated from liver, lung, pulmonary lymph node, pulmonary nematode, or spleen, but not from any PCR-negative seals. Tissue samples from lung and pulmonary lymph nodes were the main source of viable Brucella bacteria. All isolates were typed as B. pinnipedialis by multiple-locus variable number of tandem repeats analysis-16 clustering and matrix-assisted laser desorption ionization-time of flight mass spectrometry, and of sequence type ST25 by multilocus sequence typing analysis. No correlation was observed between Brucella infection and pathology. This report displays the isolation and identification of B. pinnipedialis in marine mammals in the Dutch part of the Atlantic Ocean.
Collapse
|
39
|
Zúñiga-Ripa A, Barbier T, Lázaro-Antón L, de Miguel MJ, Conde-Álvarez R, Muñoz PM, Letesson JJ, Iriarte M, Moriyón I. The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Front Microbiol 2018; 9:641. [PMID: 29675004 PMCID: PMC5896264 DOI: 10.3389/fmicb.2018.00641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the genus Brucella infect a range of vertebrates causing a worldwide extended zoonosis. The best-characterized brucellae infect domestic livestock, behaving as stealthy facultative intracellular parasites. This stealthiness depends on envelope molecules with reduced pathogen-associated molecular patterns, as revealed by the low lethality and ability to persist in mice of these bacteria. Infected cells are often engorged with brucellae without signs of distress, suggesting that stealthiness could also reflect an adaptation of the parasite metabolism to use local nutrients without harming the cell. To investigate this, we compared key metabolic abilities of Brucella abortus 2308 Wisconsin (2308W), a cattle biovar 1 virulent strain, and B. suis 513, the reference strain of the ancestral biovar 5 found in wild rodents. B. suis 513 used a larger number of C substrates and showed faster growth rates in vitro, two features similar to those of B. microti, a species phylogenomically close to B. suis biovar 5 that infects voles. However, whereas B. microti shows enhanced lethality and reduced persistence in mice, B. suis 513 was similar to B. abortus 2308W in this regard. Mutant analyses showed that B. suis 513 and B. abortus 2308W were similar in that both depend on phosphoenolpyruvate synthesis for virulence but not on the classical gluconeogenic fructose-1,6-bisphosphatases Fbp-GlpX or on isocitrate lyase (AceA). However, B. suis 513 used pyruvate phosphate dikinase (PpdK) and phosphoenolpyruvate carboxykinase (PckA) for phosphoenolpyruvate synthesis in vitro while B. abortus 2308W used only PpdK. Moreover, whereas PpdK dysfunction causes attenuation of B. abortus 2308W in mice, in B. suis, 513 attenuation occurred only in the double PckA-PpdK mutant. Also contrary to what occurs in B. abortus 2308, a B. suis 513 malic enzyme (Mae) mutant was not attenuated, and this independence of Mae and the role of PpdK was confirmed by the lack of attenuation of a double Mae-PckA mutant. Altogether, these results decouple fast growth rates from enhanced mouse lethality in the brucellae and suggest that an Fbp-GlpX-independent gluconeogenic mechanism is ancestral in this group and show differences in central C metabolic steps that may reflect a progressive adaptation to intracellular growth.
Collapse
Affiliation(s)
- Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Thibault Barbier
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Leticia Lázaro-Antón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María J de Miguel
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Jean J Letesson
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
40
|
Diagnostic potential of Brucella melitensis Rev1 native Omp28 precursor in human brucellosis. Cent Eur J Immunol 2018; 43:81-89. [PMID: 29736150 PMCID: PMC5927177 DOI: 10.5114/ceji.2018.74877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/10/2017] [Indexed: 01/18/2023] Open
Abstract
Serologic tests for brucellosis aim to detect antibodies produced against membranous lipopolysaccharide of bacteria. Diagnostic use of this method is limited due to false positiveness. This study evaluates an alternative antigen to lipopolysaccharides (LPS), outer membrane 28-precursor-protein, of Brucella melitensis Rev1 for its diagnostic value. Omp28 precursor of B. melitensis Rev1 was cloned, expressed, and purified. 6-His and sumo epitope tags were used to tag the protein at N-termini. Omp28 gene was amplified based on the ORF sequence and cloned into a pETSUMO vector. The recombinant construct was propagated in Escherichia coli One Shot® Mach1™ cells then transformed into E. coli BL21(D3) cells for protein expression. The purified protein was studied in an indirect ELISA for diagnosis of brucellosis. Sera samples from 60 patients were screened by ELISA and the results were compared to Rose Bengal plate test. Recombinant antigen-based iELISA has given a successful outcome with the sensitivity, specificity, positive predictive value, and negative predictive value of 87.8%, 96.2%, 96.6%, and 78.78%, respectively. In conclusion, recombinant production and purification of the immunodominant Omp28 precursor protein has been achieved successfully in a one-step process with efficient yield and can be used for diagnosis of brucellosis in humans.
Collapse
|
41
|
Christoforidou S, Boukouvala E, Zdragas A, Malissiova E, Sandalakis V, Psaroulaki A, Petridou E, Tsakos P, Ekateriniadou L, Hadjichristodoulou C. Novel diagnostic approach on the identification ofBrucella melitensisGreek endemic strains-discrimination from the vaccine strain Rev.1 by PCR-RFLP assay. Vet Med Sci 2018. [PMCID: PMC6090408 DOI: 10.1002/vms3.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the intensive implementation of control programmes goat, sheep and human brucellosis remains endemic in Greece. As the discrimination between field endemic strains and vaccine strain Rev.1 is not feasible, it is essential to develop new diagnostic tools for brucellosis diagnosis. Moreover, effective disease control requires enhanced epidemiological surveillance in both humans and animals including robust laboratory support. Two new multiplex (duplex) polymerase chain reactions (PCRs) were developed and the results were compared with those obtained by real‐time PCR and bacteriological biotyping. A total of 71 Brucella spp. Greek endemic strains were identified at species and biovar level, using both molecular and conventional techniques. Their discrimination from the vaccine strain Rev.1 was achieved, using polymerase chain reaction‐restriction fragment length polymorphism assay (PCR‐RFLP). All 71 strains were identified as Brucella melitensis by multiplex PCR as well as by real‐time PCR and conventional biotyping. Sixty‐two (87.3%) out of 71 strains were identified as B. melitensis biovar 3, eight (11,3%) strains as biovar 1 and only one (1,4%) as biovar 2. Digestion with PstI restriction enzyme revealed that all strains were field endemic strains, as they gave different patterns from the vaccine strain Rev.1. Brucella melitensis biovar 3 appears to be the predominant type in Greece. The novel multiplex PCR produced results concordant to ones obtained by real‐time PCR and conventional biotyping. This technique could support and facilitate the surveillance of Brucellosis in Greece contributing in the control of the disease.
Collapse
Affiliation(s)
- Sofia Christoforidou
- Veterinary Research Institute of Thessaloniki; Hellenic Agricultural Organization DEMETER (former NAGREF); Thessaloniki Greece
- Laboratory of Hygiene and Epidemiology; Faculty of Medicine; School of Health Sciences; University of Thessaly; Larissa Greece
| | - Evridiki Boukouvala
- Veterinary Research Institute of Thessaloniki; Hellenic Agricultural Organization DEMETER (former NAGREF); Thessaloniki Greece
| | - Antonios Zdragas
- Veterinary Research Institute of Thessaloniki; Hellenic Agricultural Organization DEMETER (former NAGREF); Thessaloniki Greece
| | - Eleni Malissiova
- Dairy Laboratory; Food Technology Department; Technological Educational Institute of Thessaly; Thessaly Greece
| | - Vassilios Sandalakis
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine; School of Medicine; University of Crete; Heraklion Greece
| | - Anna Psaroulaki
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine; School of Medicine; University of Crete; Heraklion Greece
| | - Evanthia Petridou
- Laboratory of Microbiology; Faculty of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Panagiotis Tsakos
- Ministry of Rural Development and Food; Directorate of Veterinary Centre of Thessaloniki; Laboratory of Microbiology & Infectious Diseases; Thessaloniki Greece
| | - Loukia Ekateriniadou
- Veterinary Research Institute of Thessaloniki; Hellenic Agricultural Organization DEMETER (former NAGREF); Thessaloniki Greece
| | - Christos Hadjichristodoulou
- Laboratory of Hygiene and Epidemiology; Faculty of Medicine; School of Health Sciences; University of Thessaly; Larissa Greece
| |
Collapse
|
42
|
El-Sayed A, Awad W. Brucellosis: Evolution and expected comeback. Int J Vet Sci Med 2018; 6:S31-S35. [PMID: 30761318 PMCID: PMC6161863 DOI: 10.1016/j.ijvsm.2018.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/09/2018] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Brucellosis is a serious infectious disease which causes great direct and indirect economic loses for animal holders worldwide such as the reduction of milk and meat production through abortions/culling of positive reactors, the expense of disease control/eradication and farmers compensation. Although the disease was eradicated from most of the industrial countries, it remains one of the most common zoonotic diseases in developing countries being responsible for more than 500,000 new cases yearly. Brucella is considered to be a bioterrorism organism due to its low infectious doses (10-100 bacteria), capability of persistence in the environment, rapid transmission via different routes including aerosols, and finally due to its difficult treatment by antibiotics.There are many reasons to believe that a new comeback of brucellosis may occur in near future. This expectation is supported by the recent discovery of new atypical Brucella species with new genetic properties and the recent reports of (man to man) disease transmission as will be discussed later. The development of new concepts and measurements for disease control is urgently required. In the present review, the evolution of Brucella and the different factors favoring its comeback are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | | |
Collapse
|
43
|
Muloki HN, Erume J, Owiny DO, Kungu JM, Nakavuma J, Ogeng D, Nasinyama GW. Prevalence and risk factors for brucellosis in prolonged fever patients in post-conflict Northern Uganda. Afr Health Sci 2018; 18:22-28. [PMID: 29977253 PMCID: PMC6016978 DOI: 10.4314/ahs.v18i1.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Brucellosis is a disease with significant public and economic implications but strategies for controlling this disease remain problematic. OBJECTIVES This study sought to determine the sero-prevalence of brucellosis in prolonged fever patients and to identify modifiable risk factors for the infection in humans in post conflict Northern Uganda. METHODS The study employed a cross-sectional method among prolonged fever patients who had visited selected health facilities in the study districts in Northern Uganda. Sero-prevalence of brucellosis was calculated for i-ELISA IgG/IgM. A structured questionnaire was used to obtain data on possible risk factors for brucellosis. Associations between sero-prevalence and risk factors were measured using the Odds Ratio. RESULTS Brucellosis was confirmed in 18.7% of the 251 patients that tested positive for the disease, with the rapid Brucella Plate Agglutination Test, and ages 10-84 years (median age 47+0.86). Sex (p = 0.001; OR 3.79; 95% CI 1.75 - 8.24), rearing livestock (p < 0.005; OR 8.44; 95% CI 2.84-25.03) and consumption of unpasteurised milk (p = 0.023; OR 2.57; 95% CI 1.14-5.80) were factors associated with brucellosis. CONCLUSION Control of brucellosis in animals, training and sensitisation of the community on brucellosis is needed to stimulate action on human brucellosis control.
Collapse
Affiliation(s)
- Harriet N Muloki
- Faculty of Agriculture and Environment, Gulu University. P. O. Box 166, Gulu, Uganda
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda; Current Address: Kampala International University, P.O Box 20000, Kampala, Uganda
| | - Joseph Erume
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda; Current Address: Kampala International University, P.O Box 20000, Kampala, Uganda
| | - David O Owiny
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda; Current Address: Kampala International University, P.O Box 20000, Kampala, Uganda
| | - Joseph M Kungu
- National Livestock Resources Research Institute, P.O.Box 96, Tororo
| | - Jesca Nakavuma
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda; Current Address: Kampala International University, P.O Box 20000, Kampala, Uganda
| | - Duncan Ogeng
- Faculty of Agriculture and Environment, Gulu University. P. O. Box 166, Gulu, Uganda
| | - George W Nasinyama
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda; Current Address: Kampala International University, P.O Box 20000, Kampala, Uganda
| |
Collapse
|
44
|
Todeschini B, Costa EF, Santiago-Neto W, Santos DV, Groff ACM, Borba MR, Corbellini LG. Ocorrência de brucelose e tuberculose bovinas no Rio Grande do Sul com base em dados secundários. PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-4712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RESUMO: Avaliaram-se os resultados de testes para diagnóstico da brucelose e tuberculose bovinas objetivando analisar a distribuição de positividade e características de performance do programa de controle. A análise utilizou como dados secundários todos os resultados de testes para diagnóstico realizados em bovinos no ano de 2008 no estado do Rio Grande do Sul (RS) por médicos veterinários habilitados para atuação no âmbito do Programa Nacional de Controle e Erradicação de Brucelose e Tuberculose Animal. Os dados foram estatisticamente ajustados para minimizar os efeitos de valores extremos e de dados faltantes. Os testes alcançaram 66,80% dos 497 municípios do RS e incluíram a participação de 165 médicos veterinários habilitados. 40,21% dos testes foram realizados nos meses de abril, setembro e outubro, sendo que em 73,90% dos estabelecimentos foram realizados testes para ambas as enfermidades. No caso da brucelose verificou-se que foram testados 35.289 animais, com uma frequência de positivos de 0,25%, enquanto a frequência de estabelecimentos positivos entre os 3.406 testados foi 0,94%. Fêmeas apresentaram frequência de positividade mais elevada (0,29%, de 26.724 testadas) do que machos (0,13%, de 5.235 testados). Animais entre 48-60 meses de idade apresentaram chance de positividade superior às demais faixas etárias (Razão de Chances (RC) =2,63; IC 95%=1,63-4,26). Animais de aptidão leiteira representaram 62,66% dos animais testados, e apresentaram maior chance de positividade do que animais de corte (RC=2,32; IC 95%=1,38-3,90). Adicionalmente, 73,74% dos estabelecimentos testados eram dedicados à produção de leite. Já no caso da tuberculose foram testados 62.149 animais distribuídos em 5.151 propriedades, com frequência de positivos de 0,87% e 3,13%, respectivamente. A chance de positividade aumentou com a idade, sendo que animais com idade acima de 48 meses de idades apresentaram valores superiores aqueles verificados em animais mais jovens (RC=2,07; IC 95%=1,73-2,48). 59,74% dos animais testados eram de aptidão leiteira, os quais apresentaram mais chance de serem positivos do que aqueles de corte (RC=5,03; IC 95%=4,09-6,94). Propriedades leiteiras representaram 78,50% da totalidade dos testes para tuberculose. A análise comparativa do presente trabalho com estudos precedentes de prevalência da brucelose sugere que as ações de controle em curso têm sido efetivas na redução da prevalência da enfermidade no RS. Por outro lado, as informações obtidas no âmbito da tuberculose podem ser indicadoras da condição desta enfermidade, especialmente pela inexistência de estudos de prevalência realizados há menos de 30 anos. Adicionalmente, conclui-se que a utilização de dados secundários, desde que devidamente ajustados, pode ser uma ferramenta eficaz na gestão de programas de saúde animal e em sistemas de monitoramento e vigilância.
Collapse
Affiliation(s)
| | | | | | - Diego V. Santos
- Universidade Federal do Rio Grande do Sul, Brazil; Ministério da Agricultura, Pecuária e Abastecimento, Brazil
| | - Ana Cláudia M. Groff
- Secretaria da Agricultura, Pecuária e Irrigação do Estado do Rio Grande do Sul, Brasil
| | | | | |
Collapse
|
45
|
[Characterization of the genetic variability of field strains of Brucella canis isolated in Antioquia]. Rev Argent Microbiol 2017; 50:255-263. [PMID: 29277251 DOI: 10.1016/j.ram.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
Brucella canis is a facultative intracellular pathogen responsible for canine brucellosis, a zoonotic disease that affects canines, causing abortions and reproductive failure; and the production of non-specific symptoms in humans. In 2005 the presence of B. canis in Antioquia was demonstrated and the strains were identified as type 2. The sequencing of the genome of a field strain denoted Brucella canis str. Oliveri, showed species-specific indel events, which led us to investigate the genomic characteristics of the B. canis strain isolated and to establish the phylogenetic relationships and the divergence time of B. canis str. Oliveri. Conventional PCR sequencing was performed in 30 field strains identifying 5 indel events recognized in B. canis str. Oliveri. ADN from Brucella suis, Brucella melitensis and vaccine strains from Brucella abortus were used as control, and it was determined that all of the studied field strains shared 4 out of the 5 indels of the sequenced Oliveri strain, indicating the presence of more than one strain circulating in the region. Phylogenetic analysis was performed with 24 strains of Brucella using concatenated sequences of genetic markers for species differentiation. The molecular clock hypothesis and Tajima's relative rate test were tested, showing that the Oliveri strain, similarly to other canis species, diverged from B. suis. The molecular clock hypothesis between Brucella species was rejected and an evolution rate and a similar genetic distance between the B. canis were demonstrated.
Collapse
|
46
|
Identification of genetic variants of Brucella spp. through genome-wide association studies. INFECTION GENETICS AND EVOLUTION 2017; 56:92-98. [PMID: 29154929 DOI: 10.1016/j.meegid.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022]
Abstract
Brucellosis is an important zoonotic disease caused by Brucella spp. We present a phylogeny of 552 strains based on genome-wide single nucleotide polymorphisms (SNPs) determined by an alignment-free k-mer approach. A total of 138,029 SNPs were identified from 552 Brucella genomes. Of these, 31,152 and 106,877 were core and non-core SNPs, respectively. Based on pan-genome analysis 11,937 and 972 genes were identified as pan and core genome, respectively. The pan-genome-wide analysis studies (Pan-GWAS) could not identify the group-specific variants in Brucella spp. Therefore, we focused on SNP based genome-wide association studies (SNP-GWAS) to identify the species-specific genetic determinants in Brucella spp. Phylogenetic tree representing eleven recognized Brucella spp. showed 16 major lineages. We identified 143 species-specific SNPs in Brucella abortus that are conserved in 311 B. abortus genomes. Of these, 141 species-specific SNPs were confined in the positively significant SNPs of B. abortus using SNP-GWAS. Since conserved in all the B. abortus genomes studied, these SNPs might have originated very early during the evolution of B. abortus and might be responsible for the evolution of B. abortus with cattle as the preferred host. Similarly, we identified 383 species-specific SNPs conserved in 132 Brucella melitensis genomes. Of these 379 species-specific SNPs were identified as positively associated using GWAS. Interestingly, >98% of the SNPs that are significantly, positively associated with the traits showed 100% sensitivity and 100% specificity. These identified species-specific core-SNPs identified in Brucella genomes could be responsible for the speciation and their respective host adaptation.
Collapse
|
47
|
Khan ST, Ahmad J, Wahab R, Hirad AH, Musarrat J, Al‐Khedhairy AA, Bahkali AH. An improved method of DNA preparation for PCR‐based detection of
Brucella
in raw camel milk samples from Riyadh region and its comparison with immunological methods. J Food Saf 2017. [DOI: 10.1111/jfs.12381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shams Tabrez Khan
- Zoology DepartmentCollege of Science, King Saud UniversityRiyadh Saudi Arabia
| | - Javed Ahmad
- Zoology DepartmentCollege of Science, King Saud UniversityRiyadh Saudi Arabia
| | - Rizwan Wahab
- Zoology DepartmentCollege of Science, King Saud UniversityRiyadh Saudi Arabia
| | - Abdurahman H. Hirad
- Department of Botany and MicrobiologyCollege of Science, King Saud UniversityRiyadh Saudi Arabia
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhUttar Pradesh India
| | | | - Ali H. Bahkali
- Department of Botany and MicrobiologyCollege of Science, King Saud UniversityRiyadh Saudi Arabia
| |
Collapse
|
48
|
Nabirye HM, Erume J, Nasinyama GW, Kungu JM, Nakavuma J, Ongeng D, Owiny DO. Brucellosis: Community, medical and veterinary workers’ knowledge, attitudes, and practices in Northern Uganda. INTERNATIONAL JOURNAL OF ONE HEALTH 2017. [DOI: 10.14202/ijoh.2017.12-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells. Arch Microbiol 2017; 199:971-978. [DOI: 10.1007/s00203-017-1360-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 02/02/2023]
|
50
|
Purvis TJ, Krouse D, Miller D, Livengood J, Thirumalapura NR, Tewari D. Detection of Brucella canis infection in dogs by blood culture and bacterial identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Vet Diagn Invest 2017; 29:586-588. [PMID: 28381135 DOI: 10.1177/1040638717704652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brucella canis was recovered from dogs that were canine brucellosis suspect by blood culture using a modified lysis method. Organism identity was established by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The instrument-provided security library identified the isolates as Brucella species. The isolates were further identified as B. canis with the help of phenotypic and genotypic characteristics. The mass spectral profiles from characterized B. canis isolates, when added to the MALDI-TOF MS standard reference library, allowed successful presumptive identification of B. canis.
Collapse
Affiliation(s)
- Tanya J Purvis
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (Purvis).,Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA (Krouse, Miller, Livengood, Thirumalapura, Tewari)
| | - Donna Krouse
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (Purvis).,Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA (Krouse, Miller, Livengood, Thirumalapura, Tewari)
| | - Dawn Miller
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (Purvis).,Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA (Krouse, Miller, Livengood, Thirumalapura, Tewari)
| | - Julia Livengood
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (Purvis).,Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA (Krouse, Miller, Livengood, Thirumalapura, Tewari)
| | - Nagaraja R Thirumalapura
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (Purvis).,Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA (Krouse, Miller, Livengood, Thirumalapura, Tewari)
| | - Deepanker Tewari
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (Purvis).,Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA (Krouse, Miller, Livengood, Thirumalapura, Tewari)
| |
Collapse
|