1
|
Determinants of Group B streptococcal virulence potential amongst vaginal clinical isolates from pregnant women. PLoS One 2019; 14:e0226699. [PMID: 31851721 PMCID: PMC6919605 DOI: 10.1371/journal.pone.0226699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a Gram-positive bacterium isolated from the vaginal tract of approximately 25% of women. GBS colonization of the female reproductive tract is of particular concern during pregnancy as the bacteria can invade gestational tissues or be transmitted to the newborn during passage through the birth canal. Infection of the neonate can result in life-threatening pneumonia, sepsis and meningitis. Thus, surveillance of GBS strains and corresponding virulence potential during colonization is warranted. Here we describe a panel of GBS isolates from the vaginal tracts of a cohort of pregnant women in Michigan, USA. We determined that capsular serotypes III and V were the most abundant across the strain panel, with only one isolate belonging to serotype IV. Further, 12.8% of strains belonged to the hyper-virulent serotype III, sequence type 17 (ST-17) and 15.4% expressed the serine rich repeat glycoprotein-encoding gene srr2. Functional assessment of the colonizing isolates revealed that almost all strains exhibited some level of β-hemolytic activity and that ST-17 strains, which express Srr2, exhibited increased bacterial adherence to vaginal epithelium. Finally, analysis of strain antibiotic susceptibility revealed the presence of antibiotic resistance to penicillin (15.4%), clindamycin (30.8%), erythromycin (43.6%), vancomycin (30.8%), and tetracycline (94.9%), which has significant implications for treatment options. Collectively, these data provide important information on vaginal GBS carriage isolate virulence potential and highlight the value of continued surveillance.
Collapse
|
2
|
Gendrin C, Shubin NJ, Boldenow E, Merillat S, Clauson M, Power D, Doran KS, Abrink M, Pejler G, Rajagopal L, Piliponsky AM. Mast cell chymase decreases the severity of group B Streptococcus infections. J Allergy Clin Immunol 2017; 142:120-129.e6. [PMID: 28916188 DOI: 10.1016/j.jaci.2017.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Group B Streptococcus (GBS) or Streptococcus agalactiae are β-hemolytic gram-positive bacteria that colonize the lower genital tracts of women and are frequently associated with infections during pregnancy. Innate immune defenses are critical for controlling GBS dissemination and systemic infection. Mast cells are resident sentinel cells that come into contact with pathogens early during colonization and infection. OBJECTIVE We aimed to investigate the contribution of chymase to systemic GBS infection and rates of preterm birth. METHODS Pharmacologic and genetic approaches using mice deficient in mast cell protease (MCPT) 4, the mouse functional homologue of human chymase, were used. RESULTS Our studies show that mast cells release a protease with chymotrypsin-like cleavage specificity in response to GBS. Additionally, increased GBS systemic infection and preterm births were observed in MCPT4-deficient mice versus MCPT4-sufficient mice. Furthermore, we observed that proteolytic cleavage of the host extracellular matrix protein fibronectin by peritoneal cell-derived mast cell lysates diminished GBS adherence. Consistent with this observation, the increase in GBS dissemination and preterm births observed in MCPT4-deficient mice was abolished when GBS was deficient in expression of the fibronectin-binding protein SfbA. CONCLUSIONS Taken together, our results suggest that the protective effect of MCPT4 against GBS dissemination and preterm labor can be attributed in part to MCPT4-mediated proteolysis of fibronectin. Our studies reveal a novel role of mast cells in defense against bacterial infections.
Collapse
Affiliation(s)
- Claire Gendrin
- Department of Pediatric Infectious Diseases, University of Washington, Seattle, Wash; Seattle Children's Research Institute, Seattle, Wash
| | | | | | - Sean Merillat
- Seattle Children's Research Institute, Seattle, Wash
| | | | - Danial Power
- Seattle Children's Research Institute, Seattle, Wash
| | - Kelly S Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, Calif; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, Calif
| | - Magnus Abrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University for Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, the Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington, Seattle, Wash; Seattle Children's Research Institute, Seattle, Wash; Department of Global Health, University of Washington, Seattle, Wash.
| | - Adrian M Piliponsky
- Department of Pediatric Infectious Diseases, University of Washington, Seattle, Wash; Seattle Children's Research Institute, Seattle, Wash.
| |
Collapse
|
3
|
Campisi E, Rinaudo CD, Donati C, Barucco M, Torricelli G, Edwards MS, Baker CJ, Margarit I, Rosini R. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages. Sci Rep 2016; 6:29799. [PMID: 27411639 PMCID: PMC4944191 DOI: 10.1038/srep29799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV.
Collapse
Affiliation(s)
- Edmondo Campisi
- GSK Vaccines s.r.l., Siena, Italy.,Sapienza, Università di Roma, Rome, Italy
| | | | - Claudio Donati
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Mara Barucco
- GSK Vaccines s.r.l., Siena, Italy.,Department of physics "Enrico Fermi", University of Pisa, Pisa, Italy
| | | | - Morven S Edwards
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Carol J Baker
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
4
|
Landwehr-Kenzel S, Henneke P. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease. Front Immunol 2014; 5:519. [PMID: 25400631 PMCID: PMC4212683 DOI: 10.3389/fimmu.2014.00519] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/05/2014] [Indexed: 12/18/2022] Open
Abstract
Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood–brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just emerging.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin , Germany ; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin , Berlin , Germany ; Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin , Berlin , Germany
| | - Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg , Freiburg , Germany ; Center for Chronic Immunodeficiency, University Medical Center Freiburg , Freiburg , Germany
| |
Collapse
|
5
|
Posadas DM, Ruiz-Ranwez V, Bonomi HR, Martín FA, Zorreguieta A. BmaC, a novel autotransporter of Brucella suis, is involved in bacterial adhesion to host cells. Cell Microbiol 2012; 14:965-82. [PMID: 22321605 DOI: 10.1111/j.1462-5822.2012.01771.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucella is an intracellular pathogen responsible of a zoonotic disease called brucellosis. Brucella survives and proliferates within several types of phagocytic and non-phagocytic cells. Like in other pathogens, adhesion of brucellae to host surfaces was proposed to be an important step in the infection process. Indeed, Brucella has the capacity to bind to culture human cells and key components of the extracellular matrix, such as fibronectin. However, little is known about the molecular bases of Brucella adherence. In an attempt to identify bacterial genes encoding adhesins, a phage display library of Brucella suis was panned against fibronectin. Three fibronectin-binding proteins of B. suis were identified using this approach. One of the candidates, designated BmaC was a very large protein of 340 kDa that is predicted to belong to the type I (monomeric) autotransporter family. Microscopy studies showed that BmaC is located at one pole on the bacterial surface. The phage displaying the fibronectin-binding peptide of BmaC inhibited the attachment of brucellae to both, HeLa cells and immobilized fibronectin in vitro. In addition, a bmaC deletion mutant was impaired in the ability of B. suis to attach to immobilized fibronectin and to the surface of HeLa and A549 cells and was out-competed by the wild-type strain in co-infection experiments. Finally, anti-fibronectin or anti-BmaC antibodies significantly inhibited the binding of wild-type bacteria to HeLa cells. Our results highlight the role of a novel monomeric autotransporter protein in the adhesion of B. suis to the extracellular matrix and non-phagocytic cells via fibronectin binding.
Collapse
Affiliation(s)
- Diana M Posadas
- Fundación Instituto Leloir, IIBBA CONICET and FCEyN, Universidad de Buenos Aires, Patricias Argentinas 435, (C1405BWE) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
6
|
Safadi RA, Mereghetti L, Salloum M, Lartigue MF, Virlogeux-Payant I, Quentin R, Rosenau A. Two-component system RgfA/C activates the fbsB gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B Streptococcus. PLoS One 2011; 6:e14658. [PMID: 21326613 PMCID: PMC3033900 DOI: 10.1371/journal.pone.0014658] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
Group B streptococcus (GBS) strains with the highest ability to bind to human fibrinogen belong to the highly invasive clonal complex (CC) 17. To investigate the fibrinogen-binding mechanisms of CC17 strains, we determined the prevalence of fibrinogen-binding genes (fbsA and fbsB), and fbs regulator genes (rogB encoding an fbsA activator, rovS encoding an fbsA repressor and rgf encoding a two-component system [TCS] whose role on fbs genes was not determined yet) in a collection of 134 strains representing the major CCs of the species. We showed that specific gene combinations were related to particular CCs; only CC17 strains contained the fbsA, fbsB, and rgf genes combination. Non polar rgfAC deletion mutants of three CC17 serotype III strains were constructed. They showed a 3.2- to 5.1-fold increase of fbsA transcripts, a 4.8- to 6.7-fold decrease of fbsB transcripts, and a 52% to 68% decreased fibrinogen-binding ability, demonstrating that the RgfA/RgfC TCS inhibits the fbsA gene and activates the fbsB gene. The relative contribution of the two fbs genes in fibrinogen-binding ability was determined by constructing isogenic fbsA, fbsB, deletion mutants of the three CC17 strains. The ability to bind to fibrinogen was reduced by 49% to 57% in ΔfbsA mutants, and by 78% to 80% in ΔfbsB mutants, suggesting that FbsB protein plays a greater role in the fibrinogen-binding ability of CC17 strains. Moreover, the relative transcription level of fbsB gene was 9.2- to 12.7-fold higher than that of fbsA gene for the three wild type strains. Fibrinogen-binding ability could be restored by plasmid-mediated expression of rgfAC, fbsA, and fbsB genes in the corresponding deletion mutants. Thus, our results demonstrate that a specific combination of fbs genes and fbs regulator genes account for the high fibrinogen-binding ability of CC17 strains that may participate to their enhanced invasiveness for neonates as compared to strains of other CCs.
Collapse
Affiliation(s)
- Rim Al Safadi
- Equipe d'Accueil 3854 Bactéries et risque materno-fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
| | - Laurent Mereghetti
- Equipe d'Accueil 3854 Bactéries et risque materno-fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
- Service de Bactériologie-Virologie, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Mazen Salloum
- Equipe d'Accueil 3854 Bactéries et risque materno-fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
| | - Marie-Frédérique Lartigue
- Equipe d'Accueil 3854 Bactéries et risque materno-fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
- Service de Bactériologie et Hygiène Hospitalière, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique UR1282 Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Roland Quentin
- Equipe d'Accueil 3854 Bactéries et risque materno-fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
- Service de Bactériologie et Hygiène Hospitalière, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Agnès Rosenau
- Equipe d'Accueil 3854 Bactéries et risque materno-fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
- Service de Bactériologie et Hygiène Hospitalière, Hôpital Trousseau, CHRU de Tours, Tours, France
- * E-mail:
| |
Collapse
|
7
|
Devi AS, Ponnuraj K. Cloning, expression, purification and ligand binding studies of novel fibrinogen-binding protein FbsB of Streptococcus agalactiae. Protein Expr Purif 2010; 74:148-55. [PMID: 20667474 DOI: 10.1016/j.pep.2010.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Fibrinogen (Fg) is often a common site for bacterial recognition. In Streptococcus agalactiae, two surface proteins that recognize Fg are FbsA and FbsB. FbsA and the N-terminal region of FbsB have been shown to bind to human Fg, while the C-terminal region of FbsB [FbsB(C)] has been speculated to bind to bovine Fg. This C-terminal region which is conserved in many of the S. agalactiae strains was tested for binding to bovine Fg. For this, FbsB(C) was cloned, expressed and purified. Dot blot, Western blot and ELISA experiments carried out with the purified protein showed that FbsB(C) has the ability to bind to bovine Fg. It was also observed that other than binding to the native form of Fg, FbsB(C) also has the ability to bind to the Fg subunits when reduced. On studying the influence of Ca(2+) on the FbsB(C)-bovine Fg binding it was observed that the addition of Ca(2+) in the assay experiment greatly stimulated the binding. When the primary structure of FbsB(C) was analyzed, it was seen that other than similarities with strains of the same organism, it does not have any similarity with any protein characterized so far. In addition to this, its secondary structure component analysis by circular dichroism revealed that it is composed mainly of alpha helices and random coils unlike other Fg-binding surface proteins where beta sheets are dominant. FbsB(C) indeed is a novel protein and understanding the mechanism of its interaction with Fg would be useful in developing strategies to fight against infections by Streptococcus.
Collapse
Affiliation(s)
- Aribam Swarmistha Devi
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | | |
Collapse
|
8
|
Rajagopal L. Understanding the regulation of Group B Streptococcal virulence factors. Future Microbiol 2009; 4:201-21. [PMID: 19257847 DOI: 10.2217/17460913.4.2.201] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial infections remain a significant threat to the health of newborns and adults. Group B Streptococci (GBS) are Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, this opportunistic organism can also subvert suboptimal host defenses to cause severe invasive disease and tissue damage. The increasing emergence of antibiotic-resistant GBS raises more concerns for sustained measures in treatment of the disease. A number of factors that are important for virulence of GBS have been identified. This review summarizes the functions of some well-characterized virulence factors, with an emphasis on how GBS regulates their expression. Regulatory and signaling molecules are attractive drug targets in the treatment of bacterial infections. Consequently, understanding signaling responses of GBS is essential for elucidation of pathogenesis of GBS infection and for the identification of novel therapeutic agents.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-91304, USA.
| |
Collapse
|
9
|
Abstract
This review focusses on the isolation of proteins from genomic or cDNA expression products libraries displayed on phage. The use of phage display is highlighted for the characterization of binding proteins with diverse biological functions. Phage display is compared with another strategy, the yeast two-hybrid method. The combination of both strategies is especially powerful to eliminate false positives and to get information on the biochemical functions of proteins.
Collapse
Affiliation(s)
- Jean-Luc Jestin
- URA CNRS 2128, Département de Biologie Structurale et Chimie, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris 15, France.
| |
Collapse
|
10
|
Mattar MA, Cortiñas TI, Stefanini AM. Extracellular proteins of Clostridium chauvoei are protective in a mouse model. Acta Vet Hung 2007; 55:159-70. [PMID: 17555280 DOI: 10.1556/avet.55.2007.2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anaerobic bacillus Clostridium chauvoei is the causative agent of blackleg, a lethal disease that has an important impact on the sheep and cattle industry worldwide. Immunity to C. chauvoei is considered to be mainly anticellular, and for this reason there is scarce information about the immunogenicity of extracellular proteins. In this work variations in protein profiles, immune response by ELISA and protective capacity of culture supernatants of three C. chauvoei strains, collected at different growth phases, are reported. Sera raised against extracellular antigens also recognised cellular antigens of the same molecular masses. Partially purified cell-free supernatants and those concentrated 10 times by ultrafiltration (C-CFS), obtained at the early stationary phase of growth, induced a strong immunoprotective response, even at low doses, that was more marked for C. chauvoei strain ATCC 10092 (p < or = 0.05). With C-CFS formulations, a clear relationship was observed between IgG titres, protective capacity and concentration of the antigen doses, indicating a specific immune response.
Collapse
Affiliation(s)
- María A Mattar
- Department of Microbiology, National University of San Luis, Chacabuco y Pedenera, 5700 San Luis, Argentina
| | | | | |
Collapse
|
11
|
Rosenau A, Martins K, Amor S, Gannier F, Lanotte P, van der Mee-Marquet N, Mereghetti L, Quentin R. Evaluation of the ability of Streptococcus agalactiae strains isolated from genital and neonatal specimens to bind to human fibrinogen and correlation with characteristics of the fbsA and fbsB genes. Infect Immun 2006; 75:1310-7. [PMID: 17158903 PMCID: PMC1828567 DOI: 10.1128/iai.00996-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of 111 Streptococcus agalactiae strains to bind to human fibrinogen was quantified. We correlated the percentages of bacteria that bound to immobilized fibrinogen with fibrinogen-binding (fbs) gene characteristics of strains and with clinical origin, serotypes, and phylogenetic positions of strains. Percentages varied from 0.4 to 29.9%. Fifty-five strains (49.5%) had the fbsB gene sensu stricto described by Gutekunst et al. (Infect. Immun., 72:3495-3504, 2004), allowing adhesion to human fibrinogen, and all of the other strains had an fgag variant gene. Ninety strains (81.1%) had a fbsA gene and 55 of them also had the fbsB gene. The other 21 strains (18.9%) had a truncated form of fbsA without the fbsB gene sensu stricto. The numbers of 48-nucleotide repeat sequences (rs) in the fbsA gene varied from 2 to 26. The population of strains with the highest ability to bind to human fibrinogen significantly more frequently had the fbsB gene sensu stricto and 4 to 7 rs in the fbsA gene (P < 0.05). However, the single strain that carried the highest number of rs (26 rs) in the fbsA gene showed high fibrinogen-binding activity (24.3%). Strains exhibiting significantly higher levels of binding to human fibrinogen belonged to a phylogenetic group of strains associated with neonatal meningitis, currently known as the ST-17 clone, that is mostly composed of serotype III strains. These findings indicate that S. agalactiae strains possess a wide variety of fbs gene content that markedly influences the ability of strains to bind to human fibrinogen. Variations in the configuration and the expression of the Fbs proteins may therefore partly explain the variability of virulence in S. agalactiae species.
Collapse
Affiliation(s)
- Agnès Rosenau
- Equipe d'Accueil 3854, Bactéries et risque maternofoetal, UFR Médecine, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B. Phage display in the study of infectious diseases. Trends Microbiol 2006; 14:141-7. [PMID: 16460941 PMCID: PMC7127285 DOI: 10.1016/j.tim.2006.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/05/2006] [Accepted: 01/20/2006] [Indexed: 12/01/2022]
Abstract
Microbial infections are dependent on the panoply of interactions between pathogen and host and identifying the molecular basis of such interactions is necessary to understand and control infection. Phage display is a simple functional genomic methodology for screening and identifying protein–ligand interactions and is widely used in epitope mapping, antibody engineering and screening for receptor agonists or antagonists. Phage display is also used widely in various forms, including the use of fragment libraries of whole microbial genomes, to identify peptide–ligand and protein–ligand interactions that are of importance in infection. In particular, this technique has proved successful in identifying microbial adhesins that are vital for colonization.
Collapse
Affiliation(s)
- Lisa M Mullen
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | | | | | | | | |
Collapse
|
13
|
Brochet M, Couvé E, Zouine M, Vallaeys T, Rusniok C, Lamy MC, Buchrieser C, Trieu-Cuot P, Kunst F, Poyart C, Glaser P. Genomic diversity and evolution within the species Streptococcus agalactiae. Microbes Infect 2006; 8:1227-43. [PMID: 16529966 DOI: 10.1016/j.micinf.2005.11.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Streptococcus agalactiae is a leading cause of invasive infections in neonates, and responsible for bovine mastitis. It is also a commensal bacterium adapted to asymptomatic colonization of the mammalian gut and of the genitourinary tract. Here, we report the analysis of a collection of 75 strains of human and animal origin by using serotyping, multilocus sequence typing, whole genome DNA-array hybridizations and sequence comparison of putatively virulence-associated loci. Although the most variable parts of the genome are the previously predicted genomic islands, significant genetic variations were present in the genome backbone. Evolution within genes encoding surface and secreted proteins and those involved in the biosynthesis of different capsular types is mainly due to recombination events leading to the replacement of a locus of several genes or to the allelic exchange of the internal part of a gene. These two processes, which led to a broad diversity of surface protein patterns, are probably involved in the diversity of interactions with the host and its immune system. According to gene content comparisons and phylogeny, recent gene replacements by horizontal gene transfer may occur but are rare events. Although specific gene patterns, with respect to the origin of the strains and the epidemiological characteristics, were not identified, we show that the recently described hypervirulent ST-17 lineage is a homogeneous group. The study highlights for the first time that this lineage contains a specific and conserved set of surface proteins, probably accounting for its high capacity to cause infections in newborns.
Collapse
Affiliation(s)
- Mathieu Brochet
- Unité de Génomique des Microorganismes Pathogènes-URA CNRS 2171, Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 2005; 18:102-27. [PMID: 15653821 PMCID: PMC544178 DOI: 10.1128/cmr.18.1.102-127.2005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received increasing attention as potential virulence factors and vaccine components. Here, we summarize current knowledge about S. agalactiae surface proteins, with emphasis on proteins that have been characterized immunochemically and/or elicit protective immunity in animal models. These surface proteins have been implicated in interactions with human epithelial cells, binding to extracellular matrix components, and/or evasion of host immunity. Of note, several S. agalactiae surface proteins are related to surface proteins identified in other bacterial pathogens, emphasizing the general interest of the S. agalactiae proteins. Because some S. agalactiae surface proteins elicit protective immunity, they hold promise as components in a vaccine based only on proteins or as carriers in polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Gunnar Lindahl
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
15
|
Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE. The staphylocoagulase family of zymogen activator and adhesion proteins. Cell Mol Life Sci 2004; 61:2793-8. [PMID: 15558209 PMCID: PMC2291352 DOI: 10.1007/s00018-004-4285-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Staphylocoagulase (SC) secreted by Staphylococcus aureus is a potent non-proteolytic activator of the blood coagulation zymogen prothrombin and the prototype of a newly established zymogen activator and adhesion protein (ZAAP) family. The conformationally activated SC.prothrombin complex specifically cleaves fibrinogen to fibrin, which propagates the growth of bacteria-fibrin-platelet vegetations in acute bacterial endocarditis. Our recent 2.2 A X-ray crystal structures of an active SC fragment [SC(1-325)] bound to the prothrombin zymogen catalytic domain, prethrombin 2, demonstrated that SC(1-325) represents a new type of non-proteolytic activator with a unique fold. The observed insertion of the SC(1-325) N-terminus into the 'Ile 16' cleft of prethrombin 2, which triggers the activating conformational change, provided the first unambiguous structural evidence for the 'molecular sexuality' mechanism of non-proteolytic zymogen activation. Based on the SC(1-325) fold, a new family of bifunctional zymogen activator and adhesion proteins was identified that possess N-terminal domains homologous to SC(1-325) and C-terminal domains that mediate adhesion to plasma or extracellular matrix proteins. Further investigation of the ZAAP family may lead to new insights into the mechanisms of bacterial factors that hijack zymogens of the human blood coagulation and fibrinolytic systems to promote and disseminate endocarditis and other infectious diseases.
Collapse
Affiliation(s)
- P. Panizzi
- Department of Pathology, Vanderbilt University School of Medicine, C3321A Medical Center North, Nashville 37232-2561 (USA), Fax: +1 615 322 1855, e-mail:
| | - R. Friedrich
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, 82152 Martinsried (Germany)
| | - P. Fuentes-Prior
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, 82152 Martinsried (Germany)
| | - W. Bode
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, 82152 Martinsried (Germany)
| | - P. E. Bock
- Department of Pathology, Vanderbilt University School of Medicine, C3321A Medical Center North, Nashville 37232-2561 (USA), Fax: +1 615 322 1855, e-mail:
| |
Collapse
|