1
|
Wang Y, Ma C, Wang S, Wu H, Chen X, Ma J, Wang L, Qiu HJ, Sun Y. Advances in the immunoescape mechanisms exploited by alphaherpesviruses. Front Microbiol 2024; 15:1392814. [PMID: 38962133 PMCID: PMC11221368 DOI: 10.3389/fmicb.2024.1392814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Alphaherpesviruses, categorized as viruses with linear DNA composed of two complementary strands, can potentially to induce diseases in both humans and animals as pathogens. Mature viral particles comprise of a core, capsid, tegument, and envelope. While herpesvirus infection can elicit robust immune and inflammatory reactions in the host, its persistence stems from its prolonged interaction with the host, fostering a diverse array of immunoescape mechanisms. In recent years, significant advancements have been achieved in comprehending the immunoescape tactics employed by alphaherpesviruses, including pseudorabies virus (PRV), herpes simplex virus (HSV), varicella-zoster virus (VZV), feline herpesvirus (FeHV), equine herpesvirus (EHV), and caprine herpesvirus type I (CpHV-1). Researchers have unveiled the intricate adaptive mechanisms existing between viruses and their natural hosts. This review endeavors to illuminate the research advancements concerning the immunoescape mechanisms of alphaherpesviruses by delineating the pertinent proteins and genes involved in virus immunity. It aims to furnish valuable insights for further research on related mechanisms and vaccine development, ultimately contributing to virus control and containment efforts.
Collapse
Affiliation(s)
- Yimin Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Caoyuan Ma
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shan Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuanqi Chen
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jinyou Ma
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Chen J, Hu JH, Sun RC, Li XH, Zhou J, Zhou B. Porcine Mx proteins inhibit pseudorabies virus replication through interfering with early gene synthesis. Vet Microbiol 2023; 280:109706. [PMID: 36871523 DOI: 10.1016/j.vetmic.2023.109706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Pseudorabies virus (PRV) is an enveloped, linear double-stranded DNA herpesvirus that resulted in huge financial losses to the swine industry. In addition to vaccination, the development of antiviral molecules is also a beneficial supplement to the control of Pseudorabies (PR). Although our previous studies have shown that porcine Mx protein (poMx1/2) significantly inhibited the proliferation of RNA virus, it was unknown whether poMx1/2 could inhibit porcine DNA virus, such as PRV. In this study, it was investigated the inhibitory effect of porcine Mx1/2 protein on PRV multiplication. The results showed that both poMx1 and poMx2 had anti-PRV activities, which required GTPase ability and stable oligomerization. Interestingly, the two GTPase deficient mutants (G52Q and T148A) of poMx2 also had the antiviral ability against PRV, which was consistent with previous reports, indicating that these mutants recognized and blocked the viral targets. Mechanistically, the antiviral restriction of poMx1/2 came from their inhibition of the early gene synthesis of PRV. Our results for the first time shed light on the antiviral activities of two poMx proteins against DNA virus. The data from this study provide further insights to develop new strategies for preventing and controlling the diseases caused by PRV.
Collapse
Affiliation(s)
- Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia-Huan Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui-Cong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Hoffmann W, Lipińska AD, Bieńkowska-Szewczyk K. Functional Analysis of a Frontal miRNA Cluster Located in the Large Latency Transcript of Pseudorabies Virus. Viruses 2022; 14:v14061147. [PMID: 35746619 PMCID: PMC9227234 DOI: 10.3390/v14061147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRNAs) have been identified as a class of crucial regulators of virus-host crosstalk, modulating such processes as viral replication, antiviral immune response, viral latency, and pathogenesis. Pseudorabies virus (PRV), a model for the study of alphaherpesvirus biology, codes for 11 distinct miRNAs mapped to the ~4.6 kb intron of Large Latency Transcript (LLT). Recent studies have revealed the role of clusters consisting of nine and eleven miRNA genes in the replication and virulence of PRV. The function of separate miRNA species in regulating PRV biology has not been thoroughly investigated. To analyze the regulatory potential of three PRV miRNAs located in the frontal cluster of the LLT intron, we generated a research model based on the constitutive expression of viral miRNAs in swine testis cells (ST_LLT [1–3] cell line). Using a cell culture system providing a stable production of individual miRNAs at high levels, we demonstrated that the LLT [1–3] miRNA cluster significantly downregulated IE180, EP0, and gE at the early stages of PRV infection. It was further determined that LLT [1–3] miRNAs could regulate the infection process, leading to a slight distortion in transmission and proliferation ability. Collectively, our findings indicate the potential of LLT [1–3] miRNAs to retard the host responses by reducing viral antigenic load and suppressing the expansion of progeny viruses at the early stages of infection.
Collapse
|
5
|
Li L, Wang R, Hu H, Chen X, Yin Z, Liang X, He C, Yin L, Ye G, Zou Y, Yue G, Tang H, Jia R, Song X. The antiviral activity of kaempferol against pseudorabies virus in mice. BMC Vet Res 2021; 17:247. [PMID: 34275451 PMCID: PMC8287772 DOI: 10.1186/s12917-021-02953-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/28/2021] [Indexed: 11/15/2022] Open
Abstract
Background Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing severe clinical symptoms such as acute human encephalitis. Currently, there are no antiviral drugs to treat PRV infections, and vaccines available only for swine could not provide full protection. Thus, new control measures are urgently needed. Results In the present study, kaempferol exhibited anti-PRV activity in mice through improving survival rate by 22.22 %, which was higher than acyclovir (Positive control) with the survival rate of 16.67 % at 6 days post infection (dpi); meanwhile, the survival rate was 0 % at 6 dpi in the infected-untreated group. Kaempferol could inhibit the virus replication in the brain, lung, kidney, heart and spleen, especially the viral gene copies were reduced by over 700-fold in the brain, which was further confirmed by immunohistochemical examination. The pathogenic changes induced by PRV infection in these organs were also alleviated. The transcription of the only immediate-early gene IE180 in the brain was significantly inhibited by kaempferol, leading to the decreased transcriptional levels of the early genes (EPO and TK). The expression of latency-associated transcript (LAT) was also inhibited in the brain, which suggested that kaempferol could inhibit PRV latency. Kaempferol-treatment could induce higher levels of IL-1β, IL-4, IL-6, TNF-α and IFN-γ in the serum at 3 dpi which were then declined to normal levels at 5 dpi. Conclusions These results suggested that kaempferol was expected to be a new alternative control measure for PRV infection.
Collapse
Affiliation(s)
- Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Rui Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Huaiyue Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xu Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
6
|
Xu JJ, Gao F, Wu JQ, Zheng H, Tong W, Cheng XF, Liu Y, Zhu H, Fu X, Jiang Y, Li L, Kong N, Li G, Tong G. Characterization of Nucleocytoplasmic Shuttling of Pseudorabies Virus Protein UL46. Front Vet Sci 2020; 7:484. [PMID: 32974393 PMCID: PMC7472561 DOI: 10.3389/fvets.2020.00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Pseudorabies virus (PRV) is the etiological agent of Aujeszky's disease, which has caused severe economic loss in China since its re-emergence in 2011. UL46, a late gene of herpesvirus, codes for the abundant but non-essential viral phosphoproteins 11 and 12 (VP11/12). In this study, VP11/12 was found to localize inside both the nucleus and cytoplasm. The nuclear localization signal (NLS) of VP11/12 was identified as 3RRARGTRRASWKDASR18. Further research identified α5 and α7 to be the receptors for NLS and the chromosome region maintenance 1 (CRM1) to be the receptor for the nuclear export signal. Moreover, we found that PRV VP11/12 interacts with EP0 and the stimulator of interferon genes protein (STING), whereas the NLS of VP11/12 is the important part for VP11/12 to interact with UL48. To our knowledge, this is the first study to provide reliable evidence verifying the nuclear localization of VP11/12 and its role as an additional shuttling tegument protein for PRV. In addition, this is also the first study to elucidate the interactions between PRV VP11/12 and EP0 as well as between PRV VP11/12 and STING, while identifying the precise interaction sites of PRV VP11/12 and VP16.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ji-Qiang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xue-Fei Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuting Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haojie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xinling Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Cai M, Wang P, Wang Y, Chen T, Xu Z, Zou X, Ou X, Li Y, Chen D, Peng T, Li M. Identification of the molecular determinants for nuclear import of PRV EP0. Biol Chem 2020; 400:1385-1394. [PMID: 31120855 DOI: 10.1515/hsz-2019-0201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022]
Abstract
Pseudorabies virus (PRV) early protein EP0 is a homologue of the herpes simplex virus 1 (HSV-1) immediate-early protein ICP0, which is a multifunctional protein and important for HSV-1 infection. However, the definite function of EP0 during PRV infection is not clear. In this study, to determine if EP0 might localize to the nucleus, as it is shown for its homologue in HSV-1, the subcellular localization pattern and molecular determinants for the nuclear import of EP0 were investigated. EP0 was demonstrated to predominantly target the nucleus in both PRV infected- and plasmid-transfected cells. Furthermore, the nuclear import of EP0 was shown to be dependent on the Ran-, importin α1-, α3-, α7-, β1- and transportin-1-mediated multiple pathways. Taken together, these data will open up new horizons for portraying the biological roles of EP0 in the course of PRV lytic cycle.
Collapse
Affiliation(s)
- Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Ping Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Daixiong Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou 510663, Guangdong, China
| | - Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| |
Collapse
|
8
|
Identification and characterization of G-quadruplex formation within the EP0 promoter of pseudorabies virus. Sci Rep 2018; 8:14029. [PMID: 30232344 PMCID: PMC6145870 DOI: 10.1038/s41598-018-32222-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
EP0 is an important early gene that modulates the life cycle of pseudorabies virus (PRV). A guanine-rich sequence overlapping with three Sp1 binding sites is located upstream of the transcription start site (TSS) in the EP0 promoter. Using native polyacrylamide gel electrophoresis (PAGE) and circular dichroism (CD), we verified that the G-rich region in the EP0 promoter forms an intramolecular parallel G-quadruplex (G4) in the presence of K+ ions. Further dimethyl sulphate (DMS) footprinting and Taq polymerase stop assays indicates the potential polymorphic folding of G4. In addition, a small chemical ligand, pyridostatin (PDS), promotes and stabilizes the formation of G4. Interestingly, based on the results of electrophoretic mobility shift assays (EMSA), the Sp1 protein bound to G4-bearing DNA with more affinity than DNA lacking the G4 structure. According to the luciferase reporter assay, G4 negatively regulates the EP0 promoter activity. These results demonstrate that Sp1 and G4 cooperate to regulate EP0 promoter activity.
Collapse
|
9
|
Lerma L, Alcalá S, Piñero C, Torres M, Martin B, Lim F, Sainz B, Tabarés E. Expression of the immediate early IE180 protein under the control of the hTERT and CEA tumor-specific promoters in recombinant pseudorabies viruses: Effects of IE180 protein on promoter activity and apoptosis induction. Virology 2015; 488:9-19. [PMID: 26590793 DOI: 10.1016/j.virol.2015.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
Since the pseudorabies virus (PRV) genome encodes for a single immediate-early protein, IE180, we reasoned that this strong transactivating protein could represent a key regulatory switch that could be genetically manipulated in order to alter its tropism towards cancer cells. We therefore initiated studies to test whether the human telomerase reverse transcriptase (hTERT) and carcinoembryonic antigen (CEA) tumor promoters could functionally replace the IE180 promoter. We show that both promoters can functionally substitute the IE180 promoter in plasmid constructs and recombinant viruses, and observed that IE180 differentially auto-regulated each promoter tested, with PRV IE180 negatively regulating the hTERT promoter but positively hyper-activating the CEA promoter. Interestingly, we also observed that the recombinant PRV-TER and PRV-CEA viruses preferentially replicated in diverse cancer cell lines compared to control non-cancer cells, and the PRV-CEA was capable of additionally inducing a profound apoptotic phenotype which we correlated to the overexpression of IE180.
Collapse
Affiliation(s)
- L Lerma
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - S Alcalá
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - C Piñero
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - M Torres
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - B Martin
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - F Lim
- Centro de Biología Molecular, CSIC-UAM, Cantoblanco, Madrid 28049, Spain
| | - B Sainz
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - E Tabarés
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain.
| |
Collapse
|
10
|
Xiang K, Cheng Y, Zhou M, Sun L, Ji Y, Wang Y, Zhang B, Luo Y, Ju C. Production of monoclonal antibody against EP0 protein of pseudorabies virus and determination of its recognized epitope. Monoclon Antib Immunodiagn Immunother 2014; 33:409-13. [PMID: 25545210 DOI: 10.1089/mab.2014.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Early protein 0 (EP0) is especially important for modulating PRV gene expression and reactivation from the latent state, but the mechanisms have not been elucidated. In this study, six monoclonal antibodies (MAbs) against EP0 protein of PRV were generated and their characterizations were investigated. Western blot analysis showed all six MAbs could react with immunizing antigen, but only 2B12 and 2C6 could react with native EP0 protein from PRV-infected cells. ELISA additivity tests revealed that at least three epitopes in EP0 were defined by six MAbs. The epitope recognized by MAb 2B12 was further identified in 287-292 aa of EP0 protein using a series of expressed overlapping peptides. These MAbs may provide valuable tools for further research of the functions of EP0 in PRV infection.
Collapse
Affiliation(s)
- Keyu Xiang
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tombácz D, Tóth JS, Boldogkoi Z. Effects of deletion of the early protein 0 gene of pseudorabies virus on the overall viral gene expression. Gene 2012; 493:235-42. [PMID: 22178766 DOI: 10.1016/j.gene.2011.11.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/17/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
Real-time RT-PCR analysis was applied to evaluate the impact of deletion of the early protein 0 (EP0) gene of pseudorabies virus (PRV) on the global expression of the viral transcripts during lytic infection in cultured porcine kidney cells. Our analysis showed that EP0 exerted an inhibitory effect on the transcription of the PRV genes in the early stage of infection, and alternating stimulatory and inhibitory effects on the viral gene expressions in the late stage of infection. The data also suggested that a general function of EP0 might be to reverse the kinetics of expression of early viral genes. We also observed that EP0 facilitated the development of correlations in the transcription kinetics between the immediate early 180 gene and the PRV transcripts, indicating that a major function of EP0 could be to modify the effects of the IE180 protein on the PRV transcriptome.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. st. 4., Szeged, H-6720, Hungary.
| | | | | |
Collapse
|
12
|
Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, has a complex multilayered extracellular virion that is structurally conserved among other herpesviruses. PRV virions contain a double-stranded DNA genome within a proteinaceous capsid surrounded by the tegument, a layer of viral and cellular proteins. The envelope layer, which encloses the capsid and tegument, contains viral transmembrane proteins anchored in a phospholipid bilayer. The viral and host proteins contained within virions execute important functions during viral spread and pathogenesis, but a detailed understanding of the composition of PRV virions has been lacking. In this report, we present the first comprehensive proteomic characterization of purified PRV virions by mass spectrometry using two complementary approaches. To exclude proteins present in the extracellular medium that may nonspecifically associate with virions, we also analyzed virions treated with proteinase K and samples prepared from mock-infected cells. Overall, we identified 47 viral proteins associated with PRV virions, 40 of which were previously localized to the capsid, tegument, and envelope layers using traditional biochemical approaches. Additionally, we identified seven viral proteins that were previously undetected in virions, including pUL8, pUL20, pUL32, pUL40 (RR2), pUL42, pUL50 (dUTPase), and Rsp40/ICP22. Furthermore, although we did not enrich for posttranslational modifications, we detected phosphorylation of four virion proteins: pUL26, pUL36, pUL46, and pUL48. Finally, we identified 48 host proteins associated with PRV virions, many of which have known functions in important cellular pathways such as intracellular signaling, mRNA translation and processing, cytoskeletal dynamics, and membrane organization. This analysis extends previous work aimed at determining the composition of herpesvirus virions and provides novel insights critical for understanding the mechanisms underlying PRV entry, assembly, egress, spread, and pathogenesis.
Collapse
|
13
|
Everett RD, Boutell C, McNair C, Grant L, Orr A. Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICP0 family of proteins. J Virol 2010; 84:3476-87. [PMID: 20106921 PMCID: PMC2838103 DOI: 10.1128/jvi.02544-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/15/2010] [Indexed: 11/20/2022] Open
Abstract
Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is an E3 ubiquitin ligase of the RING finger class that is required for efficient lytic infection and reactivation from latency. Other alphaherpesviruses also express ICP0-related RING finger proteins, but these have limited homology outside the core RING domain. Existing evidence indicates that ICP0 family members have similar properties, but there has been no systematic comparison of the biochemical activities and biological functions of these proteins. Here, we describe an inducible cell line system that allows expression of the ICP0-related proteins of bovine herpes virus type 1 (BHV-1), equine herpesvirus type 1 (EHV-1), pseudorabies virus (PRV), and varicella-zoster virus (VZV) and their subsequent functional analysis. We report that the RING domains of all the proteins have E3 ubiquitin ligase activity in vitro. The BHV-1, EHV-1, and PRV proteins complement ICP0-null mutant HSV-1 plaque formation and induce derepression of quiescent HSV-1 genomes to levels similar to those achieved by ICP0 itself. VICP0, the ICP0 expressed by VZV, was found to be extremely unstable, which limited its analysis in this system. We compared the abilities of the ICP0-related proteins to disrupt ND10, to induce degradation of PML and Sp100, to affect key components of the interferon signaling pathway, and to interfere with induction of interferon-stimulated genes. We found that the property that correlated most closely with their biological activities was the ability to preclude the recruitment of cellular ND10 proteins to sites closely associated with incoming HSV-1 genomes and early replication compartments.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Transcriptional suppression of IE180 and TK promoters by the EP0 of pseudorabies virus strains Ea and Fa. Virus Genes 2009; 38:269-75. [DOI: 10.1007/s11262-008-0320-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 12/18/2008] [Indexed: 11/26/2022]
|
15
|
Nauwynck H, Glorieux S, Favoreel H, Pensaert M. Cell biological and molecular characteristics of pseudorabies virus infections in cell cultures and in pigs with emphasis on the respiratory tract. Vet Res 2007; 38:229-41. [PMID: 17257571 DOI: 10.1051/vetres:200661] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 11/23/2006] [Indexed: 11/14/2022] Open
Abstract
In the present review, several cell biological and molecular aspects of virus-cell and virus-host (pig) interactions are reviewed for pseudorabies (Aujeszky's disease) virus. Concerning the virus-cell interactions, the complex cascade of events in the virus replication cycle is given together with the different mechanisms of cell-to-cell spread. The pathogenesis of pseudorabies virus infections in pigs is concentrated on the sequence of events in the respiratory tract. Finally, a short overview is given on the control of the disease and eradication of the virus by the combination of marker vaccines and discriminating ELISA.
Collapse
Affiliation(s)
- Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
16
|
Brukman A, Enquist LW. Pseudorabies virus EP0 protein counteracts an interferon-induced antiviral state in a species-specific manner. J Virol 2006; 80:10871-3. [PMID: 16928746 PMCID: PMC1641768 DOI: 10.1128/jvi.01308-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudorabies virus (PRV), an alphaherpesvirus related to herpes simplex virus type 1 and varicella-zoster virus, infects a broad host range of mammals. A striking characteristic of PRV infection is the different symptoms and outcomes of infection in natural and nonnatural hosts. Adult pigs, the natural hosts of PRV, survive infection with only mild respiratory symptoms, while nonnatural hosts, including rodents and cattle, invariably die after exhibiting neurological symptoms. Here, we show that the PRV EP0 protein is necessary to overcome an interferon-mediated antiviral response in primary cells from the natural host of PRV but is not necessary in nonnatural-host cells.
Collapse
Affiliation(s)
- Alla Brukman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
17
|
Brukman A, Enquist LW. Suppression of the interferon-mediated innate immune response by pseudorabies virus. J Virol 2006; 80:6345-56. [PMID: 16775323 PMCID: PMC1488972 DOI: 10.1128/jvi.00554-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus related to the human pathogens herpes simplex virus type 1 (HSV-1) and varicella-zoster virus. PRV is capable of infecting and killing a wide variety of mammals. How it avoids innate immune defenses in so many hosts is not understood. While the anti-interferon (IFN) strategies of HSV-1 have been studied, little is known about how PRV evades the IFN-mediated immune response. In this study, we determined if wild-type PRV infection can overcome the establishment of a beta interferon (IFN-beta)-induced antiviral state in primary rat fibroblasts. Using microarray technology, we found that the expression of a subset of genes normally induced by IFN-beta in these cells was not induced when the cells were simultaneously infected with a wild-type PRV strain. Expression of transcripts associated with major histocompatibility complex class I antigen presentation and NK cell activation was reduced, while transcripts associated with inflammation either were unaffected or were induced by viral infection. This suppression of IFN-stimulated gene expression occurred because IFN signal transduction, in particular the phosphorylation of STAT1, became less effective in PRV-infected cells. At least one virion-associated protein is involved in inhibition of STAT1 tyrosine phosphorylation. This ability to disarm the IFN-beta response offers an explanation for the uniform lethality of virulent PRV infection of nonnatural hosts.
Collapse
Affiliation(s)
- Alla Brukman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
18
|
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005; 69:462-500. [PMID: 16148307 PMCID: PMC1197806 DOI: 10.1128/mmbr.69.3.462-500.2005] [Citation(s) in RCA: 599] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.
Collapse
Affiliation(s)
- Lisa E Pomeranz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | |
Collapse
|
19
|
Ou CJ, Wong ML, Chang TJ. A TEF-1-element is required for activation of the promoter of pseudorabies virus glycoprotein X gene by IE180. Virus Genes 2002; 25:241-53. [PMID: 12881636 DOI: 10.1023/a:1020915706724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The pseudorabies virus (PRV) immediate-early regulatory protein IE180 is able to transactivate the viral early and late genes. Using chloramphenicol acetyltransferase (CAT) assay, we investigated the transactivation function of IE180 to the promoter of PRV glycoprotein X (gX) gene, and our results showed that IE180 could significantly increase the expression of CAT gene which was under the control of gX promoter. To further identify the activation domains of IE180 protein that interact with the gX promoter sequences, various truncated mutants of IE180 gene and gX promoter gene were constructed and analyzed by CAT and gel retardation assay. Results revealed that the N-terminal amino acid residues from 133 to 736 of IE180 could interact with the binding site of transcriptional enhancer factor-1 (TEF-1) that resides in the gX promoter. Formation of protein-DNA complexes between the IE180 protein and the TEF-1 element of the gX promoter was observed using electrophoretic mobility shift assay (EMSA) as well as Southwestern blot analysis. These results indicated that a direct interaction occurred between IE180 and the TEF-1 element; and this interaction was abolished if the TEF-1 element was mutated. The association of IE180 with the TEF-1 element was further confirmed by the supershift of EMSA complexes using IE180 specific antibody. Taken together, our results suggested that formation of a complex between the IE180 protein and TEF-1 element in the gX promoter region was involved in the transcriptional regulation of the gX gene.
Collapse
Affiliation(s)
- Chia-Jen Ou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | | | | |
Collapse
|
20
|
Chang YY, Wong ML, Lin HW, Chang TJ. Cloning and regulation of the promoter of pseudorabies virus (TNL strain) glycoprotein E gene. Virus Genes 2002; 24:235-41. [PMID: 12086144 DOI: 10.1023/a:1015376431948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nucleotide sequence upstream to the glycoprotein E (gE) gene of pseudorabies virus (PrV, TNL strain) was cloned from the genomic virus DNA by polymerase chain reaction (PCR) and its DNA sequences were determined. The DNA segment, which was supposed to contain the gE promoter, was subcloned into a chloramphenicol acetyltransferase (CAT) reporter gene and the resulting plasmid was named pgEp-B-CAT. To examine the promoter function of this upstream sequence of gE gene, we transfected pgEp-B-CAT DNA into L-M cells and the promoter activity was analyzed by CAT assay. Results showed that our DNA fragment could exhibit promoter activity. Furthermore, we transfected L-M cells with pgEp-B-CAT for 48 h, then superinfected cells with pseudorabies virus, and performed CAT assay. It was found that PrV superinfection could slightly enhance the activity of gE promoter, suggesting that factors produced during viral infection could stimulate the promoter. To explore the possible mechanism of regulation at transcriptional level, the pgEp-B-CAT plasmid were cotransfected with eukaryotic vectors expressing viral regulatory proteins IE or EP0, and results indicated that the gE promoter was activated by IE protein whereas it was inhibited by EP0 protein. Moreover, the effect of exogenous IE or EP0 on the protein level of gE in PrV-infected cells was examined; conclusion similar to that of CAT assay were obtained.
Collapse
Affiliation(s)
- Yuan-Yen Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
21
|
Tasaki T, Taharaguchi S, Kobayashi T, Yoshino S, Ono E. Inhibition of pseudorabies virus replication by a dominant-negative mutant of early protein 0 expressed in a tetracycline-regulated system. Vet Microbiol 2001; 78:195-203. [PMID: 11165064 DOI: 10.1016/s0378-1135(00)00301-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pseudorabies virus (PRV) early protein 0 (EP0) consisting of 410 amino acids is a transactivator of viral genes. A mutant consisting of amino acids 1-113 exhibits dominant-negative properties. In order to assess the antiviral potential of the EP0 mutant, Vero cells were transformed with the EP0 mutant gene expressed in a tetracycline-regulated system. The transformed cell lines showed marked resistance to PRV infection when expression of the EP0 mutant gene was induced. In the transformed cell line infected with PRV, synthesis of the immediate-early protein (IE180) and of EP0 was inhibited, whereas the levels of IE and EP0 messenger RNA (mRNA) were not decreased, as compared with those of the control cell line. The present results suggest that the EP0 mutant may not alter the efficiency of the viral gene transcription but rather translation efficiency of the viral mRNA.
Collapse
Affiliation(s)
- T Tasaki
- Laboratory of Animal Experiment for Disease Model, Institute for Genetic Medicine, Hokkaido University, 060-0815, Sapporo, Japan
| | | | | | | | | |
Collapse
|
22
|
Ono E, Tasaki T, Kobayashi T, Taharaguchi S, Nikami H, Miyoshi I, Kasai N, Arikawa J, Kida H, Shimizu Y. Resistance to pseudorabies virus infection in transgenic mice expressing the chimeric transgene that represses the immediate-early gene transcription. Virology 1999; 262:72-8. [PMID: 10489342 DOI: 10.1006/viro.1999.9899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A chimeric gene encoding a fusion protein consisting of the DNA-binding domain of the immediate-early (IE) protein of pseudorabies virus (PRV) and a tail-truncated VP16 of herpes simplex virus 1, lacking the transcription activation domain, has been shown to repress transcription of the PRV IE gene, resulting in the inhibition of PRV growth in vitro. To assess the antiviral potential of the fusion protein in vivo, transgenic mice containing the chimeric gene under the control of the virus- and interferon-inducible Mx 1 promoter were generated. A transgenic mouse line showed marked resistance to PRV infection when the mice were challenged intranasally with PRV. Inhibition of PRV replication was also observed in monolayers of embryonic cells prepared from the transgenic mice. In the cells infected with PRV, transcription of the PRV IE gene was repressed. The present results indicate that the chimeric gene is able to exert a significant antiviral effect against PRV infection in vivo.
Collapse
MESH Headings
- Animals
- Antiviral Agents/genetics
- Antiviral Agents/physiology
- Cell Division/genetics
- Cells, Cultured
- Chimera/immunology
- Embryo, Mammalian
- Fibroblasts/virology
- Gene Expression Regulation, Viral/immunology
- Genes, Immediate-Early/immunology
- Herpesvirus 1, Suid/growth & development
- Herpesvirus 1, Suid/immunology
- Immunity, Innate
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Pseudorabies/immunology
- Transcription, Genetic/immunology
- Transgenes/immunology
Collapse
Affiliation(s)
- E Ono
- Institute of Immunological Science, Hokkaido University, Sapporo, 060-0815, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|