1
|
Xu M, Ma Y, Zhao Y, Xu L, Lin W. Peroxynitrite activatable NIR-II probe for tumor diagnosis and photothermal therapy in vivo. Anal Chim Acta 2025; 1335:343443. [PMID: 39643299 DOI: 10.1016/j.aca.2024.343443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Peroxynitrite (ONOO-) is a bioactive molecule involved in various biochemical processes, and the abnormal concentration fluctuations of ONOO- in living systems are closely associated with various diseases, including cancer. An important characteristic of the tumor microenvironment is the overexpression of ONOO-, highlighting the significance of specific detection of ONOO- in distinguishing between tumor tissue and normal tissue. A single near-infrared second window (NIR-II) molecular probe integrated fluorescence imaging and photothermal therapy can achieve precise localization and effective ablation of deep-seated tumor tissue. However, it still remains challenges. (87) RESULTS: In this study, we present a probe (BDⅡ-ONOO-) that integrates NIR-II fluorescence imaging and photothermal therapy for the specific detection of ONOO-. The probe exhibits excellent selectivity, high sensitivity, low toxicity and high biocompatibility. In the presence of ONOO-, the probe can quickly respond to ONOO- and emit NIR-II fluorescence at 900 nm with 7.6-fold change in fluorescence intensity. In addition, the probe BDⅡ-ONOO- exhibits a high photothermal conversion efficiency of 41.6 % under 808 nm laser irradiation in the presence of ONOO-. In vivo imaging results indicate that the probe BDⅡ-ONOO- not only effectively distinguishes tumor tissue from normal tissue but also performs photothermal treatment on 4T1 tumor without apparent biological toxicity. (112) SIGNIFICANCE: This work provides insights for the future development of tumor-specific diagnostic and therapeutic approaches with good biocompatibility and deep tissue penetration. The probe described in this work may be employed as a powerful tool for the diagnosis and precise treatment of tumors in vivo. (44).
Collapse
Affiliation(s)
- Muxin Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yanyan Ma
- Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
| | - Yuping Zhao
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lizhen Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
2
|
Dornelas JCM, Paixão VM, Carmo PHF, Costa MC, Gomes ECQ, de Resende-Stoianoff MA, Santos DA. Influence of the agrochemical benomyl on Cryptococcus gattii-plant interaction in vitro and in vivo. Braz J Microbiol 2024; 55:2463-2471. [PMID: 38963475 PMCID: PMC11405651 DOI: 10.1007/s42770-024-01440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Cryptococcus gattii, an environmental fungus, is one of the agents of cryptococcosis. The influence of agrochemicals on fungal resistance to antifungals is widely discussed. However, the effects of benomyl (BEN) on fungal interaction with different hosts is still to be understood. Here we studied the influence of adaptation to BEN in the interaction with a plant model, phagocytes and with Tenebrio molitor. First, the strain C. gattii L24/01 non-adapted (NA), adapted (A) to BEN, and adapted with further culture on drug-free media (10p) interact with Nicotiana benthamiana, with a peak in the yeast burden on the 7th day post-inoculation. C. gattii L24/01 A and 10p provided lower fungal burden, but these strains increased cell diameter and capsular thickness after the interaction, together with decreased fungal growth. The strains NA and A showed reduced ergosterol levels, while 10p exhibited increased activity of laccase and urease. L24/01 A recovered from N. benthamiana was less engulfed by murine macrophages, with lower production of reactive oxygen species. This phenotype was accompanied by increased ability of this strain to grow inside macrophages. Otherwise, L24/01 A showed reduced virulence in the T. molitor larvae model. Here, we demonstrate that the exposure to BEN, and interaction with plants interfere in the morphophysiology and virulence of the C. gattii.
Collapse
Affiliation(s)
- João C M Dornelas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Vivian M Paixão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Paulo H F Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Marliete C Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Eldon C Q Gomes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Maria Aparecida de Resende-Stoianoff
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
3
|
Tanino T, Ueda Y, Nagai N, Ishihara Y, Saijo M, Funakami Y. In vivo upstream factors of mouse hepatotoxic mechanism with sustained hepatic glutathione depletion: Acetaminophen metabolite-erythrocyte adducts and splenic macrophage-generated reactive oxygen species. Chem Biol Interact 2024; 398:111091. [PMID: 38825056 DOI: 10.1016/j.cbi.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Investigation of acetaminophen (APAP)-induced liver damage recently indicated the significance of phagocytic NADPH oxidase (NOX)-derived reactive oxygen species (ROS) and ferroptosis in the liver. Here, we focused on phagocytosis by iron-containing erythrocyte-devouring splenic macrophages and explored upstream factors of known APAP hepatotoxic mechanisms in vivo. Splenectomy did not alter hepatic cytochrome P450 (CYP) 2E1 activity or hepatic glutathione (GSH) content. APAP injection into splenectomized mice almost completely suppressed increases in plasma alanine aminotransferase levels and centrilobular hepatic necrosis showing the spleen to be a critical tissue in APAP-induced liver damage. Hepatic GSH was recovered to approximately 50 % content at 8 h. In non-splenectomized mice, liver damage was dramatically suppressed by a sensitive redox probe (DCFH-DA), macrophage-depleting clodronate (CL), and a NOX2 inhibitor. APAP treatment resulted in markedly stronger fluorescence intensity from DCFH-DA due to excessive ROS around splenic macrophages, which was lost upon co-treatment with a CYP inhibitor and CL. Deformed erythrocytes disappeared in mice co-treated with DCFH-DA, CL, the NOX2 inhibitor, and the CYP inhibitor. Simultaneously, these four compounds significantly improved APAP-depleted GSH levels. The CYP inhibitor also prevented the formation of APAP-cell adducts in the blood and spleen. In the spleen, CL co-treatment markedly reduced the number of adducts. Splenic ferrous iron levels were significantly elevated by APAP. Therefore, we demonstrated that splenic macrophages devoured APAP metabolite-erythrocyte adducts and subsequently splenic macrophage-related ROS caused sustained hepatic GSH depletion and excessive erythrocyte deformation around 7 h. Our data indicate in vivo upstream factors of known APAP hepatotoxic mechanisms.
Collapse
Affiliation(s)
- Tadatoshi Tanino
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Yukari Ueda
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| | - Yuka Ishihara
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Minori Saijo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Yoshinori Funakami
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
4
|
Kim J, Yoo J, Kim B, Lee KW, Kim S, Hong S, Kim JS. An AIE-based fluorescent probe to detect peroxynitrite levels in human serum and its cellular imaging. Chem Commun (Camb) 2024; 60:5443-5446. [PMID: 38686636 DOI: 10.1039/d4cc01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
An AIE-based fluorescent probe was designed to evaluate peroxynitrite levels in complex biological samples. The newly synthesized hydrazone-conjugated probe fluoresces strongly in the presence of peroxynitrite. Clinically, the peroxynitrite levels can be measured in human serum and cellular mitochondria with an LOD of 6.5 nM by fluorescence imaging in vitro.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Jiyoung Yoo
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Byungkook Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Kyung-Woo Lee
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Sunghyun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
5
|
Zhang J, Hu X, Geng Y, Xiang L, Wu Y, Li Y, Yang L, Zhou K. Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches. J Adv Res 2024:S2090-1232(24)00174-7. [PMID: 38704090 DOI: 10.1016/j.jare.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| |
Collapse
|
6
|
Wu G, Li Z, Huang P, Lin W. Shedding light on ONOO - detection: the emergence of a fast-response fluorescent probe for biological systems. J Mater Chem B 2024; 12:3436-3444. [PMID: 38497466 DOI: 10.1039/d3tb02994h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
ONOO-, a bioactive molecule, plays a critical role in inflammation-related signaling pathways and pathological mechanisms. Numerous studies have established a direct correlation between elevated ONOO- levels and tumor progression. Therefore, investigating ONOO- levels in inflammation and tumors is of utmost importance. Fluorescence imaging presents a highly sensitive, non-invasive, easily operable, selective, and efficient method for ONOO- detection in situ. In this study, we designed and synthesized a rhodamine-based probe, NRho, which effectively identifies tumors, inflammatory cells, tissues, and organs by detecting ONOO- content. The synthesis process of NRho is simple, yielding a probe with favorable spectral characteristics and rapid response. Our cell imaging analysis has provided novel insights, revealing distinct ONOO- levels among different types of cancer cells, with hepatocellular carcinoma cells exhibiting higher ONOO- content than the others. This observation marks the proposal of such variations in ONOO- levels across cancer cell types. Furthermore, our study has showcased the practicality of our probe in live organ imaging, enabling the identification of tumors from living organs within a brief 5-minute incubation period. Additionally, our findings highlight the rapid detection capability of the probe NRho in various tissue samples, effectively identifying inflammation. This research holds important promise in advancing biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Guoliang Wu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Zihong Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Ping Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
7
|
Wang X, Yu Z, Dong F, Li J, Niu P, Ta Q, Kan J, Ma C, Han M, Yu J, Zhao D, Li J. Clarifying the mechanism of apigenin against blood-brain barrier disruption in ischemic stroke using systems pharmacology. Mol Divers 2024; 28:609-630. [PMID: 36949297 DOI: 10.1007/s11030-023-10607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 03/24/2023]
Abstract
Currently, recombinant tissue plasminogen activator (rtPA) is an effective therapy for ischemic stroke (IS). However, blood-brain barrier (BBB) disruption is a serious side effect of rtPA therapy and may lead to patients' death. The natural polyphenol apigenin has a good therapeutic effect on IS. Apigenin has potential BBB protection, but the mechanism by which it protects the BBB integrity is not clear. In this study, we used network pharmacology, bioinformatics, molecular docking and molecular dynamics simulation to reveal the mechanisms by which apigenin protects the BBB. Among the 146 targets of apigenin for the treatment of IS, 20 proteins were identified as core targets (e.g., MMP-9, TLR4, STAT3). Apigenin protects BBB integrity by inhibiting the activity of MMPs through anti-inflammation and anti-oxidative stress. These mechanisms included JAK/STAT, the toll-like receptor signaling pathway, and Nitrogen metabolism signaling pathways. The findings of this study contribute to a more comprehensive understanding of the mechanism of apigenin in the treatment of BBB disruption and provide ideas for the development of drugs to treat IS.
Collapse
Affiliation(s)
- Xu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - ZiQiao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Fuxiang Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jinjian Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ping Niu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qiyi Ta
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - JunMing Kan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chunyu Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Moxuan Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Junchao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Dexi Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Zhong M, Liang P, Feng Z, Yang X, Li G, Sun R, He L, Tan J, Xiao Y, Yu Z, Yi M, Wang X. A nanocomposite competent to overcome cascade drug resistance in ovarian cancer via mitochondria dysfunction and NO gas synergistic therapy. Asian J Pharm Sci 2023; 18:100872. [PMID: 38161785 PMCID: PMC10755721 DOI: 10.1016/j.ajps.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is one of the most common and recurring malignancies in gynecology. Patients with relapsed OC always develop "cascade drug resistance" (CDR) under repeated chemotherapy, leading to subsequent failure of chemotherapy. To overcome this challenge, amphiphiles (P1) carrying a nitric oxide (NO) donor (Isosorbide 5-mononitrate, ISMN) and high-density disulfide are synthesized for encapsulating mitochondria-targeted tetravalent platinum prodrug (TPt) to construct a nanocomposite (INP@TPt). Mechanism studies indicated that INP@TPt significantly inhibited drug-resistant cells by increasing cellular uptake and mitochondrial accumulation of platinum, depleting glutathione, and preventing apoptosis escape through generating highly toxic peroxynitrite anion (ONOO-). To better replicate the microenvironmental and histological characteristics of the drug resistant primary tumor, an OC patient-derived tumor xenograft (PDXOC) model in BALB/c nude mice was established. INP@TPt showed the best therapeutic effects in the PDXOC model. The corresponding tumor tissues contained high ONOO- levels, which were attributed to the simultaneous release of O2•- and NO in tumor tissues. Taken together, INP@TPt-based systematic strategy showed considerable potential and satisfactory biocompatibility in overcoming platinum CDR, providing practical applications for ovarian therapy.
Collapse
Affiliation(s)
- Min Zhong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Peiqin Liang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Zhenzhen Feng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Guang Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Rui Sun
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan 523018, China
| | - Lijuan He
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Jinxiu Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Yangpengcheng Xiao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan 523018, China
| | - Muhua Yi
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| |
Collapse
|
9
|
Liao CJ, Tseng YT, Cheng YA, Dayao LA, Iffland-Mühlhaus L, Gee LB, Ribson RD, Chan TS, Apfel UP, Lu TT. Ligand Control of Dinitrosyl Iron Complexes for Selective Superoxide-Mediated Nitric Oxide Monooxygenation and Superoxide-Dioxygen Interconversion. J Am Chem Soc 2023; 145:20389-20402. [PMID: 37683125 DOI: 10.1021/jacs.3c05577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Through nitrosylation of [Fe-S] proteins, or the chelatable iron pool, a dinitrosyl iron unit (DNIU) [Fe(NO)2] embedded in the form of low-molecular-weight/protein-bound dinitrosyl iron complexes (DNICs) was discovered as a metallocofactor assembled under inflammatory conditions with elevated levels of nitric oxide (NO) and superoxide (O2-). In an attempt to gain biomimetic insights into the unexplored transformations of the DNIU under inflammation, we investigated the reactivity toward O2- by a series of DNICs [(NO)2Fe(μ-MePyr)2Fe(NO)2] (1) and [(NO)2Fe(μ-SEt)2Fe(NO)2] (3). During the superoxide-induced conversion of DNIC 1 into DNIC [(K-18-crown-6-ether)2(NO2)][Fe(μ-MePyr)4(μ-O)2(Fe(NO)2)4] (2-K-crown) and a [Fe3+(MePyr)x(NO2)y(O)z]n adduct, stoichiometric NO monooxygenation yielding NO2- occurs without the transient formation of peroxynitrite-derived •OH/•NO2 species. To study the isoelectronic reaction of O2(g) and one-electron-reduced DNIC 1, a DNIC featuring an electronically localized {Fe(NO)2}9-{Fe(NO)2}10 electronic structure, [K-18-crown-6-ether][(NO)2Fe(μ-MePyr)2Fe(NO)2] (1-red), was successfully synthesized and characterized. Oxygenation of DNIC 1-red leads to the similar assembly of DNIC 2-K-crown, of which the electronic structure is best described as paramagnetic with weak antiferromagnetic coupling among the four S = 1/2 {FeIII(NO-)2}9 units and S = 5/2 Fe3+ center. In contrast to DNICs 1 and 1-red, DNICs 3 and [K-18-crown-6-ether][(NO)2Fe(μ-SEt)2Fe(NO)2] (3-red) display a reversible equilibrium of "3 + O2- ⇋ 3-red + O2(g)", which is ascribed to the covalent [Fe(μ-SEt)2Fe] core and redox-active [Fe(NO)2] unit. Based on this study, the supporting/bridging ligands in dinuclear DNIC 1/3 (or 1-red/3-red) control the selective monooxygenation of NO and redox interconversion between O2- and O2 during reaction with O2- (or O2).
Collapse
Affiliation(s)
- Cheng-Jhe Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Tseng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-An Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Loise Ann Dayao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Linda Iffland-Mühlhaus
- Department of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ryan D Ribson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Electrosynthesis, Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
10
|
Xie F, Zhou R, Jian C, Zhang L, He Y. A borate-based peroxynitrite fluorescent probe and its application in fluorescence imaging of living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37366788 DOI: 10.1039/d3ay00517h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
As a bioactive species with high oxidation capacity, peroxynitrite (ONOO-) plays a crucial role in the regulation of diverse pathophysiological processes, and the overproduction of ONOO- is closely associated with various physiological diseases such as liver injury, pulmonary fibrosis and so on. Herein, two borate-based fluorescent probes 3a and 3b were synthesized for monitoring ONOO- by a simple substitution reaction. The experimental results showed that 3a and 3b had high selectivity and sensitivity for ONOO-. The detection limits of 3a and 3b were 79.46 nM and 32.12 nM, respectively. Moreover, the recognition was not disturbed by other active oxygen groups and common ions. More importantly, the probes 3a and 3b had low cytotoxicity and were successfully used to detect endogenous and exogenous ONOO-. They would provide an efficient detection method for further exploring the physiological and pathological role of ONOO- in complex biological systems and related diseases.
Collapse
Affiliation(s)
- Fulan Xie
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission, Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Rui Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission, Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Chi Jian
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission, Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Lizhu Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission, Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission, Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
11
|
Huang Y, Li M, Zan Q, Wang R, Shuang S, Dong C. Mitochondria-Targeting Multifunctional Fluorescent Probe toward Polarity, Viscosity, and ONOO - and Cell Imaging. Anal Chem 2023. [PMID: 37376771 DOI: 10.1021/acs.analchem.2c05733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Abnormal changes occurring in the mitochondrial microenvironment are important markers indicating mitochondrial and cell dysfunction. Herein, we designed and synthesized a multifunctional fluorescent probe DPB that responds to polarity, viscosity, and peroxynitrite (ONOO-). DPB is composed of an electron donor (diethylamine group) and electron acceptor (coumarin, pyridine cations, and phenylboronic acid esters), in which the pyridine group with a positive charge is responsible for targeting to mitochondria. D-π-A structure with strong intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) properties give rise to respond to polarity and viscosity. The introduction of cyanogroup and phenylboronic acid esters increases the electrophilicity of the probe, which is prone to oxidation triggered by ONOO-. The integrated architecture satisfies the multiple response requirements. As the polarity increases, the fluorescence intensity of probe DPB at 470 nm is quenched by 97%. At 658 nm, the fluorescence intensity of DPB increases with viscosity and decreases with the concentration of ONOO-. Furthermore, the probe is not only successfully used to monitor mitochondrial polarity, viscosity, and endogenous/exogenous ONOO- level fluctuations but also to distinguish cancer cells from normal cells by multiple parameters. Therefore, as-prepared probe provides a reliable tool for better understanding of the mitochondrial microenvironment and also a potential approach for the diagnosis of disease.
Collapse
Affiliation(s)
- Yue Huang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Minglu Li
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Qi Zan
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, People's Republic of China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
12
|
Oronsky B, Takahashi L, Gordon R, Cabrales P, Caroen S, Reid T. RRx-001: a chimeric triple action NLRP3 inhibitor, Nrf2 inducer, and nitric oxide superagonist. Front Oncol 2023; 13:1204143. [PMID: 37313460 PMCID: PMC10258348 DOI: 10.3389/fonc.2023.1204143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
RRx-001 is a shape shifting small molecule with Fast Track designation for the prevention/amelioration of chemoradiation-induced severe oral mucositis (SOM) in newly diagnosed Head and Neck cancer. It has been intentionally developed or "engineered" as a chimeric single molecular entity that targets multiple redox-based mechanisms. Like an antibody drug conjugate (ADC), RRx-001 contains, at one end a "targeting" moiety, which binds to the NLRP3 inflammasome and inhibits it as well as Kelch-like ECH-associated protein 1 (KEAP1), the negative regulator of Nrf2, and, at the other end, a conformationally constrained, dinitro containing 4 membered ring, which fragments under conditions of hypoxia and reduction to release therapeutically active metabolites i.e., the payload. This "payload", which is delivered specifically to hypoperfused and inflamed areas, includes nitric oxide, nitric oxide related species and carbon-centered radicals. As observed with ADCs, RRx-001 contains a backbone amide "linker" attached to a binding site, which correlates with the Fab region of an antibody, and to the dinitroazetidine payload, which is microenvironmentally activated. However, unlike ADCs, whose large size impacts their pharmacokinetic properties, RRx-001 is a nonpolar small molecule that easily crosses cell membranes and the blood brain barrier (BBB) and distributes systemically. This short review is organized around the de novo design and in vivo pro-oxidant/pro-inflammatory and antioxidant/anti-inflammatory activity of RRx-001, which, in turn, depends on the reduced to oxidized glutathione ratio and the oxygenation status of tissues.
Collapse
Affiliation(s)
- Bryan Oronsky
- Drug Development, EpicentRx, Torrey Pines, CA, United States
| | - Lori Takahashi
- Drug Development, EpicentRx, Torrey Pines, CA, United States
| | - Richard Gordon
- Department of Translational Neuroscience, University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Pedro Cabrales
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, United States
| | - Scott Caroen
- Drug Development, EpicentRx, Torrey Pines, CA, United States
| | - Tony Reid
- Drug Development, EpicentRx, Torrey Pines, CA, United States
| |
Collapse
|
13
|
Herianto S, Arcega RD, Hou CY, Chao HR, Lee CC, Lin CM, Mahmudiono T, Chen HL. Chemical decontamination of foods using non-thermal plasma-activated water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162235. [PMID: 36791866 DOI: 10.1016/j.scitotenv.2023.162235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The presence of chemical contaminants in foods and agricultural products is one of the major safety issues worldwide, posing a serious concern to human health. Nonthermal plasma (NTP) containing richly reactive oxygen and nitrogen species (RONS) has been trialed as a potential decontamination method. Yet, this technology comes with multiple downsides, including adverse effects on the quality of treated foods and limited exposure to entire surfaces on samples with hard-to-reach spots, further hindering real-life applications. Therefore, plasma-activated water (PAW) has been recently developed to facilitate the interactions between RONS and contaminant molecules in the liquid phase, allowing a whole surface treatment with efficient chemical degradation. Here, we review the recent advances in PAW utilized as a chemical decontamination agent in foods. The reaction mechanisms and the main RONS contributors involved in the PAW-assisted removal of chemical contaminants are briefly outlined. Also, the comprehensive effects of these treatments on food qualities (chemical and physical characteristics) and toxicological evaluation of PAW (in vitro and in vivo) are thoroughly discussed. Ultimately, we identified some current challenges and provided relevant suggestions, which can further promote PAW research for real-life applications in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan; Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Rachelle D Arcega
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chia-Min Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
14
|
Ghosh R, Debnath S, Bhattacharya A, Chatterjee PB. Affinity Studies of Hemicyanine Derived Water Soluble Colorimetric Probes with Reactive Oxygen/Nitrogen/Sulfur Species. Chembiochem 2023; 24:e202200541. [PMID: 36598026 DOI: 10.1002/cbic.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Peroxynitrite (ONOO- ) is an essential endogenous reactive oxygen species (ROS) generated in mitochondria under various pathological and physiological conditions. An increase in its level in mitochondria is related to numerous diseases. Herein, we report a series of hemicyanine-derived water-soluble colorimetric probes (1-4) and the reactivity of which was studied with various reactive oxygen, nitrogen, and sulfur species. Probes 1-4 are formed by conjugating 1,2,3,3-tetramethyl-3H-indolium iodide and 4-hydroxybenzaldehyde or its derivatives through an alkene linkage formed by the Knoevenagel reaction. Oxidative cleavage of the electron-rich double bond of the conjugated hemicyanine dye revealed a discerning affinity of probe 3 towards peroxynitrite among all reactive oxygen species. The rapid change in color of 3 provides a sensitive and selective method for detecting peroxynitrite with a low detection limit of 180 nM. Notably, the water solubility of the probe displays excellent performance for the selective detection of peroxynitrite among ROS and reactive nitrogen (RNS)/sulfur species (RSS). UV-vis, 1 H NMR, and 13 C NMR spectroscopic data and results from theoretical calculations provide further information on the interaction of peroxynitrite with probe 3.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arnab Bhattacharya
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
15
|
Lackovic J, Jeevakumar V, Burton M, Price TJ, Dussor G. Peroxynitrite Contributes to Behavioral Responses, Increased Trigeminal Excitability, and Changes in Mitochondrial Function in a Preclinical Model of Migraine. J Neurosci 2023; 43:1627-1642. [PMID: 36697259 PMCID: PMC10008057 DOI: 10.1523/jneurosci.1366-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Administration of a nitric oxide (NO) donor triggers migraine attacks, but the mechanisms by which this occurs are unknown. Reactive nitroxidative species, including NO and peroxynitrite (PN), have been implicated in nociceptive sensitization, and neutralizing PN is antinociceptive. We determined whether PN contributes to nociceptive responses in two distinct models of migraine headache. Female and male mice were subjected to 3 consecutive days of restraint stress or to dural stimulation with the proinflammatory cytokine interleukin-6. Following resolution of the initial poststimulus behavioral responses, animals were tested for hyperalgesic priming using a normally non-noxious dose of the NO donor sodium nitroprusside (SNP) or dural pH 7.0, respectively. We measured periorbital von Frey and grimace responses in both models and measured stress-induced changes in 3-nitrotyrosine (3-NT) expression (a marker for PN activity) and trigeminal ganglia (TGs) mitochondrial function. Additionally, we recorded the neuronal activity of TGs in response to the PN generator SIN-1 [5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride]. We then tested the effects of the PN decomposition catalysts Fe(III)5,10,15,20-tetrakis(N-methylpyridinium-4-yl) porphyrin (FeTMPyP) and FeTPPS [Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride], or the PN scavenger MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin] against these behavioral, molecular, and neuronal changes. Neutralizing PN attenuated stress-induced periorbital hypersensitivity and priming to SNP, with no effect on priming to dural pH 7.0. These compounds also prevented stress-induced increases in 3-NT expression in both the TGs and dura mater, and attenuated TG neuronal hyperexcitability caused by SIN-1. Surprisingly, FeTMPyP attenuated changes in TG mitochondrial function caused by SNP in stressed males only. Together, these data strongly implicate PN in migraine mechanisms and highlight the therapeutic potential of targeting PN.SIGNIFICANCE STATEMENT Among the most reliable experimental triggers of migraine are nitric oxide donors. The mechanisms by which nitric oxide triggers attacks are unclear but may be because of reactive nitroxidative species such as peroxynitrite. Using mouse models of migraine headache, we show that peroxynitrite-modulating compounds attenuate behavioral, neuronal, and molecular changes caused by repeated stress and nitric oxide donors (two of the most common triggers of migraine in humans). Additionally, our results show a sex-specific regulation of mitochondrial function by peroxynitrite following stress, providing novel insight into the ways in which peroxynitrite may contribute to migraine-related mechanisms. Critically, our data underscore the potential in targeting peroxynitrite formation as a novel therapeutic for the treatment of migraine headache.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Vivek Jeevakumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Michael Burton
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
16
|
Chen H, Pang Y, Wei Y, He X, Zhang Y, Xie L. Nitrate and sodium nitroprusside alter the development of Asian black-spined toads' embryos by inducing nitric oxide production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23060-23069. [PMID: 36318412 DOI: 10.1007/s11356-022-23821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is the most stable and abundant form of inorganic nitrogen in water. However, owing to human activities, the nitrate concentration in aquatic ecosystems has notably increased worldwide. One of the mechanisms underlying nitrate toxicity in vertebrates includes the functional inhibition of the sodium iodide symporter, resulting in thyroid dysfunction. In this study, we aimed to determine the alternative mechanisms underlying the toxicological effects of nitrates on the Asian black-spined toad (Duttaphrynus melanostictus). Embryos of D. melanostictus were exposed to sodium nitroprusside (SNP, positive control) or 100 mg/L nitrate-nitrogen (NO3-N) for 184 h. We observed that both SNP and NO3-N significantly decreased body mass and length and delayed developmental processes. Teratogenic symptoms, including tumors, hyperplasia, and abdominal edema, were also observed in embryos exposed to SNP and NO3-N. Furthermore, SNP and NO3-N significantly increased nitric oxide levels in the embryos, altering the thyroid hormone, nitrogen, cytochrome P450-mediated drug, and xenobiotic metabolism signaling pathways, as well as the pathway involved in chemical carcinogenesis. The similar toxicological effects of SNP and NO3-N suggested that nitrate toxicity resulted from the generation of nitric oxide. Therefore, the present study provides insights into an alternative mechanism underpinning nitrate toxicity, which is useful for the conservation of amphibians in nitrate-rich environments.
Collapse
Affiliation(s)
- Hongjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yuting Pang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yunqi Wei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xinni He
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yongpu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
17
|
Treatment effects of phosphorylated Chrysanthemum indicum polysaccharides on duck virus hepatitis by protecting mitochondrial function from oxidative damage. Vet Microbiol 2022; 275:109600. [DOI: 10.1016/j.vetmic.2022.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
18
|
The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines (Basel) 2022; 10:vaccines10101575. [PMID: 36298439 PMCID: PMC9609850 DOI: 10.3390/vaccines10101575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress resulting from the disproportion of oxidants and antioxidants contributes to both physiological and pathological conditions in sepsis. To combat this, the antioxidant defense system comes into the picture, which contributes to limiting the amount of reactive oxygen species (ROS) leading to the reduction of oxidative stress. However, a strong relationship has been found between scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. ROS is widely believed to cause human pathology most specifically in sepsis, where a small increase in ROS levels activates signaling pathways to initiate biological processes. An inclusive understanding of the effects of ROS scavenging in cellular antioxidant signaling is essentially lacking in sepsis. This review compiles the mechanisms of ROS scavenging as well as oxidative damage in sepsis, as well as antioxidants as a potent therapeutic. Direct interaction between ROS and cellular pathways greatly affects sepsis, but such interaction does not provide the explanation behind diverse biological outcomes. Animal models of sepsis and a number of clinical trials with septic patients exploring the efficiency of antioxidants in sepsis are reviewed. In line with this, both enzymatic and non-enzymatic antioxidants were effective, and results from recent studies are promising. The usage of these potent antioxidants in sepsis patients would greatly impact the field of medicine.
Collapse
|
19
|
Liang C, Shu W, Han R, Kang H, Zhang X, Jing J, Zhang R, Zhang X. A xanthene-based fluorescent probe for detection of peroxynitrite in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121264. [PMID: 35439675 DOI: 10.1016/j.saa.2022.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Peroxynitrite (ONOO-) is one of quite critical reactive oxygen species that acts critical roles in a number of diverse biological functions and pathological events. Notably, excessive ONOO- will lead to sorts of diseases. Thus, monitoring of endogenous ONOO- levels will be conducive to exploring the physiological activities and functions of ONOO-. Here, a simple turn-on fluorescent probe named DMX is reported using CN bond as the ONOO- recognition site and xanthene as the fluorophore. DMX possessed a good linear dependence with ONOO- concentration (0-9 μM), highly sensitive detection (DL = 37 nM), and excellent selectivity towards ONOO-. What is more, the biological experiments reveal that DMX is able to be utilized to track exogenous/endogenous ONOO- employing confocal laser scanning microscopy. Visualization of ONOO- in zebrafish was also successfully conducted, suggesting that DMX might be used to study ONOO- roles in vivo. We believe that DMX will have potential for exploring the pivotal role of ONOO- during all sorts of physiological and pathological activities.
Collapse
Affiliation(s)
- Chenlu Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| | - Rubing Han
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoli Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Rubo Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
20
|
Ko SH, Lim Y, Kim EJ, Ko YW, Hong IS, Kim S, Jung Y. Antarctic Marine Algae Extracts as a Potential Natural Resource to Protect Epithelial Barrier Integrity. Mar Drugs 2022; 20:562. [PMID: 36135751 PMCID: PMC9503798 DOI: 10.3390/md20090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The intestine and skin provide crucial protection against the external environment. Strengthening the epithelial barrier function of these organs is critical for maintaining homeostasis against inflammatory stimuli. Recent studies suggest that polar marine algae are a promising bioactive resource because of their adaptation to extreme environments. To investigate the bioactive properties of polar marine algae on epithelial cells of the intestine and skin, we created extracts of the Antarctic macroalgae Himantothallus grandifolius, Plocamium cartilagineum, Phaeurus antarcticus, and Kallymenia antarctica, analyzed the compound profiles of the extracts using gas chromatography-mass spectrometry, and tested the protective activities of the extracts on human intestinal and keratinocyte cell lines by measuring cell viability and reactive oxygen species scavenging. In addition, we assessed immune responses modulated by the extracts by real-time polymerase chain reaction, and we monitored the barrier-protective activities of the extracts on intestinal and keratinocyte cell lines by measuring transepithelial electrical resistance and fluorescence-labeled dextran flux, respectively. We identified bioactive compounds, including several fatty acids and lipid compounds, in the extracts, and found that the extracts perform antioxidant activities that remove intracellular reactive oxygen species and scavenge specific radicals. Furthermore, the Antarctic marine algae extracts increased cell viability, protected cells against inflammatory stimulation, and increased the barrier integrity of cells damaged by lipopolysaccharide or ultraviolet radiation. These results suggest that Antarctic marine algae have optimized their composition for polar environments, and furthermore, that the bioactive properties of compounds produced by Antarctic marine algae can potentially be used to develop therapeutics to promote the protective barrier function of the intestine and skin.
Collapse
Affiliation(s)
- Seong-Hee Ko
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - YoonHee Lim
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - Young Wook Ko
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - In-Sun Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
21
|
Molecular Mechanisms and Key Processes in Interstitial, Hemorrhagic and Radiation Cystitis. BIOLOGY 2022; 11:biology11070972. [PMID: 36101353 PMCID: PMC9311586 DOI: 10.3390/biology11070972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Pathologies of the bladder are called cystitis. They cause discomfort for the patient. Due to persistent pain, bleeding, urinary incontinence, and uncontrolled urination, the chronic forms cause considerable degradation to patient quality of life. Currently, there is no curative treatment for the most severe forms. This is both an economic and a societal problem. Although the different forms of cystitis have different causes, they share common mechanisms. We propose to describe in detail the key processes and the associated mechanisms involved in abacterial cystitis. Abstract Cystitis is a bladder disease with a high rate of prevalence in the world population. This report focuses on Interstitial Cystitis (IC), Hemorrhagic Cystitis (HC) and Chronic Radiation Cystitis. These pathologies have different etiologies, but they share common symptoms, for instance, pain, bleeding, and a contracted bladder. Overall, treatments are quite similar for abacterial cystitis, and include bladder epithelium protective or anti-inflammatory agents, alleviating pain and reducing bleeding. This review summarizes the mechanisms that the pathologies have in common, for instance, bladder dysfunction and inflammation. Conversely, some mechanisms have been described as present in only one pathology, such as neural regulation. Based on these specificities, we propose identifying a mechanism that could be common to all the above-mentioned pathologies.
Collapse
|
22
|
Chen H, Luo Y, Tsoi B, Gu B, Qi S, Shen J. Angong Niuhuang Wan reduces hemorrhagic transformation and mortality in ischemic stroke rats with delayed thrombolysis: involvement of peroxynitrite-mediated MMP-9 activation. Chin Med 2022; 17:51. [PMID: 35477576 PMCID: PMC9044615 DOI: 10.1186/s13020-022-00595-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022] Open
Abstract
Background Hemorrhagic transformation (HT) is a common complication of delayed tissue plasminogen activator (t-PA) treatment for ischemic stroke. Peroxynitrite plays an important role in the breakdown of blood–brain barrier (BBB) and the development of HT. We tested the hypothesis that Angong Niuhuang Wan (AGNHW), a traditional Chinese medicinal formula, could be used in conjunction with t-PA to protect the BBB, minimize HT, and improve neurological function by suppressing peroxynitrite-mediated matrix metalloproteinase-9 (MMP-9) activation. Methods We first performed quality control study and chemical identification of AGNHW by using UPLC. In animal experiments, male Sprague–Dawley rats were subjected to 5 h of middle cerebral artery occlusion (MCAO) followed by 19 h of reperfusion plus t-PA infusion (10 mg/kg) at 5 h of cerebral ischemia. AGNHW (257 mg/kg) was given orally at 2 h after MCAO. Hemorrhagic transformation was measured using hemorrhagic scores and hemoglobin levels in ischemic brains. Evans blue leakage was utilized to assess the severity of the blood–brain barrier (BBB) damage. The modified neurologic severity score (mNSS) test was used to assess neurological functions. Peroxynitrite and superoxide was detected by using fluorescent probes. MMP-9 activity and expression were examined by gelatin zymography and immunostaining. The antioxidant effects were also studied by using brain microvascular endothelial b.End3 cells exposed to 5 h of oxygen and glucose deprivation (OGD) plus 5 h of reoxygenation with t-PA treatment (20 µg/ml). Results AGNHW significantly reduced the BBB damage, brain edema, reduced hemorrhagic transformation, enhanced neurological function, and reduced mortality rate in the ischemic stroke rats with t-PA treatment. AGNHW reduced peroxynitrite and superoxide in vivo and in vitro and six active chemical compounds were identified from AGNHW with peroxynitrite scavenging activity. Furthermore, AGNHW inhibited MMP-9 activity, and preserved tight junction protein claudin-5 and collagen IV in the ischemic brains. Conclusion AGNHW could be a potential adjuvant therapy with t-PA to protect the BBB integrity, reduce HT, and improve therapeutic outcome in ischemic stroke treatment via inhibiting peroxynitrite-mediated MMP-9 activation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00595-7.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Yunxia Luo
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Bun Tsoi
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Bing Gu
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China. .,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China. .,School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
23
|
Song X, Guo Y, Jing C, Feng Y, Cao C, Kou M, Liu W, Wang D. Dual-Site Fluorescent Sensor as a Multiple Logic System for Studying the Dichotomous Function of Sulfur Dioxide under Oxidative Stress Induced by Peroxynitrite. Anal Chem 2022; 94:5744-5751. [PMID: 35385251 DOI: 10.1021/acs.analchem.1c03792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellular reactive oxygen species and reactive sulfur play a vital role in regulating redox homeostasis and maintaining cell functions. Sulfur dioxide (SO2) has emerged as an important gas signal molecule recently, which is not only a potential reducing agent but also a potential inductor of oxidative stress in organisms. Due to high reactivity, peroxynitrite (ONOO-) could act on many biomolecules, such as proteins, lipids, and nucleic acids, and cause irreversible damage, eventually leading to cell apoptosis or necrosis. In order to further illuminate the dichotomous role of SO2 under oxidative stress induced by ONOO-, we designed the first dual-site fluorescent sensor (NIR-GYf) for separate or continuous detection of SO2 and ONOO-. NIR-GYf was successfully used for cell imaging of endogenous SO2 and ONOO-. In addition, western blotting analysis was used to verify the oxidation and antioxidation of SO2 and its dichotomous biological influence. Finally, NIR-GYf was integrated with multiple Boolean logic operations to construct an advanced analysis device, thereby realizing the direct analysis of SO2 and ONOO- levels.
Collapse
Affiliation(s)
- Xuerui Song
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yanxuan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Chunlin Jing
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yan Feng
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Chen Cao
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Manchang Kou
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
24
|
Zhao L, Zhang M, Bai L, Zhao Y, Cai Z, Yung KKL, Dong C, Li R. Real-world PM 2.5 exposure induces pathological injury and DNA damage associated with miRNAs and DNA methylation alteration in rat lungs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28788-28803. [PMID: 34988794 DOI: 10.1007/s11356-021-17779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) has been demonstrated to threaten public health and increase lung cancer risk. DNA damage is involved in the pathogenesis of lung cancer. However, the mechanisms of epigenetic modification of lung DNA damage are still unclear. This study developed a real-world air PM2.5 inhalation system and exposed rats for 1 and 2 months, respectively, and investigated rat lungs pathological changes, inflammation, oxidative stress, and DNA damage effects. OGG1 and MTH1 expression was measured, along with their DNA methylation status and related miRNAs expression. The results showed that PM2.5 exposure led to pathological injury, influenced levels of inflammatory cytokines and oxidative stress factors in rat lungs. Of note, 2-month PM2.5 exposure aggravated pathological injury. Besides, PM2.5 significantly elevated OGG1 expression and suppressed MTH1 expression, which was correlated to oxidative stress and partially mediated by reducing OGG1 DNA methylation status and increasing miRNAs expression related to MTH1 in DNA damage with increases of γ-H2AX, 8-OHdG and GADD153. PM2.5 also activated c-fos and c-jun levels and inactivated PTEN levels in rat lungs. These suggested that epigenetic modification was probably a potential mechanism by which PM2.5-induced genotoxicity in rat lungs.
Collapse
Affiliation(s)
- Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Mei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Lirong Bai
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
25
|
Li J, Peng S, Li Z, Zhao F, Han X, Liu J, Cao W, Ye Y. Visualization of peroxynitrite in cyclophosphamide-induced oxidative stress by an activatable probe. Talanta 2022; 238:123007. [PMID: 34857340 DOI: 10.1016/j.talanta.2021.123007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Oxidative stress is considered to be one of the main contributors of cyclophosphamide (CP)-induced toxicity, and the generation of free radicals will cause the interruption of multiple signal transduction pathways. Peroxynitrite (ONOO-) has strong oxidation and nitrification ability and is considered as an indirect indicator of oxidative stress. Therefore, it is necessary to design a fluorescent probe that can detect ONOO- and monitor CP-induced oxidative stress during chemotherapy. Herein, we synthesized a lipid droplet targeting fluorescent probe SX-1 based on triphenylamine-benzoindocyanine. When ONOO- is added to the probe SX-1, the CC bond in the probe is broken, thereby releasing fluorescence. The good spectral response characteristics enable SX-1 to successfully track the fluctuations of ONOO- in living cells. Most importantly, we provided the first visual evidence that the level of ONOO- in HeLa cells was up-regulated under CP induction. All results indicated that SX-1 has great potential in detecting drug-induced ONOO-, and provided a new detection tool for a deeper understanding of drug-induced organism injury.
Collapse
Affiliation(s)
- Jinsa Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuxin Peng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zipeng Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangfang Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaojing Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianfei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenbo Cao
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
26
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
27
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
28
|
Xiao X, Zheng B, Zheng Q, Lu Z, Cen D, Cai X, Li X, Deng R. NIR light‐triggered peroxynitrite anion production via direct lanthanide‐triplet photosensitization for enhanced photodynamic therapy. J Mater Chem B 2022; 10:4501-4508. [DOI: 10.1039/d2tb00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peroxynitrite anion (ONOO−), a product derived from reaction between reactive oxygen species (ROS) and nitric oxide (NO), is considered to be a more toxic reactive specie than most ROS for...
Collapse
|
29
|
Xin F, Zhao J, Shu W, Zhang X, Luo X, Tian Y, Xing M, Wang H, Peng Y, Tian Y. A thiocarbonate-caged fluorescent probe for specific visualization of peroxynitrite in living cells and zebrafish. Analyst 2021; 146:7627-7634. [PMID: 34787597 DOI: 10.1039/d1an00971k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peroxynitrite (ONOO-), a highly reactive oxygen species (ROS), is implicated with many physiological and pathological processes including cancer, neurodegenerative diseases and inflammation. In this regard, developing effective tools for highly selective tracking of ONOO- is urgently needed. Herein, we constructed a concise and specific fluorescent probe NA-ONOO for sensing ONOO- by conjugating an ONOO--specific recognition group ((4-methoxyphenylthio)carbonyl, a thiocarbonate derivative) with a naphthalene fluorophore. The probe, NA-ONOO, was in a dark state because the high electrophilicity of (4-methoxyphenylthio)carbonyl disturbs the intramolecular charge transfer (ICT) in the fluorophore. Upon treatment with ONOO-, the fluorescent emission was sharply boosted (quantum yield Φ: 3% to 56.6%) owing to an ONOO- triggered release of (4-methoxyphenylthio)carbonyl from NA-ONOO. Optical analyses showed that NA-ONOO presented high selectivity and sensitivity toward ONOO-. With good cell permeability and biocompatibility, the NA-ONOO probe was successfully applied to imaging and tracing exogenous and endogenous ONOO- in living cells and zebrafish. The probe NA-ONOO presents a new recognition group and a promising method for further investigating ONOO- in living systems.
Collapse
Affiliation(s)
- Fangyun Xin
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Jiwei Zhao
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Xiaoling Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Xixian Luo
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Ying Tian
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Mingming Xing
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Hong Wang
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Yong Peng
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Yong Tian
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, PR China.
| |
Collapse
|
30
|
Wang C, Shu W, Chen Q, Yang C, Su S, Gao M, Zhang R, Jing J, Zhang X. A simple dual-response fluorescent probe for imaging of viscosity and ONOO - through different fluorescence signals in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119990. [PMID: 34082351 DOI: 10.1016/j.saa.2021.119990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Cellular viscosity is a prominent micro-environmental parameter and peroxynitrite is an essential reactive oxygen special, both of which are involved in various pathological and physiological processes. When the intracellular viscosity is abnormal or the ONOO- concentration is irregular, the normal function of cells will be disturbed. Herein, we rationally designed and synthesized a novel multichannel fluorescent probe (probe 1) for multichannel imaging of viscosity and peroxynitrite. Probe 1 displayed about 108-fold enhancement as the viscosity increased from 1.005 cP to 1090 cP. Moreover, the fluorescence intensity at 540 nm was quickly increased after adding ONOO-. It should be noted that probe 1 has high sensitivity, selectivity and low cytotoxicity, which can be successfully employed for the visualization of exogenous and endogenous ONOO- and imaging viscosity changes in HeLa cells by different fluorescent signals. Furthermore, probe 1 could monitor the change of ONOO- induced by LPS (lipopolysaccharide) and IFN-γ (interferon-γ) in zebrafish. This result reveals that probe 1 may inspire more diagnostic and therapeutic programs for viscosity-peroxynitrite related diseases shortly.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wei Shu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qianqian Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunlei Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Sa Su
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengxu Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
31
|
Luo Y, Chen H, Tsoi B, Wang Q, Shen J. Danggui-Shaoyao-San (DSS) Ameliorates Cerebral Ischemia-Reperfusion Injury via Activating SIRT1 Signaling and Inhibiting NADPH Oxidases. Front Pharmacol 2021; 12:653795. [PMID: 33935765 PMCID: PMC8082392 DOI: 10.3389/fphar.2021.653795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Danggui-Shayao-San (DSS) is a famous Traditional Chinese Medicine formula that used for treating pain disorders and maintaining neurological health. Recent studies indicate that DSS has neuroprotective effects against ischemic brain damage but its underlining mechanisms remain unclear. Herein, we investigated the neuroprotective mechanisms of DSS for treating ischemic stroke. Adult male Sprague-Dawley (S.D.) rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus 22 h of reperfusion. Both ethanol extract and aqueous extract of DSS (12 g/kg) were orally administrated into the rats at 30 min prior to MCAO ischemic onset. We found that 1) ethanol extract of DSS, instead of aqueous extract, reduced infarct sizes and improved neurological deficit scores in the post-ischemic stroke rats; 2) Ethanol extract of DSS down-regulated the expression of the cleaved-caspase 3 and Bax, up-regulated bcl-2 and attenuated apoptotic cell death in the ischemic brains; 3) Ethanol extract of DSS decreased the production of superoxide and peroxynitrite; 4) Ethanol extract of DSS significantly down-regulated the expression of p67phox but has no effect on p47phox and iNOS statistically. 5) Ethanol extract of DSS significantly up-regulated the expression of SIRT1 in the cortex and striatum of the post-ischemic brains; 6) Co-treatment of EX527, a SIRT1 inhibitor, abolished the DSS’s neuroprotective effects. Taken together, DSS could attenuate oxidative/nitrosative stress and inhibit neuronal apoptosis against cerebral ischemic-reperfusion injury via SIRT1-dependent manner.
Collapse
Affiliation(s)
- Yunxia Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Endocrinology, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bun Tsoi
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangang Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Vujic A, Koo ANM, Prag HA, Krieg T. Mitochondrial redox and TCA cycle metabolite signaling in the heart. Free Radic Biol Med 2021; 166:287-296. [PMID: 33675958 DOI: 10.1016/j.freeradbiomed.2021.02.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential signaling organelles that regulate a broad range of cellular processes and thereby heart function. Multiple mechanisms participate in the communication between mitochondria and the nucleus that maintain cardiomyocyte homeostasis, including mitochondrial reactive oxygen species (ROS) and metabolic shifts in TCA cycle metabolite availability. An increased rate of ROS generation can cause irreversible damage to the cell and proposed to be a leading cause of many pathologies, including accelerated aging and heart disease. Myocardial impairments are also characterised by specific coordinated metabolic changes and dysregulated inflammatory responses. Hence, the mitochondrial respiratory chain is an important mediator between health and disease in the heart. This review will first outline the sources of ROS in the heart, mitochondrial metabolite dynamics, and provide an overview of their implications for heart disease. In addition, we will concentrate our discussion around current cardioprotective strategies relevant to mitochondrial ROS. Thorough understanding of mitochondrial signaling and the complex interplay with vital signaling pathways in the heart might allow us to develop novel therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Ana Vujic
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amy N M Koo
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Hiran A Prag
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
33
|
Eligini S, Colli S, Habib A, Aldini G, Altomare A, Banfi C. Cyclooxygenase-2 Glycosylation Is Affected by Peroxynitrite in Endothelial Cells: Impact on Enzyme Activity and Degradation. Antioxidants (Basel) 2021; 10:496. [PMID: 33806920 PMCID: PMC8005028 DOI: 10.3390/antiox10030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
The exposure of human endothelial cells to 3-morpholinosydnonimine (SIN-1) induced the expression of cyclooxygenase-2 (COX-2) in a dose- and time-dependent manner. Interestingly, after a prolonged incubation (>8 h) several proteoforms were visualized by Western blot, corresponding to different states of glycosylation of the protein. This effect was specific for SIN-1 that generates peroxynitrite and it was not detected with other nitric oxide-donors. Metabolic labeling experiments using 35S or cycloheximide suggested that the formation of hypoglycosylated COX-2 was dependent on de novo synthesis of the protein rather than the deglycosylation of the native protein. Moreover, SIN-1 reduced the activity of the hexokinase, the enzyme responsible for the first step of glycolysis. The hypoglycosylated COX-2 induced by SIN-1 showed a reduced capacity to generate prostaglandins and the activity was only partially recovered after immunoprecipitation. Finally, hypoglycosylated COX-2 showed a more rapid rate of degradation compared to COX-2 induced by IL-1α and an alteration in the localization with an accumulation mainly detected in the nuclear membrane. Our results have important implication to understand the effect of peroxynitrite on COX-2 expression and activity, and they may help to identify new pharmacological tools direct to increase COX-2 degradation or to inhibit its activity.
Collapse
Affiliation(s)
- Sonia Eligini
- Centro Cardiologico Monzino I.R.C.C.S., 20138 Milan, Italy;
| | - Susanna Colli
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
- INSERM-UMR1149, Centre de Recherche sur l’Inflammation, and Sorbonne Paris Cité, Laboratoire d’Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université de Paris, 75018 Paris, France
| | - Giancarlo Aldini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (G.A.); (A.A.)
| | - Alessandra Altomare
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (G.A.); (A.A.)
| | - Cristina Banfi
- Centro Cardiologico Monzino I.R.C.C.S., 20138 Milan, Italy;
| |
Collapse
|
34
|
Chen H, Guan B, Chen S, Yang D, Shen J. Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. Free Radic Biol Med 2021; 165:171-183. [PMID: 33515754 DOI: 10.1016/j.freeradbiomed.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
This study aims to test the hypothesis that peroxynitrite-mediated inflammasome activation could be a crucial player in the blood-brain barrier (BBB) disruption, hemorrhagic transformation (HT) and poor outcome in ischemic stroke with hyperglycemia. We used an experimental rat stroke model subjected to 90 min of middle cerebral artery occlusion plus 24 h or 7 days of reperfusion with or without acute hyperglycemia. We detected the production of peroxynitrite, the expression of NADPH oxidase, iNOS, MMPs and NLRP3 inflammasome in the ischemic brains, and evaluated infarct volume, brain edema, HT, neurological deficit score and survival rates. Our results show that: (1) Hyperglycemia increased the expression of NADPH oxidase subunits p47phox and p67phox, and iNOS, and the production of peroxynitrite. (2) Hyperglycemia increased infarct volume, aggravated the BBB hyperpermeability, induced brain edema and HT, and worsened neurological outcomes. These brain damages and poor outcome were reversed by the treatments of FeTmPyP (a representative peroxynitrite decomposition catalyst, PDC), peroxynitrite scavenger uric acid, and iNOS inhibitor 1400W. Furthermore, the activations of MMPs and NLRP3 inflammasome including pro/active-caspase-1 and IL-1β were inhibited both PDC and 1400W, indicating the roles of peroxynitrite in the inductions of MMPs and NLRP3 inflammasome in the ischemic brains under hyperglycemia. (3) NLRP3 inflammasome inhibitor MCC950, caspase-1 inhibitor VX-765 and IL-1β inhibitor diacerein attenuated brain edema, minimized hemorrhagic transformation and improved neurological outcome, demonstrating the roles of NLRP3 inflammasome in the hyperglycemia-mediated HT and poor outcome in the ischemic stroke rats with acute hyperglycemia. In conclusion, peroxynitrite could mediate activations of MMPs and NLRP3 inflammasome, aggravate the BBB damage and HT, and induce poor outcome in ischemic stroke with hyperglycemia. Therefore, targeting peroxynitrite-mediated NLRP3 inflammasome could be a promising strategy for ischemic stroke with hyperglycemia.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Binghe Guan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Dan Yang
- Department of Chemistry, Morningside Laboratory for Chemical Biology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China.
| |
Collapse
|
35
|
Regdon Z, Demény MA, Kovács K, Hajnády Z, Nagy-Pénzes M, Bakondi E, Kiss A, Hegedűs C, Virág L. High-content screening identifies inhibitors of oxidative stress-induced parthanatos: cytoprotective and anti-inflammatory effects of ciclopirox. Br J Pharmacol 2021; 178:1095-1113. [PMID: 33332573 DOI: 10.1111/bph.15344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Excessive oxidative stress can induce PARP1-mediated programmed necrotic cell death, termed parthanatos. Inhibition of parthanatos may be therapeutically beneficial in a wide array of diseases associated with tissue injury and inflammation. Our goal was to identify novel molecules inhibiting parthanatos. EXPERIMENTAL APPROACH A small library of 774 pharmacologically active compounds was screened in a Sytox Green uptake assay, which identified 20 hits that reduced hydrogen-peroxide-induced parthanatos with an efficiency comparable to the benchmark PARP inhibitor, PJ34. KEY RESULTS Of these hits, two compounds, antifungal ciclopirox and dopamine receptor agonist apomorphine, inhibited PAR polymer synthesis. These two compounds prevented the binding of PARP1 to oxidatively damaged DNA but did not directly interfere with the interaction between DNA and PARP1. Both compounds inhibited mitochondrial superoxide and H2 O2 production and suppressed DNA breakage. Since H2 O2 -induced damage is dependent on Fe2+ -catalysed hydroxyl radical production (Fenton chemistry), we determined the iron chelation activity of the two test compounds and found that ciclopirox and, to a lesser extent, apomorphine act as iron chelators. We also show that the Fe2+ chelation and indirect PARP inhibitory effects of ciclopirox translate to anti-inflammatory actions as demonstrated in a mouse dermatitis model, where ciclopirox reduced ear swelling, inflammatory cell recruitment and poly(ADP-ribosyl)ation. CONCLUSION AND IMPLICATIONS Our findings indicate that the antimycotic drug, ciclopirox, acts as an iron chelator and thus targets an early event in hydrogen-peroxide-induced parthanatos. Ciclopirox has the potential to be repurposed as a cytoprotective and anti-inflammatory agent.
Collapse
Affiliation(s)
- Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté A Demény
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Zoltán Hajnády
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Nagy-Pénzes
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Bakondi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| |
Collapse
|
36
|
Zhang Y, Ma D. Selective detection of peroxynitrite in living cells by a near-infrared diphenyl phosphinate-based dicyanoisophorone probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118890. [PMID: 32898727 DOI: 10.1016/j.saa.2020.118890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A new NIR fluorescent probe for detection of ONOO- has been developed, which possesses a large Stokes shift, good selectivity and low cytotoxicity. This NR-ONOO probe exhibits a strong turn-on near-infrared fluorescence response toward ONOO- ion under excitation at 560 nm and has been successfully applied in detecting ONOO- in living HeLa cells.
Collapse
Affiliation(s)
- Yibin Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100. PR China.
| | - Dongge Ma
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
37
|
Gu B, Liu C, Wu Y, Zhang C, Shen Y, Liu M. Application of a Colorimetric and Near-Infrared Fluorescent Probe in Peroxynitrite Detection and Imaging in Living Cells. ACS OMEGA 2020; 5:27530-27535. [PMID: 33134716 PMCID: PMC7594142 DOI: 10.1021/acsomega.0c04073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Peroxynitrite (ONOO-) plays a vital role in pathological and physiological processes, and an excessive amount of ONOO- causes various diseases. Developing a specific and sensitive method for the detection of ONOO- in biological systems is significant. Herein, we reported a novel colorimetric and near-infrared fluorescent probe (pyridin-4-ylmethyl (Z)-2-cyano-2-(3-((E)-4-hydroxystyryl)-5,5-dimethylcyclohex-2-en-1-ylidene)acetate diphenyl phosphinate group (AN-DP)) based on isophorone and phosphinate groups for ONOO- detection. The probe displayed excellent selectivity toward ONOO- compared with other relevant analytes. It showed a good linear relationship between the fluorescence intensity at 670 nm and ONOO- concentration (0-10 μM) with a low detection limit (53 nM). Importantly, the probe was a colorimetric and near-infrared fluorescent probe suitable for ONOO- detection. Furthermore, the probe could be used for imaging ONOO- in HepG2 cells.
Collapse
Affiliation(s)
- Biao Gu
- Key
Laboratory of Functional Organometallic Materials of College of Hunan
Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, P.R. China
| | - Cunfei Liu
- Key
Laboratory of Functional Organometallic Materials of College of Hunan
Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, P.R. China
| | - Yang Wu
- College
of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P.R. China
| | - Chunxiang Zhang
- College
of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P.R. China
| | - Youming Shen
- College
of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P.R. China
| | - Mengqin Liu
- Key
Laboratory of Functional Organometallic Materials of College of Hunan
Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, P.R. China
| |
Collapse
|
38
|
Cheng YJ, Lin CK, Chen CY, Chien PC, Chuan HH, Ho CC, Cheng YC. Plasma-activated medium as adjuvant therapy for lung cancer with malignant pleural effusion. Sci Rep 2020; 10:18154. [PMID: 33097755 PMCID: PMC7584628 DOI: 10.1038/s41598-020-75214-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022] Open
Abstract
This study compared effects of plasma-activated medium (PAM) with effects of conventional clinical thermal therapy on both lung cancer cells and benign cells for management of malignant pleural effusion (MPE). For MPE treatment, chemotherapy, photodynamic therapy, and thermal therapy are used but caused systemic side effects, patient photosensitivity, and edema, respectively. Recent studies show that plasma induces apoptosis in cancer cells with minor effects on normal cells and is cost-effective. However, the effects of plasma on MPE have not been investigated previously. This study applied a nonthermal atmospheric-pressure plasma jet to treat RPMI medium to produce PAM, carefully controlled the long-life reactive oxygen and nitrogen species concentration in PAM, and treated the cells. The influence of PAM treatment on the microenvironment of cells was also checked. The results indicated that PAM selectively inhibited CL1–5 and A549 cells, exerting minor effects on benign mesothelial and fibroblast cells. In contrast to selective lethal effects of PAM, thermal therapy inhibited both CL1–5 and benign mesothelial cells. This study also found that fibroblast growth factor 1 is not the factor explaining why PAM can selectively inhibit CL1–5 cells. These results indicate that PAM is potentially a less-harmful and cost-effective adjuvant therapy for MPE.
Collapse
Affiliation(s)
- Yi-Jing Cheng
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan
| | - Ching-Kai Lin
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan.,Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chao-Yu Chen
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan
| | - Po-Chien Chien
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan
| | - Ho-Hsien Chuan
- Department of Surgery, National Taiwan University Hospital Chu-Tung Branch, Hsin-Chu, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-Chien Cheng
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan.
| |
Collapse
|
39
|
Hu C, Zhang Y, Song M, Deng Y, Sun X, Lei Y. Prolonged use of nitric oxide donor sodium nitroprusside induces ocular hypertension in mice. Exp Eye Res 2020; 202:108280. [PMID: 33069697 DOI: 10.1016/j.exer.2020.108280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/02/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) donors are promising therapeutic candidates for treating intraocular hypertension (IOP) and glaucoma. This study aims to investigate the effect of prolonged use of NO donor sodium nitroprusside (SNP) on IOP. Since SNP has a short biological half-life, a nanoparticle drug delivery system (mesoporous silica nanoparticles) has been used to deliver SNP to the target tissues (trabecular meshwork and Schlemm's canal). We find that the sustained use of NO donor initially reduced IOP followed, surprisingly, by IOP elevation, which could not recover by drug withdraw but could be reversed by the antioxidant MnTMPyP application. The IOP elevation and normalization coincide with increased and reduced protein nitration in the mouse conventional outflow tissue. These findings suggest that the prolonged use of NO donor SNP may be problematic as it can cause outflow tissue damage by protein nitration. MnTMPyP is protective of the nitrative damage which could be considered to be co-applied with NO donors.
Collapse
Affiliation(s)
- Chunchun Hu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Yu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Maomao Song
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
40
|
Mohd Faudzi SM, Leong SW, Auwal FA, Abas F, Wai LK, Ahmad S, Tham CL, Shaari K, Lajis NH, Yamin BM. In silico studies, nitric oxide, and cholinesterases inhibition activities of pyrazole and pyrazoline analogs of diarylpentanoids. Arch Pharm (Weinheim) 2020; 354:e2000161. [PMID: 32886410 DOI: 10.1002/ardp.202000161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022]
Abstract
A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.
Collapse
Affiliation(s)
- Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - S Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faruk A Auwal
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Food Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Lam K Wai
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau L Tham
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nordin H Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bohari M Yamin
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
41
|
Bil P, Ciesielska S, Jaksik R, Rzeszowska-Wolny J. Circuits Regulating Superoxide and Nitric Oxide Production and Neutralization in Different Cell Types: Expression of Participating Genes and Changes Induced by Ionizing Radiation. Antioxidants (Basel) 2020; 9:antiox9080701. [PMID: 32756515 PMCID: PMC7463469 DOI: 10.3390/antiox9080701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Superoxide radicals, together with nitric oxide (NO), determine the oxidative status of cells, which use different pathways to control their levels in response to stressing conditions. Using gene expression data available in the Cancer Cell Line Encyclopedia and microarray results, we compared the expression of genes engaged in pathways controlling reactive oxygen species and NO production, neutralization, and changes in response to the exposure of cells to ionizing radiation (IR) in human cancer cell lines originating from different tissues. The expression of NADPH oxidases and NO synthases that participate in superoxide radical and NO production was low in all cell types. Superoxide dismutase, glutathione peroxidase, thioredoxin, and peroxiredoxins participating in radical neutralization showed high expression in nearly all cell types. Some enzymes that may indirectly influence superoxide radical and NO levels showed tissue-specific expression and differences in response to IR. Using fluorescence microscopy and specific dyes, we followed the levels and the distribution of superoxide and NO radicals in living melanoma cells at different times after exposure to IR. Directly after irradiation, we observed an increase of superoxide radicals and NO coexistent in the same subcellular locations, suggesting a switch of NO synthase to the production of superoxide radicals.
Collapse
Affiliation(s)
- Patryk Bil
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (S.C.); (R.J.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (S.C.); (R.J.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (S.C.); (R.J.)
| | - Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (S.C.); (R.J.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence:
| |
Collapse
|
42
|
Li S, Yang B, Kobayashi T, Yu B, Liu J, Wang L. Genetically encoding thyronine for fluorescent detection of peroxynitrite. Bioorg Med Chem 2020; 28:115665. [PMID: 32828428 DOI: 10.1016/j.bmc.2020.115665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
Peroxynitrite is a highly reactive oxidant effecting cell signaling and cell death. Here we report a fluorescent protein probe to selectively detect peroxynitrite. A novel unnatural amino acid, thyronine (Thy), was genetically encoded in E. coli and mammalian cells by evolving an orthogonal tRNAPyl/ThyRS pair. Incorporation of Thy into the chromophore of sfGFP or cpsGFP afforded a virtually non-fluorescent reporter. Upon treatment with peroxynitrite, Thy was converted into tyrosine via O-dearylation, regenerating GFP fluorescence in a time- and concentration-dependent manner. Genetically encoded thyronine may also be valuable for other redox applications.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States.
| |
Collapse
|
43
|
Odyniec ML, Park SJ, Gardiner JE, Webb EC, Sedgwick AC, Yoon J, Bull SD, Kim HM, James TD. A fluorescent ESIPT-based benzimidazole platform for the ratiometric two-photon imaging of ONOO - in vitro and ex vivo. Chem Sci 2020; 11:7329-7334. [PMID: 33033609 PMCID: PMC7499849 DOI: 10.1039/d0sc02347g] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023] Open
Abstract
In this work, we have developed an ESIPT-based benzimidazole platform (MO-E1 and MO-E2) for the two-photon cell imaging of ONOO- and a potential ONOO--activated theranostic scaffold (MO-E3). Each benzimidazole platform, MO-E1-3, were shown to rapidly detect ONOO- at micromolar concentrations (LoD = 0.28 μM, 6.53 μM and 0.81 μM respectively). The potential theranostic MO-E3 was shown to release the parent fluorophore and drug indomethacin in the presence of ONOO- but unfortunately did not perform well in vitro due to low solubility. Despite this, the parent scaffold MO-E2 demonstrated its effectiveness as a two-photon imaging tool for the ratiometric detection of endogenous ONOO- in RAW264.7 macrophages and rat hippocampus tissue. These results demonstrate the utility of this ESIPT benzimidazole-based platform for theranostic development and bioimaging applications.
Collapse
Affiliation(s)
- Maria L Odyniec
- Department of Chemistry , University of Bath , BA2 7AY , UK . ;
| | - Sang-Jun Park
- Department of Chemistry , Ajou University , 16499 , Suwon , Korea .
| | | | - Emily C Webb
- Department of Chemistry , University of Bath , BA2 7AY , UK . ;
| | - Adam C Sedgwick
- Department of Chemistry , University of Texas at Austin , 105 E, 24th Street , A5300 , Austin , USA
| | - Juyoung Yoon
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Steven D Bull
- Department of Chemistry , University of Bath , BA2 7AY , UK . ;
| | - Hwan Myung Kim
- Department of Chemistry , Ajou University , 16499 , Suwon , Korea .
| | - Tony D James
- Department of Chemistry , University of Bath , BA2 7AY , UK . ;
| |
Collapse
|
44
|
Zhu F, Xiong F, He J, Liu K, You Y, Xu Q, Miao J, Du Y, Zhang L, Ren H, Wang X, Chen J, Li J, Chen S, Liu X, Huang N, Wang Y. Brd4 inhibition ameliorates Pyocyanin-mediated macrophage dysfunction via transcriptional repression of reactive oxygen and nitrogen free radical pathways. Cell Death Dis 2020; 11:459. [PMID: 32541671 PMCID: PMC7295752 DOI: 10.1038/s41419-020-2672-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
Macrophages play critical roles in the first-line immune defense against airway infections caused by Pseudomonas aeruginosa (PA). The redox-active phenazine-pyocyanin (PCN), as one of the most essential virulence factors, facilities PA-related infection via a wide spectrum of cellular oxidative damages. However, little is known for PCN cytotoxicity in macrophages. In this study, besides showing PCN-mediated reactive oxygen species (ROS) indeed involved in macrophage viability and function impairment, we at the first time demonstrated a novel role of reactive nitrogen species (RNS) pathway causing cellular damage in PCN-challenged macrophages. Using small molecule inhibitor JQ1 targeting Bromodomain and extra-terminal family proteins, we showed restrained iNOS-dependent nitric oxide (NO) production correlated with abolished Brd4 recruitment to the NOS2 (encoding inducible nitric oxide synthase-iNOS) promoter. Application of JQ1 diminished PCN-mediated peroxynitrite (ONOO-) that followed ROS and NO induction, restored macrophage survival and bacteria clearance as well as repressed local inflammation in PA/PCN-challenged mice lungs. Our results uncover a novel link between PCN-mediated macrophage dysfunction and reactive free radicals that rely on Brd4-dependent transcription modulation of multiple stress-response genes, suggesting Brd4 could be a promising therapeutic target in treating PA-related lung infection.
Collapse
Affiliation(s)
- Feimei Zhu
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Feng Xiong
- Department of Cardiology, The third People's Hospital of Chengdu, 610031, Chengdu, China
| | - Jinchen He
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Keyun Liu
- Department of Physiology, School of Medicine, Hubei University for Nationalities, 445000, Enshi, China
| | - Yuanyuan You
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Qian Xu
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Junming Miao
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Yu Du
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Lijuan Zhang
- Department of Cardiology, The third People's Hospital of Chengdu, 610031, Chengdu, China
| | - Hongyu Ren
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Xiaoying Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Junli Chen
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Shanze Chen
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Xiaokang Liu
- Department of Pharmacology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China.
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
45
|
Lin P, Chen D, Zhang L, Xu J, Huang Y, Zhao S. Near-Infrared Dual-Emission Ratiometric Fluorescence Imaging Nanoprobe for Real-Time Tracing the Generation of Endogenous Peroxynitrite in Single Living Cells and In Vivo. ACS OMEGA 2020; 5:13278-13286. [PMID: 32548514 PMCID: PMC7288700 DOI: 10.1021/acsomega.0c01320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 05/10/2023]
Abstract
Peroxynitrite (ONOO-) is a highly reactive nitrogen species with potent oxidant and nitrating properties. Its excessive generation can cause DNA and protein damage, thereby contributing to cell injury, and it is closely related to the development of many diseases. Thus, there is an urgent need for a reliable method to determine changes in the steady-state levels of ONOO- in vivo. Ratiometric imaging, due to its built-in self-calibration system, can reduce artifacts and enable reliable in vivo imaging. In this study, we designed and prepared near-infrared (NIR) biomass quantum dots (NI-BQDs) and covalently coupled them with the NIR dye Cyanine7 (Cy7) to construct an NIR dual-emission nanoprobe (NI-BQD-Cy7) for real-time tracing the generation of endogenous ONOO- in single living cells and in vivo by ratiometric fluorescence imaging. NI-BQD-Cy7 exhibited high detection sensitivity and selectivity for ONOO- in the mitochondria. Additionally, it can produce dual NIR fluorescence emission, thus allowing in situ ratiometric fluorescence imaging to real-time trace the generation and concentration changes of ONOO- in vivo. The application of the proposed NIR dual-emission nanoprobe can provide accurate information for the study of the biological function of ONOO- in single living cells and in vivo, and it is very useful to explain the mechanism of cell damage caused by ONOO-.
Collapse
|
46
|
Charoensin S, Huang T, Hsu J. An innovative cell model revealed the inhibitory effect of flavanone structure on peroxynitrite production through interaction with the IKKβ kinase domain at ATP binding site. Food Sci Nutr 2020; 8:2904-2912. [PMID: 32566208 PMCID: PMC7300029 DOI: 10.1002/fsn3.1591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/07/2022] Open
Abstract
It is hypothesized that the oxidative/nitrosative stress inhibitory effect of a flavanone is governed by its chemical structure. However, the existing cell-based antioxidant assays primarily focus on single chemical to initiate toxic species production. In this study, a novel cell model using macrophage treated with a combination of PMA and LPS leading to generation of peroxynitrite was proposed to provide a more real physiological condition. Three flavanones (eriodictyol, naringenin, and pinocembrin) with different number of ortho-dihydroxyl groups on B-ring were used to provide a more comprehensive evaluation of the role of chemical structure in the new model. Dihydrorhodamine123 assay, protein immunoblotting, immunofluorescence assay, and in silico analysis by molecular docking between the flavanones and IKKβ catalytic kinase domain at the ATP binding site were employed. Results indicated that the generation of peroxynitrite was decreased at 10 µM of flavanones; eriodictyol was the most effective inhibitor. Western blot analysis and confocal fluorescence image also showed that eriodictyol could inhibit iNOS and p47 protein expressions through the inhibition of NF-kB translocation and performed the maximal inhibition compared to that of the other groups. In addition, the highest CDOCKER energy values of eriodictyol (38.6703 kcal/mol) confirmed that the 3',4'-ortho-dihydroxylation on the B-ring played a crucial role in binding with IKKβ kinase domain at ATP binding site. Finally, we propose that the ortho-dihydroxyl groups on B-ring of flavanone may influence directly the occupation of the ATP binding site of IKKβ kinase domain leading to the abrogation of peroxynitrite formation in the innovative cell model.
Collapse
Affiliation(s)
- Supochana Charoensin
- Department of Tropical Agriculture and International CooperationNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Tzou‐Chi Huang
- Department of Biological Science and TechnologyNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Jue‐Liang Hsu
- Department of Biological Science and TechnologyNational Pingtung University of Science and TechnologyPingtungTaiwan
| |
Collapse
|
47
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
48
|
Arginase 2 is a mediator of ischemia-reperfusion injury in the kidney through regulation of nitrosative stress. Kidney Int 2020; 98:673-685. [PMID: 32739205 DOI: 10.1016/j.kint.2020.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
Kidney ischemia-reperfusion injury is a major cause of acute kidney injury (AKI). Following reduced kidney perfusion, the pathological overproduction of reactive oxygen and reactive nitrogen species play a substantial role in the development of kidney ischemia-reperfusion injury. Arginase 2 (ARG2) competes with nitric oxide synthase for the same substrate, L-arginine, and is implicated in the regulation of reactive nitrogen species. Therefore, we investigated the role of ARG2 in kidney ischemia-reperfusion injury using human proximal tubule cells (HK-2) and a mouse model of kidney ischemia-reperfusion injury. ARG2 was predominantly expressed in kidney tubules of the cortex, which was increased after ischemia-reperfusion injury. In HK-2 cells, ARG2 was expressed in punctate form in the cytoplasm and upregulated after hypoxia-reoxygenation. ARG2 knockdown reduced the level of reactive oxygen species and 3-nitrotyrosine after hypoxia-reoxygenation injury compared with control siRNA. Consistent with these results, in Arg2 knockout mice, abnormal kidney function and the increased acute tubular necrosis score induced by ischemia-reperfusion injury was significantly reduced without any obvious blood pressure changes. Additionally, an accumulation of 3-nitrotyrosine and apoptosis of renal tubule cells were attenuated in Arg2 knockout mice compared with wild-type mice. Inhibition of arginase by Nω-hydroxy-nor-L-arginine alleviated kidney ischemia-reperfusion injury like the results found in Arg2 knockout mice. Thus, ARG2 plays a pivotal role in ischemia-reperfusion-induced AKI by means of nitrosative stress. Hence, an ARG2-specific inhibitor may effectively treat kidney ischemia-reperfusion injury.
Collapse
|
49
|
Shehata AHF, Ahmed ASF, Abdelrehim AB, Heeba GH. The impact of single and combined PPAR-α and PPAR-γ activation on the neurological outcomes following cerebral ischemia reperfusion. Life Sci 2020; 252:117679. [PMID: 32325134 DOI: 10.1016/j.lfs.2020.117679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
AIM The neuronal damage and accompanied functional deficits induced by cerebral ischemia are among the most common causes of disabilities in adults. Activation of subtypes of peroxisome proliferator-activated receptors (PPARs); PPAR-α and PPAR-γ have shown neuroprotective effects in different neurodegenerative diseases including stroke. Thus, this study aimed to compare the effects of two different agonists: PPAR-α (fenofibrate) and PPAR-γ (pioglitazone) as well as the effect of their combination in ameliorating post-ischemia behavioral deficits. METHODS Male Wistar rats were either pretreated with vehicle, fenofibrate (100 mg/kg/day p.o), pioglitazone (10 mg/kg/day p.o) or their combination for 14 days prior to bilateral common carotid artery occlusion followed by reperfusion for 24 hoursh. The sensory motor functions of rats were assessed, then rats were sacrificed to determine infarct volume and histopathological changes as well as oxidative stress, inflammatory and apoptotic markers in the brain tissue. KEY FINDINGS Pre-treatment with fenofibrate and pioglitazone in addition to their combination improved neurobehavioral dysfunction, reduced cerebral infarct volume, attenuated inflammatory and apoptotic markers and ameliorated histopathological changes in I/R injured rats. The effect of pioglitazone in cerebral cortex was higher than its corresponding effect in fenofibrate while the combined administration of both drugs had additive neuroprotective effect and normalized inflammatory and apoptotic mediators in ischemic rats. SIGNIFICANCE The study compared the neuroprotective effects of PPAR-α and PPAR-γ agonists, and tested the impact of their combination. We concluded that no additional benefits on the functional outcomes might be gained upon their combination.
Collapse
Affiliation(s)
- Alaa H F Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt.
| | - Amany B Abdelrehim
- Department of Biochemistry and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| |
Collapse
|
50
|
Shen Y, Dai L, Zhang Y, Li H, Chen Y, Zhang C. A novel pyridinium-based fluorescent probe for ratiometric detection of peroxynitrite in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117762. [PMID: 31708458 DOI: 10.1016/j.saa.2019.117762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Peroxynitrite (ONOO-) is a primary kind of reactive oxygen species. Excessive ONOO- can induce oxidative damage to biomolecules and further results in various diseases. So, quantitative monitoring ONOO- with excellent selectivity and sensitivity is imperative for elucidating its role in biological processes. In this study, a novel pyridinium fluorescent ONOO- probe (CPC) has been constructed base on ICT-modulated by combining coumarin fluorophore and diphenylphosphinate recognition group. The fluorescence response of CPC for ONOO- is realized via the removal of diphenylphosphinate group. The probe CPC shows prominent features for detection of ONOO- including fast response rate (within 3 min), excellent selectivity and sensitivity, distinct colorimetric (red to green), and a large emission wavelength shift (105 nm). The emission intensity ration (I538/I643) exhibits 153-fold enhancement along with the increasing ONOO- and the detection limit is as low as 1.60 × 10-8 M. These good response properties make CPC possible to quantitative detection of ONOO- concentration. By using the strategy, the ratiometric CPC has been employed to detection of mitochondrial ONOO- in live cell successfully.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Lingcong Dai
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yuandao Chen
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Chunxiang Zhang
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| |
Collapse
|