1
|
Mi X, Fuks P, Wang SC, Winters MA, Carta G. Protein Adsorption on Core-shell Particles: Comparison of Capto™ Core 400 and 700 Resins. J Chromatogr A 2021; 1651:462314. [PMID: 34144396 DOI: 10.1016/j.chroma.2021.462314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/15/2023]
Abstract
Structural and functional characteristics of the two core-shell resins Capto™ Core 400 and 700, which are useful for the flow-through purification of bioparticles such as viruses, viral vectors, and vaccines, are compared using bovine serum albumin (BSA) and thyroglobulin (Tg) as models for small and large protein contaminants. Both resins are agarose-based and contain an adsorbing core surrounded by an inert shell. Although shell thicknesses are comparable (3.6 and 4.2 µm for Capto Core 400 and 700, respectively), the two resins differ substantially in pore size (pore radii of 19 and 50 nm, respectively). Because of the smaller pores and higher surface area, the BSA binding capacity of Capto Core 400 is approximately double that of Capto Core 700. However, for the much larger Tg, the attainable capacity is substantially larger for Capto Core 700. Mass transfer in both resins is affected by diffusional resistances through the shell and within the adsorbing core. For BSA, core and shell effective pore diffusivities are about 0.25 × 10-7 and 0.6 × 10-7 cm2/s, respectively, for Capto Core 400, and about 1.6 × 10-7 and 2.6 × 10-7 cm2/s, respectively, for Capto Core 700. These values decrease dramatically for Tg to 0.022 × 10-7 and 0.088 × 10-7 cm2/s and to 0.13 × 10-7 and 0.59 × 10-7 cm2/s for Capto Core 400 and 700, respectively. Adsorbed Tg further hinders diffusion of BSA in both resins. Column measurements show that, despite the higher static capacity of Capto Core 400 for BSA, the dynamic binding capacity is greater for Capto Core 700 as a result of its faster kinetics. However, some of this advantage is lost if the feed is a mixture of BSA and Tg since, in this case, Tg binding leads to greater diffusional hindrance for BSA.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Preston Fuks
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sheng-Ching Wang
- Vaccine Process Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Michael A Winters
- Vaccine Process Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
El Andari J, Grimm D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol J 2020; 16:e2000025. [PMID: 32975881 DOI: 10.1002/biot.202000025] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last two decades, gene therapy vectors based on wild-type Adeno-associated viruses (AAV) are safe and efficacious in numerous clinical trials and are translated into three approved gene therapy products. Concomitantly, a large body of preclinical work has illustrated the power and potential of engineered synthetic AAV capsids that often excel in terms of an organ or cell specificity, the efficiency of in vitro or in vivo gene transfer, and/or reactivity with anti-AAV immune responses. In turn, this has created a demand for new, scalable, easy-to-implement, and plug-and-play platform processes that are compatible with the rapidly increasing range of AAV capsid variants. Here, the focus is on recent advances in methodologies for downstream processing and characterization of natural or synthetic AAV vectors, comprising different chromatography techniques and thermostability measurements. To illustrate the breadth of this portfolio, two chimeric capsids are used as representative examples that are derived through forward- or backwards-directed molecular evolution, namely, AAV-DJ and Anc80. Collectively, this ever-expanding arsenal of technologies promises to facilitate the development of the next AAV vector generation derived from synthetic capsids and to accelerate their manufacturing, and to thus boost the field of human gene therapy.
Collapse
Affiliation(s)
- Jihad El Andari
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany
| | - Dirk Grimm
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Transfiguracion J, Tran MY, Lanthier S, Tremblay S, Coulombe N, Acchione M, Kamen AA. Rapid In-Process Monitoring of Lentiviral Vector Particles by High-Performance Liquid Chromatography. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:803-810. [PMID: 32953931 PMCID: PMC7479275 DOI: 10.1016/j.omtm.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
Lentiviral vectors (LVs) are a popular gene delivery tool in cell and gene therapy and they are a primary tool for ex vivo transduction of T cells for expression of chimeric antigen receptor (CAR) in CAR-T cell therapies. Extensive process and product characterization are required in manufacturing virus-based gene vectors to better control batch-to-batch variability. However, it has been an ongoing challenge to make quantitative assessments of LV product because current analytical tools often are low throughput and lack robustness and standardization is still required. This paper presents a high-throughput and robust physico-chemical characterization method that directly assesses total LV particles. With simple sample preparation and fast elution time (6.24 min) of the LV peak in 440 mM NaCl (in 20 mM Tris-HCl [pH 7.5]), this ion exchange high-performance liquid chromatography (IEX-HPLC) method is ideal for routine in-process monitoring to facilitate the development of scalable and robust LV manufacturing processes. Furthermore, this HPLC method is suitable for the analysis of all in-process samples, from crude samples such as LV supernatants to final purified products. The linearity range of the standard curve is 3.13 × 108 to 1.0 × 1010 total particles/mL, and both the intra- and inter-assay variabilities are less than 5%.
Collapse
Affiliation(s)
- Julia Transfiguracion
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Michelle Yen Tran
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, 817 Sherbrooke West #270, Montreal, QC H3A 0C3, Canada
| | - Stéphane Lanthier
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Sonia Tremblay
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Nathalie Coulombe
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Mauro Acchione
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Amine A Kamen
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada.,Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, 817 Sherbrooke West #270, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
4
|
Sena-Esteves M, Gao G. Enrichment of Fully Packaged Virions in Column-Purified Recombinant Adeno-Associated Virus (rAAV) Preparations by Iodixanol Gradient Centrifugation Followed by Anion-Exchange Column Chromatography. Cold Spring Harb Protoc 2020; 2020:095638. [PMID: 32015003 DOI: 10.1101/pdb.prot095638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This rapid and efficient method to prepare highly purified recombinant adeno-associated viruses (rAAVs) is based on binding of negatively charged rAAV capsids to an anion-exchange resin that is pH dependent.
Collapse
|
5
|
Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnol Adv 2011; 29:869-78. [DOI: 10.1016/j.biotechadv.2011.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
|
6
|
Abstract
Since recombinant adeno-associated virus (rAAV) was first described as a potential mammalian cell transducing system, frequent reports purportedly solving the problems of scalable production have appeared. Yet few of these processes have enabled the development of robust and economical rAAV production. Two production platforms have emerged that have gained broad support for producing both research and clinical grade vectors. These processes differ fundamentally in several aspects. One approach is based on adherent mammalian cells and uses optimized chemical transient transfection for introducing the essential genetic components into the cells. The other approach utilizes suspension cultures of invertebrate cells. Baculovirus expression vectors are used for introducing the AAV genes into the cells. In addition, the baculovirus provides the helper functions necessary for efficient AAV DNA replication. The use of suspension cell culture provides an intrinsically more scalable platform system than using adherent cells. The upstream processes for suspension cultures are amenable for automation and are easily monitored and regulated to maintain optimum conditions that produce consistent yields of rAAV. Issues relating to developing new and improving existing rAAV production methods are discussed.
Collapse
Affiliation(s)
- Robert M Kotin
- Laboratory of Molecular Virology and Gene Therapy, Center for Developmental Biology and Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Concentration and purification of rubella virus using monolithic chromatographic support. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:981-6. [DOI: 10.1016/j.jchromb.2011.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/22/2011] [Accepted: 03/06/2011] [Indexed: 11/19/2022]
|
8
|
Mitchell DAJ, Lerch TF, Hare JT, Chapman MS. A pseudo-plaque method for infectious particle assay and clonal isolation of adeno-associated virus. J Virol Methods 2010; 170:9-15. [PMID: 20708035 DOI: 10.1016/j.jviromet.2010.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/16/2022]
Abstract
A colorimetric method has been developed for the detection of adeno-associated virus (AAV) infectious centers in cell culture monolayers. Due to its non-cytopathic nature, AAV has not been amenable to the traditional plaque assay, involving an agar overlay and cellular stains. As a result, an alternate method was required. The pseudo-plaque assay is based on enzyme-catalyzed color development after a fixed cell monolayer is probed with anti-AAV monoclonal antibodies. In spite of chemical fixation, expected to damage the viral genomes and particles, infectious particles can be recovered and amplified for the propagation of viral clones.
Collapse
Affiliation(s)
- Daniel A J Mitchell
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Viral vectors derived from adeno-associated viruses (AAV) are widely used for gene transfer both in vitro and in vivo. The increasing use of AAV as a gene transfer vector, as well as recently demonstrated immunological complications in clinical trials, highlight the necessity to define the specific activity of vector preparations beyond current standards. In this report, we determined the infectious, physical and genome-containing particle titers of several wild-type AAV type 2 (wtAAV2) and recombinant AAV type 2 (rAAV2) preparations that were produced and purified by standard methods. We found that the infectivity of wtAAV2 approaches a physical-to-infectious particle ratio of one. This near-perfect physical-to-infectious particle ratio defines a “ceiling” for the theoretically achievable quality of recombinant AAV vectors. In comparison, for rAAV2, only approximately 50 out of 100 viral particles contained a genome and more strikingly only approximately one of the 100 viral particles was infectious. Our findings suggest that current strategies for rAAV vector design, production and/or purification should be amenable to improvements. Ultimately, this could result in the generation of near-perfect vector particles, a prospect with significant implications for gene therapy.
Collapse
|
10
|
Aucoin MG, Perrier M, Kamen AA. Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol Adv 2008; 26:73-88. [DOI: 10.1016/j.biotechadv.2007.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/28/2007] [Accepted: 09/04/2007] [Indexed: 11/28/2022]
|
11
|
Segura MDLM, Kamen A, Lavoie MC, Garnier A. Exploiting heparin-binding properties of MoMLV-based retroviral vectors for affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846:124-31. [PMID: 16971193 DOI: 10.1016/j.jchromb.2006.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/22/2022]
Abstract
Chromatography is deemed the most promising technology for large-scale purification of viral vectors. The authors have previously shown that heparin affinity chromatography could be successfully employed for the purification of VSV-G pseudotyped Moloney murine leukemia virus (MoMLV)-derived vectors giving excellent results in terms of recovery of active particles, reproducibility and selectivity. In this study, the authors examined whether the ability of retrovirus particles to specifically bind to heparin ligands is restricted to VSV-G pseudotypes produced by 293-based packaging cells. It is shown that VSV-G deficient retrovirus particles are captured by a heparin chromatography column as efficiently as VSV-G containing particles. Most strikingly, RD114 pseudotyped retrovirus particles derived from a HT1080-based cell line were found to bind heparin with the same affinity as 293-derived VSV-G pseudotypes. RD114 pseudotyped retrovirus particles were successfully isolated using heparin affinity chromatography obtaining good recoveries of functional particles (43%). These results indicate that heparin affinity chromatography can be extended to the purification of retroviral vectors produced by different packaging cell lines independently of the Env-protein used for pseudotyping.
Collapse
Affiliation(s)
- María de las Mercedes Segura
- Department of Chemical Engineering and Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Que., Canada G1K 7P4
| | | | | | | |
Collapse
|
12
|
Chahal PS, Aucoin MG, Kamen A. Primary recovery and chromatographic purification of adeno-associated virus type 2 produced by baculovirus/insect cell system. J Virol Methods 2007; 139:61-70. [PMID: 17055590 DOI: 10.1016/j.jviromet.2006.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/14/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Adeno-associated virus (AAV) is making its place in gene therapy applications; however, the industry is still facing obstacles in producing a large quantity of highly purified material for clinical studies. Insect cell technology can be used to produce AAV to meet the current demand. During the purification process it was observed that there was a reduced recovery of AAV produced in insect cells, Spodoptera frugiperda (Sf9). It was assumed that the formation of AAV agglomerates and the interaction of AAV with other cellular components were major contributors to this loss. After studying different systems of extraction a sequence of treatment for primary recovery of AAV from cell paste was developed. This sequence was necessary to reduce the AAV losses and to increase the recovery. The purification method avoided the use of ultracentrifugation and adopted chromatographic methods for the purification of AAV. Primary recovery, ion exchange chromatography and hydrophobic interaction chromatography gave an overall yield of 75% from the extracted AAV. The purification process was based on chromatographic methods; therefore, it can be scaled up. Although this method was developed for AAV type 2, it is believed that this method could be modified easily to purify other AAV serotypes.
Collapse
Affiliation(s)
- Parminder S Chahal
- Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P2R2.
| | | | | |
Collapse
|
13
|
Burova E, Ioffe E. Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther 2006; 12 Suppl 1:S5-17. [PMID: 16231055 DOI: 10.1038/sj.gt.3302611] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, recombinant adenoviral and adeno-associated viral (AAV) vectors have been exploited in a number of gene delivery approaches. The use of these vectors in clinical gene transfer has increased the demand for their characterization, production and purification. Although the classical method of adenovirus or AAV purification by density gradient centrifugation is effective on a small scale, chromatographic separation is the most versatile and powerful method for large-scale production of recombinant adenovirus or AAV. This review describes different chromatographic modes for adenovirus or AAV purification and process development, as well as the utility of different purification steps for virus production. Advances in the development of viral vectors for gene therapy, such as the discovery of new AAV serotypes, adenoviral and AAV retargeting and improved production of helper-dependent adenoviral vectors, require further development of efficient purification methods.
Collapse
Affiliation(s)
- E Burova
- Regeneron Parmaceuticals Inc., Tarrytown, NY, USA
| | | |
Collapse
|
14
|
Segura MDLM, Kamen A, Garnier A. Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol Adv 2006; 24:321-37. [PMID: 16448798 DOI: 10.1016/j.biotechadv.2005.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/06/2005] [Accepted: 12/06/2005] [Indexed: 11/28/2022]
Abstract
Retroviral vectors from both oncoretroviral and lentiviral origins have a great potential as gene delivery vehicles. A number of research groups have devoted considerable effort to the development of large-scale production strategies for retroviral vectors. However, the manufacturing of clinical-grade vectors for gene therapy, especially for in vivo applications, additionally requires scaleable purification strategies to remove the contaminants present in the harvested supernatants while preserving the functionality of the vectors. In this article, we review recent advances made in the field of downstream processing of retroviral vectors. The methods currently described in the literature for clarification, concentration and purification of retroviral vectors will be presented, with special emphasis on novel chromatography methods that open up the possibility to selectively and efficiently purify retroviruses on a large-scale. Problems associated with stability and quantification of retroviral particles will be outlined and future challenges will be discussed.
Collapse
Affiliation(s)
- María de Las Mercedes Segura
- Department of Chemical Engineering, Centre de Recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
15
|
Norling L, Lute S, Emery R, Khuu W, Voisard M, Xu Y, Chen Q, Blank G, Brorson K. Impact of multiple re-use of anion-exchange chromatography media on virus removal. J Chromatogr A 2005; 1069:79-89. [PMID: 15844485 DOI: 10.1016/j.chroma.2004.09.072] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We evaluated viral clearance in multiply-cycled anion-exchange media run in flow-through mode. We found that anion-exchange columns do not lose viral clearance capacity after extensive re-use, if they are cleaned with recommended buffers that do not chemically degrade the media. In contrast, anion-exchange (AEX) columns that are not cleaned or are cleaned with buffers that chemically degrade the media lost viral clearance capacity after extended use. In these cases, other performance attributes that changed at the same time were increased band spreading, decreased DNA clearance and accumulating backpressure that prevented re-use past 80-120 cycles. Thus, our data suggests that flow through mode anion-exchange columns that are cleaned with recommended cleaning buffers, and periodically monitored for band spreading, DNA clearance and/or backpressure need not be re-evaluated for viral clearance at the end of the validated media lifetime.
Collapse
Affiliation(s)
- Lenore Norling
- Department of Recovery Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu X, Yan Z, Luo M, Zak R, Li Z, Driskell RR, Huang Y, Tran N, Engelhardt JF. Targeted correction of single-base-pair mutations with adeno-associated virus vectors under nonselective conditions. J Virol 2004; 78:4165-75. [PMID: 15047832 PMCID: PMC374254 DOI: 10.1128/jvi.78.8.4165-4175.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors possess the unique ability to introduce genetic alterations at sites of homology in genomic DNA through a mechanism thought to predominantly involve homologous recombination. We have investigated the efficiency of this approach using a mutant enhanced green fluorescent protein (eGFP) fluorescence recovery assay that facilitates detection of gene correction events in living cells under nonselective conditions. Our data demonstrate that rAAV infection can correct a mutant eGFP transgene at an efficiency of 0.1% in 293 cells, as determined by fluorescence-activated cell-sorting analysis. Gene repair was also confirmed using clonal expansion of GFP-positive cells and sequencing of the eGFP transgene. These results support previous findings demonstrating the efficacy of rAAV for gene targeting. In an effort to improve gene-targeting efficiencies, we evaluated several agents known to increase rAAV transduction (i.e., expression of an expressed gene), including genotoxic stress and proteasome inhibitors, but observed no correlation between the level of gene repair and rAAV transduction. Interestingly, however, our results demonstrated that enrichment of G(1)/S-phase cells in the target population through the addition of thymidine moderately (approximately 2-fold) increased gene correction compared to cells in other cell cycle phases, including G(0)/G1, G(1), and G(2)/M. These results suggest that the S phase of the cell cycle may more efficiently facilitate gene repair by rAAV. Transgenic mice expressing the mutant GFP were used to evaluate rAAV targeting efficiencies in primary fetal fibroblast and tibialis muscles. However, targeting efficiencies in primary mouse fetal fibroblasts were significantly lower (approximately 0.006%) than in 293 cells, and no correction was seen in tibialis muscles following rAAV infection. To evaluate the molecular structures of rAAV genomes that might be responsible for gene repair, single-cell injection studies were performed with purified viral DNA in a mutant eGFP target cell line. However, the failure of direct cytoplasm- or nucleus-injected rAAV DNA to facilitate gene repair suggests that some aspect of intracellular viral processing may be required to prime recombinant viral genomes for gene repair events.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Anatomy and Cell Biology and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Curtis S, Lee K, Blank GS, Brorson K, Xu Y. Generic/matrix evaluation of SV40 clearance by anion exchange chromatography in flow-through mode. Biotechnol Bioeng 2003; 84:179-86. [PMID: 12966574 DOI: 10.1002/bit.10746] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The potential of viral contamination is a regulatory concern for continuous cell line-derived pharmaceutical proteins. Complementary and redundant safety steps, including an evaluation of the viral clearance capacity of unit operations in the purification process, are performed prior to registration and marketing of biotechnology pharmaceuticals. Because process refinement is frequently beneficial, CBER/FDA has published guidance facilitating process improvement by delineating specific instances where the bracketing and generic approaches are appropriate for virus removal validation. In this study, a generic/matrix study was performed using Q-Sepharose Fast Flow (QSFF) chromatography to determine if bracketing and generic validation can be applied to anion exchange chromatography. Key operational parameters were varied to upper and lower extreme values and the impact on viral clearance was assessed using simian virus 40 (SV40) as the model virus. Operational ranges for key chromatography parameters were identified where an SV40 log(10) reduction value (LRV) of >or=4.7 log(10) is consistently achieved. On the basis of the apparent robustness of SV40 removal by Q-anion exchange chromatography, we propose that the concept of "bracketed generic" validation can be applied to this and potentially other chromatography unit operations.
Collapse
Affiliation(s)
- Sherrie Curtis
- Process Sciences, Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- E Lehtonen
- Free University of Brussels, Laboratory of Experimental Neurosurgery, Interdisciplinary Research Institute (IRIBHM), B-1070 Brussels, Belgium
| | | |
Collapse
|
19
|
Branovic K, Forcic D, Ivancic J, Strancar A, Barut M, Kosutic-Gulija T, Zgorelec R, Mazuran R. Application of short monolithic columns for improved detection of viruses. J Virol Methods 2003; 110:163-71. [PMID: 12798244 DOI: 10.1016/s0166-0934(03)00125-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Monolithic chromatography media represent a novel generation of stationary phases introduced in the last 10-15 years providing a chromatography matrix with enhanced mass transfer and hydrodynamic properties. These features allow for an efficient and fast separation of especially large biomolecules like e.g., DNA and viruses. In this study, the enrichment of virus RNA on short monolithic columns prior to molecular detection of viruses is described. Measles and mumps viruses were chosen as model viruses. The results show that it is possible to bind viral RNA on monoliths and concentrate viral nucleic acids from a fairly dilute sample. Consequently, a potential application of short monolithic columns is the concentration of virus RNA to improve the sensitivity and selectivity of viral detection with the possibility of isolating viral RNA from cell-free biological fluids.
Collapse
Affiliation(s)
- Karmen Branovic
- Institute of Immunology, Rockefeller Street 2, 10000, Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang HG, Xie J, Dmitriev I, Kashentseva E, Curiel DT, Hsu HC, Mountz JD. Addition of six-His-tagged peptide to the C terminus of adeno-associated virus VP3 does not affect viral tropism or production. J Virol 2002; 76:12023-31. [PMID: 12414944 PMCID: PMC136915 DOI: 10.1128/jvi.76.23.12023-12031.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of large quantities of recombinant adeno-associated virus (AAV) is difficult and not cost-effective. To overcome this problem, we have explored the feasibility of creating a recombinant AAV encoding a 6xHis tag on the VP3 capsid protein. We generated a plasmid vector containing a six-His (6xHis)-tagged AAV VP3. A second plasmid vector was generated that contained the full-length AAV capsid capable of producing VP1 and VP2, but not VP3 due to a mutation at position 2809 that encodes the start codon for VP3. These plasmids, necessary for production of AAV, were transfected into 293 cells to generate a 6xHis-tagged VP3mutant recombinant AAV. The 6xHis-tagged VP3 did not affect the formation of AAV virus, and the physical properties of the 6xHis-modified AAV were equivalent to those of wild-type particles. The 6xHis-tagged AAV did not affect the production titer of recombinant AAV and could be used to purify the recombinant AAV using an Ni-nitrilotriacetic acid column. Addition of the 6xHis tag did not alter the viral tropism compared to wild-type AAV. These observations demonstrate the feasibility of producing high-titer AAV containing a 6xHis-tagged AAV VP3 capsid protein and to utilize the 6xHis-tagged VP3 capsid to achieve high-affinity purification of this recombinant AAV.
Collapse
Affiliation(s)
- Huang-Ge Zhang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Brument N, Morenweiser R, Blouin V, Toublanc E, Raimbaud I, Chérel Y, Folliot S, Gaden F, Boulanger P, Kroner-Lux G, Moullier P, Rolling F, Salvetti A. A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and -5. Mol Ther 2002; 6:678-86. [PMID: 12436964 DOI: 10.1006/mthe.2002.0719] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here we describe the development of a two-step chromatography process based on the use of ion-exchange resins for the purification of recombinant adeno-associated virus (rAAV) serotypes-2 and-5. In vitro and in vivo results demonstrate that this method, which does not require any prepurification step of the cell lysate, can be applied to obtain highly pure rAAV2 and rAAV5 stocks. As such,this procedure can be easily transferred in vector cores and also scaled up, allowing the direct comparison of these two, and potentially other, AAV serotypes in large animal models.
Collapse
Affiliation(s)
- Nicole Brument
- INSERM ERM 0105 Laboratoire de Thérapie Génique, CHU Hotel Dieu, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Laham RJ, Mannam A, Post MJ, Sellke F. Gene transfer to induce angiogenesis in myocardial and limb ischaemia. Expert Opin Biol Ther 2001; 1:985-94. [PMID: 11728230 DOI: 10.1517/14712598.1.6.985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stimulation of angiogenesis/arteriogenesis by gene transfer methods offers hope for treating patients with myocardial and peripheral limb ischaemia who are not candidates for standard revascularisation procedures. Preclinical studies showed that adenoviral and plasmid vectors encoding various angiogenic cytokines were capable of inducing functionally significant angiogenesis in vitro and in animal models of chronic myocardial ischaemia. Early clinical studies using VEGF121-, FGF-4- and VEGF165-encoding vectors showed a reasonable safety profile with promising results. However, significant advances in vector technology including regulatable and longer-term expression, delivery strategies (local and organ/tissue specific), clinical trial design, and outcome measure development are needed before this investigational treatment becomes reality.
Collapse
Affiliation(s)
- R J Laham
- The Angiogenesis Research Center, Interventional Cardiology Section, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
23
|
Gong-rui C, Xiao-hua X, Jun-bin X, Wen-han D, Wan-hua L, Ru-ming C, Rong-zhen Z, Long L, Tian-bao C, Xiang-yang L, Ping-fan R. Fractionation of Corynebacterium pekinense AS 1.299 phage subtypes by anion-exchange chromatography. J Virol Methods 2001; 95:11-7. [PMID: 11377709 DOI: 10.1016/s0166-0934(01)00274-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel method to fractionate phage into its subtypes while fully retaining biological function is reported. Corynebacterium pekinense AS 1.299 phage samples, purified by either conventional ultracentrifugation or gel chromatography on a Superose(R) 6 Prep column (0.78 x 30 cm), were fractionated further into four fractions by anion-exchange chromatography on a Toyopearl SuperQ 650C column (0.5 x 20 cm) with a linear gradient of NaCl concentration from 0.2 to 1.0 M in 0.02 M carbonate-biocarbonate buffer, pH 10.0. Two peaks were identified to be C. pekinense AS 1.299 phages by their ability to infect the host bacteria when inoculated into the culture media, and when examined by electron microscopy. These two types of the phage were found to be morphologically the same except for the difference in the length of their non-contractile tails. Both possessed an isometric head with a diameter of 50 +/- 3 nm, while their tails were 170 +/- 10 and 210 +/- 10 nm, respectively. This simple technique provides a convenient method for phage isolation not only to its species homogeneity, but also to determine its subtype or variant homogeneity.
Collapse
Affiliation(s)
- C Gong-rui
- Institute of Biotechnology, Fuzhou University, 523 Gongye Road, Fujian, 350002, Fuzhou, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Angiogenesis is a promising novel therapeutic strategy to provide new venues for blood flow in patients with severe ischemic heart and peripheral vascular disease, who are not candidates for standard revascularization strategies. We describe the underlying mechanisms involved in physiologic and therapeutic angiogenesis, underscoring the relative importance of vasculogenesis, angiogenesis, and arteriogenesis. We then present the various gene transfer vectors including plasmid, viral, and cell-based vectors, and various delivery modalities. The available preclinical data are presented, followed by a description of preliminary clinical experience, with an emphasis on the preliminary nature of these results, which address safety and not efficacy. Finally, we discuss the promises and pitfalls of clinical angiogenesis and gene transfer studies, stressing the importance of proper design of clinical trials and adequate protection of research subjects.
Collapse
Affiliation(s)
- R J Laham
- Angiogenesis Research Center, Interventional Cardiology Section, Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|