1
|
Fiorin G, Forrest LR, Faraldo-Gómez JD. Membrane free-energy landscapes derived from atomistic dynamics explain nonuniversal cholesterol-induced stiffening. PNAS NEXUS 2023; 2:pgad269. [PMID: 37637198 PMCID: PMC10456217 DOI: 10.1093/pnasnexus/pgad269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
All lipid membranes have inherent morphological preferences and resist deformation. Yet adaptations in membrane shape can and do occur at multiple length scales. While this plasticity is crucial for cellular physiology, the factors controlling the morphological energetics of lipid bilayers and the dominant mechanisms of membrane remodeling remain to be fully understood. An ongoing debate regarding the universality of the stiffening effect of cholesterol underscores the challenges facing this field, both experimentally and theoretically, even for simple lipid mixtures. On the computational side, we have argued that enhanced-sampling all-atom molecular dynamics simulations are uniquely suited for the quantification of membrane conformational energetics, as they minimize a priori assumptions and permit analysis of bilayers in deformed states. To showcase this approach, we examine reported inconsistencies between alternative experimental measurements of bending moduli for cholesterol-enriched membranes. Specifically, we analyze lipid bilayers with different chain saturation and compute free-energy landscapes for curvature deformations distributed over areas from ∼5 to ∼60 nm2 . These enhanced simulations, totaling over 100 μs of sampling time, enable us to directly quantify both bending and tilt moduli and to dissect the contributing factors and molecular mechanisms of curvature generation at each length scale. Our results show that the effects of cholesterol on bending rigidity are lipid-specific and suggest that this specificity arises from differences in the torsional dynamics of the acyl chains. In summary, we demonstrate that quantitative relationships can now be established between lipid structure and bending energetics, paving the way for addressing open fundamental questions in cell membrane mechanics.
Collapse
Affiliation(s)
- Giacomo Fiorin
- National Institute for Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- National Heart, Lung and Blood Institute, Bethesda, MD 20894, USA
| | - Lucy R Forrest
- National Institute for Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | |
Collapse
|
2
|
Phospholipids molecular species, proteins secondary structure, and emulsion microstructure of egg yolk with reduced polar and/or nonpolar lipids. Int J Biol Macromol 2023; 233:123529. [PMID: 36740113 DOI: 10.1016/j.ijbiomac.2023.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
This study investigated the phospholipids (PLs) molecular species (PLs-MS), protein secondary structure (PSS), and emulsion microstructure of the egg yolk (EY) treated with supercritical-CO2 (T1), hexane (T2), and ethanol {at room temperature (T3) and 65 °C (T4)}. PLs-MS, PSS, and microstructure of EY emulsion were investigated with UPLC-Q-TOF-MS, Fourier-transforms infrared and Raman spectroscopy, and confocal laser scanning microscope, respectively. Predominant PLs molecular fractions were C18:0-C20:4, C18:0-C20:4, C16:0-C18:2, C16:0, C18:0-C18:2, and d18:1/16:0, for phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, lysophosphatidylcholine, sphingomyelin, and phosphatidylserine, respectively. All the PLs-MS were highest for T1 and many of them (C14:0-C16:0, C18:0-C18:1, C18:0-C20:3) were absent in T2, T3, and T4. PSS components (α-helices, β-sheets, β-turn, and random coil) were highest for T4, followed by T3, T2, T1, and control (non-treated EY). However, T1-added o/w emulsion showed excellent stability (95.64 %) with smaller and denser oil droplets due to better ionic interactions by synergistic effect of PLs-MS and PSS components.
Collapse
|
3
|
Fiorin G, Forrest LR, Faraldo-Gómez JD. Membrane free-energy landscapes derived from atomistic dynamics explain nonuniversal cholesterol-induced stiffening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.525347. [PMID: 36778237 PMCID: PMC9915699 DOI: 10.1101/2023.02.02.525347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
All lipid membranes have inherent morphological preferences and resist deformation. Yet adaptations in membrane shape can and do occur at multiple length scales. While this plasticity is crucial for cellular physiology, the factors controlling the morphological energetics of lipid bilayers and the dominant mechanisms of membrane remodeling remain unclear. An ongoing debate regarding the universality of the stiffening effect of cholesterol underscores the challenges facing this field, both experimentally and theoretically, even for simple lipid mixtures. On the computational side, we have argued that enhanced- sampling all-atom molecular dynamics simulations are uniquely suited for quantification of membrane conformational energetics, not only because they minimize a-priori assumptions, but also because they permit analysis of bilayers in deformed states. To showcase this approach, we examine reported inconsistencies between alternative experimental measurements of bending moduli for cholesterol-enriched membranes. Specifically, we analyze lipid bilayers with different chain saturation, and compute free-energy landscapes for curvature deformations distributed over areas from ∼5 to ∼60 nm 2 . These enhanced simulations, totaling over 100 microseconds of sampling time, enable us to directly quantify both bending and tilt moduli, and to dissect the contributing factors and molecular mechanisms of curvature generation at each length scale. Our results show that cholesterol effects are lipid-specific, in agreement with giantvesicle measurements, and explain why experiments probing nanometer scale lipid dynamics diverge. In summary, we demonstrate that quantitative structure-mechanics relationships can now be established for heterogenous membranes, paving the way for addressing open fundamental questions in cell membrane mechanics. Significance Elucidating the energetics and mechanisms of membrane remodeling is an essential step towards understanding cell physiology. This problem is challenging, however, because membrane bending involves both large-scale and atomic-level dynamics, which are difficult to measure simultaneously. A recent controversy regarding the stiffening effect of cholesterol, which is ubiquitous in animal cells, illustrates this challenge. We show how enhanced molecular-dynamics simulations can bridge this length-scale gap and reconcile seemingly incongruent observations. This approach facilitates a conceptual connection between lipid chemistry and membrane mechanics, thereby providing a solid basis for future research on remodeling phenomena, such as in membrane trafficking or viral infection.
Collapse
Affiliation(s)
- Giacomo Fiorin
- National Institute for Neurological Disorders and Stroke, Bethesda, MD, USA
- National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Lucy R Forrest
- National Institute for Neurological Disorders and Stroke, Bethesda, MD, USA
| | | |
Collapse
|
4
|
Phytosomes as Emerging Nanotechnology for Herbal Drug Delivery. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41838-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
5
|
Lipid profiles in different parts of two species of scallops ( Chlamys farreri and Patinopecten yessoensis ). Food Chem 2018; 243:319-327. [DOI: 10.1016/j.foodchem.2017.09.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 01/23/2023]
|
6
|
Gnananath K, Sri Nataraj K, Ganga Rao B. Phospholipid Complex Technique for Superior Bioavailability of Phytoconstituents. Adv Pharm Bull 2017; 7:35-42. [PMID: 28507935 PMCID: PMC5426732 DOI: 10.15171/apb.2017.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 02/09/2017] [Accepted: 03/07/2017] [Indexed: 11/09/2022] Open
Abstract
Phytoconstituents have been utilized as medicines for thousands of years, yet their application is limited owing to major hurdles like deficit lipid solubility, large molecular size and degradation in the gastric environment of gut. Recently, phospholipid-complex technique has unveiled in addressing these stumbling blocks either by enhancing the solubilizing capacity or its potentiating ability to pass through the biological membranes and it also protects the active herbal components from degradation. Hence, this phospholipid-complex-technique can enable researchers to deliver the phytoconstituents into systemic circulation by using certain conventional dosage forms like tablets and capsules. This review highlights the unique property of phospholipids in drug delivery, their role as adjuvant in health benefits, and their application in the herbal medicine systems to improve the bioavailability of active herbal components. Also we summarize the prerequisites for phytosomes preparation like the selection of type of phytoconstituents, solvents used, various methods employed in phytosomal preparation and its characterization. Further we discuss the key findings of recent research work conducted on phospholipid-based delivery systems which can enable new directions and advancements to the development of herbal dosage forms.
Collapse
Affiliation(s)
- Kattamanchi Gnananath
- Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram-534202, Andhra Pradesh, India
| | - Kalakonda Sri Nataraj
- Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram-534202, Andhra Pradesh, India
| | - Battu Ganga Rao
- Department of Pharmacognosy, University College of Pharmaceutical Sciences, Vishakhapatnam-530003, Andhra Pradesh, India
| |
Collapse
|
7
|
Sanz-Vicente I, Lapieza MP, Cebolla VL, Galbán J. Rapid enzymatic method for the determination of phosphoryl choline using the fluorescence of the enzyme choline oxidase. Sequential determination of choline and phosphorylcholine in milk powder for children. Microchem J 2015. [DOI: 10.1016/j.microc.2015.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Kiełbowicz G, Chojnacka A, Gliszczyńska A, Gładkowski W, Kłobucki M, Niezgoda N, Wawrzeńczyk C. Positional analysis of phosphatidylcholine and phosphatidylethanolamine via LC with a charged aerosol detector. Talanta 2015; 141:137-42. [DOI: 10.1016/j.talanta.2015.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
|
9
|
Fuchs B. Analytical methods for (oxidized) plasmalogens: Methodological aspects and applications. Free Radic Res 2015; 49:599-617. [DOI: 10.3109/10715762.2014.999675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Preparation, characterization and application of N-methylene phosphonic acid chitosan grafted magnesia–zirconia stationary phase. Anal Chim Acta 2015; 854:191-201. [DOI: 10.1016/j.aca.2014.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/06/2014] [Accepted: 11/15/2014] [Indexed: 11/21/2022]
|
11
|
Jangle RD, Galge RV, Patil VV, Thorat BN. Selective HPLC method development for soy phosphatidylcholine Fatty acids and its mass spectrometry. Indian J Pharm Sci 2013; 75:339-45. [PMID: 24082350 PMCID: PMC3783752 DOI: 10.4103/0250-474x.117435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/11/2013] [Accepted: 04/05/2013] [Indexed: 11/17/2022] Open
Abstract
A novel, efficient and simple approach for soy phosphatidylcholine analysis according to its fatty acid composition was studied with reverse-phase high-performance liquid chromatography. The reverse-phase high-performance liquid chromatography analysis was performed isocratically using UV detector and simple mobile phase solvents consisting of isopropyl alcohol, methanol, and deionized water in the proportion of 70:8:22 v/v. The uniqueness of the proposed method was the separation of individual fatty acids of soy phosphatidylcholine. The high-performance liquid chromatography method for soy phosphatidylcholine was validated for linearity with correlation coefficient of above 0.99 for all the peaks separated according to their fatty acid composition. The intra-day and the inter-day precision studies provided the relative standard deviation of less than 2%. The limit of detection and limit of quantitation values were also calculated for all the resolved peaks of soy phosphatidylcholine. Also system performance parameters such as number of theoretical plates, capacity factor, tailing factor, separation factor, and peak resolution were studied systematically and found well within the acceptable range. The proposed high-performance liquid chromatography method was successfully applied to soy phosphatidylcholine extracted and purified from deoiled soy lecithin without any interference of impurities or solvent peaks. Individually, the collected peaks of sample soy phosphatidylcholine were subjected for mass spectroscopy. The mass spectra showed all the peaks having different saturated or unsaturated fatty acid chains attached to glyerophosphocholine moiety of soy phosphatidylcholine. The method developed is economic and well suited for estimation of soy phosphatidylcholine with its fatty acid composition.
Collapse
Affiliation(s)
- R D Jangle
- Department of Chemical Engineering, Advanced Drying Laboratory, Institute of Chemical Technology (Formerly UDCT), N. P. Road, Matunga (E), Mumbai-400 019, India
| | | | | | | |
Collapse
|
12
|
Increased placental phospholipid levels in pre-eclamptic pregnancies. Int J Mol Sci 2013; 14:3487-99. [PMID: 23389044 PMCID: PMC3588054 DOI: 10.3390/ijms14023487] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/22/2013] [Accepted: 01/30/2013] [Indexed: 12/26/2022] Open
Abstract
Physiological pregnancy is associated with an increase in lipids from the first to the third trimester. This is a highly regulated response to satisfy energy and membrane demands of the developing fetus. Pregnancy disorders, such as pre-eclampsia, are associated with a dysregulation of lipid metabolism manifesting in increased maternal plasma lipid levels. In fetal placental tissue, only scarce information on the lipid profile is available, and data for gestational diseases are lacking. In the present study, we investigated the placental lipid content in control versus pre-eclamptic samples, with the focus on tissue phospholipid levels and composition. We found an increase in total phospholipid content as well as changes in individual phospholipid classes in pre-eclamptic placental tissues compared to controls. These alterations could be a source of placental pathological changes in pre-eclampsia, such as lipid peroxide insult or dysregulation of lipid transport across the syncytiotrophoblast.
Collapse
|
13
|
Park S, Kim ST, Kim CY, Kim YH, Jeong SW, Kim GS, Chung JI, Lee SJ, Shim JH, Shin SC. Phospholipid profiling of 57 soybean (Glycine max) varieties by high-performance liquid chromatography-tandem mass spectrometry and principal component analysis to classify Korean soybean germplasm. Biomed Chromatogr 2013; 27:27-33. [PMID: 22544662 DOI: 10.1002/bmc.2743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/03/2012] [Indexed: 11/10/2022]
Abstract
Phospholipids (PLs) in 57 varieties of soybeans were profiled by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry and principal component analysis (PCA) to discriminate PL-rich soybeans. The PL calibration curves showed linearity with correlation coefficients >0.9964. The recoveries at 5 mg/L spiked level ranged from 72.8 to 86.7% and those at 12.5 mg/L from 78.2 to 85.1%. The repeatability at a 5 mg/L spiked level ranged from 2.5 to 7.0% and those at 12.5 mg/L from 1.2 to 3.9%. The average total PL content in the 57 soybean varieties was about 35.3 mg/kg. The total PL content was the highest in Aodaiz (35, 48.7 ± 1.4 mg/kg) and the lowest in Poongsannamul (56, 16.0 ± 0.7 mg/kg). The PCA showed that RS-78sun (42), Gyeongsang #1 (3) and Aodaiz (35) are the most improved varieties of the investigated 57 varieties from the viewpoint of PL content.
Collapse
Affiliation(s)
- Semin Park
- Department of Chemistry and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xiong Y, Zhao YY, Goruk S, Oilund K, Field CJ, Jacobs RL, Curtis JM. Validation of an LC–MS/MS method for the quantification of choline-related compounds and phospholipids in foods and tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:170-9. [DOI: 10.1016/j.jchromb.2012.10.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/14/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
15
|
Wang Y, Zhang H. Tracking phospholipid profiling of muscle from Ctennopharyngodon idellus during storage by shotgun lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11635-11642. [PMID: 21961876 DOI: 10.1021/jf2030852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper aims to study phospholipid (PL) profiling of muscle from Ctenopharyngodon idellus during room-temperature storage for 72 h by direct-infusion electrospray ionization tandem mass spectrometry (ESI-MS/MS). Five classes of PLs, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM), were analyzed. At least 110 molecular species of PLs were identified, including 32 species of PC, 34 species of PE, 24 species of PS, 18 species of PI, and 2 species of SM. The result showed that oxidation and hydrolysis are the two main causes for the deterioration of PLs in fish muscle during storage. Most content of PL molecular species increased and then decreased gradually. However, some special PE molecular species with former low abundance, such as PE 32:1, PE 34:2, and PE 34:1, emerged during the storage in quantity. It indicated that those PE molecular species may come from the microbe bred in the muscle. This phenomenon was found and discussed for the first time. The possible relevance between the emergence of these special PE molecular species and the freshness of the fish muscle during storage will be investigated in further studies.
Collapse
Affiliation(s)
- Youyi Wang
- School of Food Science and Biological Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | | |
Collapse
|
16
|
Brouwers JF. Liquid chromatographic–mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:763-75. [DOI: 10.1016/j.bbalip.2011.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 12/21/2022]
|
17
|
Combined reversed phase HPLC, mass spectrometry, and NMR spectroscopy for a fast separation and efficient identification of phosphatidylcholines. J Biomed Biotechnol 2010; 2011. [PMID: 20871812 PMCID: PMC2943112 DOI: 10.1155/2011/385786] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022] Open
Abstract
In respect of the manifold involvement of lipids in biochemical processes, the analysis of intact and underivatised lipids of body fluids as well as cell and tissue extracts is still a challenging task, if detailed molecular information is required. Therefore, the advantage of combined use of high-pressure liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy will be shown analyzing three different types of extracts of the ubiquitous membrane component phosphatidylcholine. At first, different reversed phase modifications were tested on phosphatidylcholines (PC) with the same effective carbon number (ECN) for their applicability in lipid analysis. The results were taken to improve the separation of three natural PC extract types and a new reversed phase (RP)-HPLC method was developed. The individual species were characterized by one- and two-dimensional NMR and positive or negative ion mode quadrupole time of flight (q-TOF)-MS as well as MS/MS techniques. Furthermore, ion suppression effects during electrospray ionisation (ESI), difficulties, limits, and advantages of the individual analytical techniques are addressed.
Collapse
|
18
|
Brand A, Crawford MA, Yavin E. Retailoring docosahexaenoic acid-containing phospholipid species during impaired neurogenesis following omega-3 alpha-linolenic acid deprivation. J Neurochem 2010; 114:1393-404. [PMID: 20557429 DOI: 10.1111/j.1471-4159.2010.06866.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Diminished levels of docosahexaenoic acid (22:6n-3), the major fatty acid (FA) synthesized from alpha-linolenic acid (18:3n-3), have been implicated in functional impairment in the developing and adult brain. We have now examined the changes in phospholipid (PL) molecular species in the developing postnatal cortex, a region recently shown to be affected by a robust aberration in neuronal cell migration, after maternal diet alpha-linolenic acid deprivation (Yavin et al. (2009)Neuroscience162(4),1011). The frontal cortex PL composition of 1- to 4-week-old rats was analyzed by gas chromatography and electrospray ionization/tandem mass spectrometry. Changes in the cortical PL molecular species profile by dietary means appear very specific as 22:6n-3 was exclusively substituted by docosapentaenoic acid (22:5n-6). However, molecular species were conserved with respect to the combination of specific polar head groups (i.e. ethanolamine and serine) in sn-3 and defined saturated/mono-unsaturated FA in sn-1 position even when the sn-2 FA moiety underwent diet-induced changes. Our results suggest that substitution of docosahexaenoic acid by docosapentaenoic acid is tightly regulated presumably to maintain a proper biophysical characteristic of membrane PL molecular species. The importance of this conservation may underscore the possible biochemical consequences of this substitution in regulating certain functions in the developing brain.
Collapse
Affiliation(s)
- Annette Brand
- Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, London, UK
| | | | | |
Collapse
|
19
|
Pérez-Palacios T, Ruiz J, Dewettinck K, Le TT, Antequera T. Individual phospholipid classes from iberian pig meat as affected by diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1755-1760. [PMID: 20067258 DOI: 10.1021/jf9029805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The main objectives of this study were to (1) determine the individual phospholipid (PL) classes content of fresh meat from Iberian pigs and their respective fatty acid and dimethylacetal composition and (2) assess the effect of different diets (acorn and grass vs oleic acid enriched concentrates) on these lipid species. First, it was found that phosphatidylcholine was the major PL, followed by phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol in decreasing order. Each PL class showed a different lipid profile. Second, the feeding regimen influenced the quantity and the fatty composition of the individual PL classes. Meat from pigs fattened with high oleic acid concentrates had higher amounts of most phospholipid classes and polyunsaturated fatty acids, which is an indication of lipid oxidation instability. Lastly, these differences in PL species and fatty acid composition could be used to differentiate meats from Iberian pigs with different feeding regimens.
Collapse
Affiliation(s)
- Trinidad Pérez-Palacios
- Food Science, School of Veterinary Sciences, University of Extremadura, Avenida De la Universidad s/n, 10071 Caceres, Spain
| | | | | | | | | |
Collapse
|
20
|
Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A. Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:46-59. [PMID: 20919645 DOI: 10.1007/978-1-4419-6741-1_3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipid (SPL) metabolism (Fig. 1) serves a key role in the complex mechanisms regulating cellular stress responses to environment. Several SPL metabolites, especially ceramide (Cer), sphingosine (Sph) and sphingosinel-phosphate (S1P) act as key bioactive molecules governing cell growth and programmed cell death (Fig. 2). Perturbations in sphingolipids of one type may enhance or interfere with the action of another. To monitor changes in SPL composition therefore, reliable analytical methods are necessary. Here we present the liquid chromatography tandem mass spectrometry (LC-MS/MS) approach for simultaneous qualitative and quantitative monitoring of SPL components (classes and molecular species) in biological material as an effective tool to study sphingolipid signaling events. The LC-MS/MS methodology is the only available technique that provides high specificity and sensitivity, along with a wealth of structural identification information.
Collapse
Affiliation(s)
- Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., P.O. Box 250509, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Pacetti D, Lucci P, Boselli E, Frega NG. Effect of antioxidant-enriched foods on plasma: Phospholipid molecular species composition. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200900013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R. Why is the sn-2 Chain of Monounsaturated Glycerophospholipids Usually Unsaturated whereas the sn-1 Chain Is Saturated? Studies of 1-Stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and 1-Oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (OSPC) Membranes with and without Cholesterol. J Phys Chem B 2009; 113:8347-56. [DOI: 10.1021/jp902131b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hector Martinez-Seara
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Tomasz Róg
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Mikko Karttunen
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ilpo Vattulainen
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ramon Reigada
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
23
|
Calvano CD, Jensen ON, Zambonin CG. Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis. Anal Bioanal Chem 2009; 394:1453-61. [DOI: 10.1007/s00216-009-2812-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
|
24
|
A matter of fat: An introduction to lipidomic profiling methods. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871:174-81. [DOI: 10.1016/j.jchromb.2008.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 02/02/2023]
|
25
|
Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position. Biophys J 2008; 95:3295-305. [PMID: 18621818 DOI: 10.1529/biophysj.108.138123] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural and dynamical properties of lipid membranes rich in phospholipids and cholesterol are known to be strongly affected by the unsaturation of lipid acyl chains. We show that not only unsaturation but also the position of a double bond has a pronounced effect on membrane properties. We consider how cholesterol interacts with phosphatidylcholines comprising two 18-carbon long monounsaturated acyl chains, where the position of the double bond is varied systematically along the acyl chains. Atomistic molecular dynamics simulations indicate that when the double bond is not in contact with the cholesterol ring, and especially with the C18 group on its rough beta-side, the membrane properties are closest to those of the saturated bilayer. However, any interaction between the double bond and the ring promotes membrane disorder and fluidity. Maximal disorder is found when the double bond is located in the middle of a lipid acyl chain, the case most commonly found in monounsaturated acyl chains of phospholipids. The results suggest a cholesterol-mediated lipid selection mechanism in eukaryotic cell membranes. With saturated lipids, cholesterol promotes the formation of highly ordered raft-like membrane domains, whereas domains rich in unsaturated lipids with a double bond in the middle remain highly fluid despite the presence of cholesterol.
Collapse
|
26
|
Pérez-Palacios T, Antequera T, Muriel E, Martín D, Ruiz J. Stereospecific analysis of phospholipid classes in skeletal muscle from rats fed different fat sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6191-7. [PMID: 17580877 DOI: 10.1021/jf071354d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The fatty acid (FA) and dimethylacetal profiles of the sn-1 and sn-2 positions of different phospholipid (PL) classes from skeletal muscle of rats as affected by dietary FA profiles were studied. Rats were fed either a control diet, an olive oil-enriched diet, or a sunflower oil-enriched diet. The FA composition of both positions of the studied PL classes was affected by diet to different extents. The FA composition of the sn-2 position of phosphatidylserine was the most influenced by diet, while phosphatidylinositol was less affected by dietary modification. The FA profile of phosphatidylcholine reflected consumed FA better than any other studied PL. Thus, olive oil rats showed higher oleic acid (C18:1 n-9) contents in both positions of phosphatidylcholine, and sunflower oil rats had higher proportions of arachidonic acid (C20:4 n-6) in the sn-1 position of this PL class. Dimethylacetals were scarcely affected by diet, and only the dimethylacetal composition of phosphatidylethanolamine showed significant modifications.
Collapse
Affiliation(s)
- Trinidad Pérez-Palacios
- Food Science, School of Veterinary Sciences, University of Extremadura, 10071 Caceres, Spain.
| | | | | | | | | |
Collapse
|
27
|
He FQ, Wang CT, Li XK, Liu XQ. HPLC analysis of mitochondrial membrane phospholipids in rice. JOURNAL OF ANALYTICAL CHEMISTRY 2007. [DOI: 10.1134/s1061934807040132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Lin JT, McKeon TA. SEPARATION OF INTACT PHOSPHATIDYLCHOLINE MOLECULAR SPECIES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-100101491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- J. T. Lin
- a United States Department of Agriculture , Western Regional Research Center, Agricultural Research Service , 800 Buchanan Street, Albany, California, 94710, U.S.A
| | - T. A. McKeon
- a United States Department of Agriculture , Western Regional Research Center, Agricultural Research Service , 800 Buchanan Street, Albany, California, 94710, U.S.A
| |
Collapse
|
29
|
Wandstrat M, Cox J. Preconcentration and Determination of a Phospholipid at a Surface Modified by Layer-by-Layer Assembly. ELECTROANAL 2007. [DOI: 10.1002/elan.200603684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Pérez-Palacios T, Antequera T, Muriel E, Ruiz J. Stereospecific analysis of phospholipid classes in rat muscle. EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200600104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Isaac G, Fredriksson A, Danielsson R, Eriksson P, Bergquist J. Brain lipid composition in postnatal iron-induced motor behavior alterations following chronic neuroleptic administration in mice. FEBS J 2006; 273:2232-43. [PMID: 16649999 DOI: 10.1111/j.1742-4658.2006.05236.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have shown that deficient uptake or excessive break down of membrane phospholipids may be associated with neurodegenerative and psychiatric disorders. The purpose of the present study was to examine the effects of postnatal iron administration in lipid composition and behavior and whether or not the established effects may be altered by subchronic administration of the neuroleptic compounds, clozapine and haloperidol. In addition to motor activities such as locomotion, rearing and activity, a targeted lipidomics approach has been used to investigated the brains of eight groups of mice (four vehicle groups and four iron groups) containing six individuals in each group treated with vehicle, low dose clozapine, high dose clozapine and haloperidol. Lipids were extracted by the Folch method and analyzed using reversed-phase capillary liquid chromatography coupled on-line to electrospray ionization mass spectrometry (LC/ESI/MS). Identification of phosphatidylcholine (PC) and sphingomyelin (SM) molecular species was based on their retention time, m/z ratio, head group specific up-front fragmentation and analysis of the product ions produced upon fragmentation. A comparison between the Ve-groups and Fe-groups showed that levels of PC and SM molecular species and motor activities were significantly lower in Fe-Ve compared to Ve-Ve. The effects of neuroleptic treatment with and without iron supplementation were studied. In conclusion our results support the hypothesis that an association between psychiatric disorders and lipid and behavior abnormalities in the brain exists.
Collapse
Affiliation(s)
- Giorgis Isaac
- Department of Analytical Chemistry, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
32
|
Peterson BL, Cummings BS. A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr 2006; 20:227-43. [PMID: 16138296 DOI: 10.1002/bmc.563] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phospholipids are important constituents of all living cell membranes. Lipidomics is a rapidly growing field that provides insight as to how specific phospholipids play roles in normal physiological and disease states. There are many analytical methods available for the qualitative and quantitative determination of phospholipids. This review provides a summary of the methods that were historically used such as thin layer chromatography, gas chromatography and high-performance liquid chromatography. In addition, an introduction to applications of interfacing these traditional chromatographic techniques with mass spectrometry is provided.
Collapse
Affiliation(s)
- Brianna L Peterson
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, 30602-2352, USA
| | | |
Collapse
|
33
|
Gao F, Tian X, Wen D, Liao J, Wang T, Liu H. Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:667-76. [PMID: 16714143 DOI: 10.1016/j.bbalip.2006.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 11/28/2022]
Abstract
The main phospholipids in rat peritoneal surface layer were analyzed by normal-phase high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) ion-trap mass spectrometry (MS). By using a silica gel column and a gradient of hexane/isopropanol/water as mobile phase containing 5 mmol/L ammonium formate as modifiers, a baseline separation of glycerophosphoehtanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylcholine (PC), sphingomyelin (SM) and lyso-phosphatidylcholine (LPC) was obtained and more than 90 phospholipid constituents in rat peritoneal surface were identified and determined by on-line ion-trap MS detection. The major ethanolamine glycerophospholipids in rat peritoneal surfaces were plasmalogens that were highly enriched in polyunsaturated fatty acids at the sn-2 position. In addition, the fragmentation patterns for each phospholipid class by the ion-trap MS were discussed.
Collapse
Affiliation(s)
- Fei Gao
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
34
|
Jones JJ, Borgmann S, Wilkins CL, O'Brien RM. Characterizing the Phospholipid Profiles in Mammalian Tissues by MALDI FTMS. Anal Chem 2006; 78:3062-71. [PMID: 16642994 DOI: 10.1021/ac0600858] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discussed here is an analytical method for profiling lipids and phospholipids directly from mammalian tissues excised from Mus musculus (house mouse). Biochemical analysis was accomplished through the use of matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry, where whole tissue sections of mouse brain, heart, and liver were investigated. Lipid and phospholipid ions create complex MALDI mass spectra containing multiple ions with different m/z values corresponding to the same fundamental chemical species. When a computational sorting approach is used to group these ions, the standard deviation for observed relative chemical abundance can be reduced to 6.02%. Relative standard deviations of 10% are commonly accepted for standard chromatographic phospholipid analyses. Average mass measurement accuracy for 232 spectra representing three tissue types from 12 specimens was calculated to be 0.0053 Da. Further it is observed, that the data and the analysis between all the animals have near-identical phospholipid contents in their brain, heart, and liver tissues, respectively. In addition to the need to accurately measure relative abundances of phospholipid species, it is essential to have adequate mass resolution for complete and accurate overall analysis. It is reasonable to make mass composition assignments with spectral resolving power greater than 8000. However, results from the present study reveal 14 instances (C12 carbon isotope) of multiple m/z ions having the same nominal value that require greater resolution in order that overlap will not occur. Spectra measured here have an average resolving power of 12 000. It is established that high mass resolution and mass accuracy coupled with MALDI ionization provide for rapid and accurate phospholipid analysis of mammalian tissue sections.
Collapse
Affiliation(s)
- Jeffrey J Jones
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | |
Collapse
|
35
|
Liebisch G, Lieser B, Rathenberg J, Drobnik W, Schmitz G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:108-17. [PMID: 15522827 DOI: 10.1016/j.bbalip.2004.09.003] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/16/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
The choline head group containing phosphatidylcholine (PC) and sphingomyelin (SPM) are major eukaryotic lipid components playing an important role in forming membrane microdomains and serve as precursor of signaling molecules. Both lipids can be monitored by positive ion mode electrospray tandem mass spectrometry using a parent ion scan of m/z 184. Although PC species appear at even m/z and SPM species at odd m/z, there may be a significant overlap of their isotopes. In order to separate PC and SPM species, an isotope correction algorithm was established, which utilizes calculated isotope percentages to correct the measured peak intensities for their isotopic overlap. We could demonstrate that this approach was applicable to correct the isotope overlap resulting from spiked PC and SPM species. Quantification was achieved by addition of different PC and SPM species prior to lipid extraction. The developed assay showed a precision, detection limit and robustness sufficient for routine analysis. Furthermore, an analysis time of only 1.3 min combined with automated data analysis using self-programmed Excel Macros allows high-throughput analysis. In summary, this assay may be a valuable tool for detailed lipid analysis of PC and SPM species in a variety of sample materials.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, D-93042 Regensburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Zink KG, Mangelsdorf K. Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC?ESI-MS?MS analysis. Anal Bioanal Chem 2004; 380:798-812. [PMID: 15480579 DOI: 10.1007/s00216-004-2828-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper presents the application of an efficient method for extraction and fractionation of intact phospholipids (PLs) from complex sediment matrices and elucidation of their molecular structure by normal-phase HPLC-ESI-MS-MS. Flow-blending extraction was tested with different solvent mixtures and the best recovery of all PLs classes from the sediment matrix was achieved by using methanol-dichloromethane-buffer, 2:1:0.8. The applied LC-ESI-MS system has linearity of R2=0.98 and a detection limit of 0.5 ng/PL, sufficient for reliable identification of complex mixtures of PLs. MS-MS analyses using a triple-quadrupole mass spectrometer enables detection of individual PL side-chain composition and, hence, characterization of the living organisms contributing to the sedimentary organic material. Parallel GC-MS analysis of the hydrolysed phospholipid fatty acids supports the characterized fatty acid patterns determined from intact PLs. The PL inventory of different investigated lacustrine surface sediments shows predominantly high abundance of phosphatidylglycerols and phosphatidylethanolamines and phosphatidyl-mono- and dimethyl-ethanolamines with fatty acyl side-chains typically known from bacteria. In a sample from Lake Baikal intense signals of bacterial 14:0-acyl-PGs were also identified, for the first time in sediments as far as we are aware.
Collapse
Affiliation(s)
- Klaus-G Zink
- GFZ Potsdam, Section 4.3, Telegrafenberg, 14473 Potsdam, Germany.
| | | |
Collapse
|
37
|
Vanhoutte B, Rombaut R, Van der Meeren P, Dewettinck K. Phospholipids. FOOD SCIENCE AND TECHNOLOGY 2004. [DOI: 10.1201/b11081-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Perona JS, Ruiz-Gutierrez V. Quantification of major lipid classes in human triacylglycerol-rich lipoproteins by high-performance liquid chromatography with evaporative light-scattering detection. J Sep Sci 2004; 27:653-9. [PMID: 15387459 DOI: 10.1002/jssc.200301723] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Triacylglycerol-rich lipoproteins (TRL), comprising chylomicrons (CM) and very-low-density lipoproteins (VLDL), have been associated with cardiovascular disease. The lipid class content in the remnant particles of these lipoproteins is a determinant for the accumulation of lipids in macrophages and their transformation into foam cells. We have optimized a method for the simultaneous determination of cholesteryl esters (CE), triacylglycerols (TG), free cholesterol (FC), monoacylglycerols (MG), and phospholipids (PL) by HPLC coupled to a light-scattering detector (ELSD). A diol column and a ternary gradient of hexane, 2-propanol, and methanol were applied to CM and VLDL of human origin (n = 10), with excellent precision in terms of repeatability of peak areas and retention times. All peaks were baseline resolved although the resolution of CE and TG was compromised for the sake of simplicity of the solvent gradient. The ELSD response was fitted to second-order equations, with correlation coefficients (r2) higher than 0.999 for a wide range of concentrations (0.25-10 microg of lipid injected). TG were the major lipid class detected in human TRL, accounting for 62% in CM obtained 2 h after the oil intake. In addition we recorded a depletion of TG and CE in CM obtained 2 h after the oil intake of about 60%. We conclude that the method reported here is suitable for a rapid and precise determination of lipid classes in human TRL and, therefore, may be a useful tool for investigations on the atherogenicity of these lipoproteins.
Collapse
Affiliation(s)
- Javier S Perona
- Instituto de la Grasa (CSIC), Av. Padre García Tejero, 4, 41012 Seville, Spain
| | | |
Collapse
|
39
|
Larsen A, Molander P. Temperature optimization for improved determination of phosphatidylserine species by micro liquid chromatography with electrospray tandem mass spectrometric detection. J Sep Sci 2004; 27:297-303. [PMID: 15334917 DOI: 10.1002/jssc.200301706] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A sensitive method for determination of disaturated phosphatidylserine species in the presence of their monounsaturated analogs has been developed, using micro liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The hydrophobic nature of the phosphatidylserine species required a combination of low-eluting sample solvents and sub-ambient temperatures in order to focus large sample volumes up to 20 microL. The samples were dissolved in 2-propanol:hexane:water (20:10:4, v/v/v) prior to 1:9 dilution with ammonium formate buffer:2-propanol:tetrahydrofuran (30:55:15, v/v/v) and final 1:4 dilution with ammonium formate buffer (10 mM):2-propanol: tetrahydrofuran (55:37.5:7.5, v/v/v). The analytical column was a 0.5 x 150 mm stainless steel column packed with 5 microm C30 particles, while the mobile phase contained ammonium formate buffer (10 mM): 2-propanol:tetrahydrofuran (30:55:15, v/v/v). A temperature program from 5 degrees C (hold for 3 minutes) to 75 degrees C at 8 K/min provided separation of the disaturated phosphatidylserine species from their monounsaturated analogs, making available a sensitive determination of the isobaric species. The mass limit of detection for dipalmitoyl phosphatidylserine was 100 pg, corresponding to a concentration limit of detection of 5 pg/microL when using an injection volume of 20 microL. This is an improvement by a factor of 20 as compared to previously reported numbers obtained with conventional LC columns. The within-assay precision of dipalmitoyl phosphatidylserine was 11.9% RSD (n = 3), while the retention time precision was 4.1% RSD (n = 6).
Collapse
Affiliation(s)
- Asmund Larsen
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway.
| | | |
Collapse
|
40
|
AOKI T, OTAKE I, GOTOH N, NOGUCHI N, WADA S. Quantification Method for Triglyceride Molecular Species in Fish Oil with High Performance Liquid Chromatography-Ultraviolet Detector. J Oleo Sci 2004. [DOI: 10.5650/jos.53.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Tserng KY, Griffin R. Quantitation and molecular species determination of diacylglycerols, phosphatidylcholines, ceramides, and sphingomyelins with gas chromatography. Anal Biochem 2003; 323:84-93. [PMID: 14622962 DOI: 10.1016/j.ab.2003.08.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to the role of building block for biological membranes, phospholipids and their metabolites have been implicated in other important cellular functions, such as proliferation and apoptosis. Ceramides and their precursor, sphingomyelin, are thought to play a role in cellular apoptosis. In contrast, the metabolism of diacylglycerols and one of their precursors, phosphatidylcholine, is thought to be partly responsible for the opposite effect, cellular proliferation. Quantitative determination of these lipids in biological samples is important in investigating the complicated interactions between these molecules. In this report, we describe a capillary gas chromatographic procedure for the quantitative determination of molecular species of diacylglycerols, ceramides, phosphatidylcholines, and sphingomyelins. Lipid extracts are separated into these classes with a silica gel column. Diacylglycerols and ceramides are analyzed as trimethylsilyl derivatives. Phosphatidylcholines and sphingomyelins are converted to their diacylglycerol and ceramide components with sphingomyelinase hydrolysis. Internal standards for each analyzed fraction are used in the procedure. This method is used to determine the lipids in liver homogenate and subcellular fractions, including mitochondria, light mitochondria, and microsomes from young and old Fischer 344 rats. Our data show that the ceramide and sphingomyelin content is higher in the mitochondria of old rats. This relationship is consistent with the potential role of ceramide in mitochondria-induced apoptosis. More study is needed to substantiate this relationship.
Collapse
Affiliation(s)
- Kou-Yi Tserng
- Veterans Affairs Medical Center and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
42
|
Isaac G, Bylund D, Månsson JE, Markides KE, Bergquist J. Analysis of phosphatidylcholine and sphingomyelin molecular species from brain extracts using capillary liquid chromatography electrospray ionization mass spectrometry. J Neurosci Methods 2003; 128:111-9. [PMID: 12948554 DOI: 10.1016/s0165-0270(03)00168-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One feature of complex lipids is that many subtypes of these molecules exist as a diverse mixture in a biological sample. Qualitative and quantitative analysis of these closely related molecules require sensitive and specific analytical methods to detect intact phospholipids (PL) and sphingomyelin (SM) species and to differentiate between them. Conventional analytical methods require laborious procedures including separation by column, argentation thin-layer chromatography or liquid chromatography (LC) after pre- or post-column derivatization. In the present work, a method based on reversed phase capillary LC coupled on-line to electrospray ionization mass spectrometry (LC/ESI/MS) has been developed to gather tools for lipidomic studies, i.e. the profiling of complex mixtures of lipids in small amounts of various cells and tissues. The LC/MS system used consisted of an LC pump in an isocratic elution, a reversed phase capillary column and a single quadrupole mass spectrometer operated in the positive ion mode. A successful separation of phosphatidylcholine (PC) and SM molecular species was obtained with a minimum detectable quantity (MDQ) in the low fmol range injected on column. The method was applied to human brain extracts. Furthermore, the extraction efficiencies of the traditional Folch method and pressurized fluid extraction (PFE) were compared using the human brain. It was found that the intensity of the PC and SM molecular species extracted by PFE is two times that of Folch.
Collapse
Affiliation(s)
- Giorgis Isaac
- Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
43
|
Al-Saad KA, Siems WF, Hill HH, Zabrouskov V, Knowles NR. Structural analysis of phosphatidylcholines by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:373-382. [PMID: 12686484 DOI: 10.1016/s1044-0305(03)00068-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The utility of post-source decay (PSD) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was investigated for the structural analysis of phosphatidylcholine (PC). PC did not produce detectable negative molecular ion from MALDI, but positive ions were observed as both [PC+H](+) and [PC+Na](+). The PSD spectra of the protonated PC species contained only one fragment corresponding to the head group (m/z 184), while the sodiated precursors produced many fragment ions, including those derived from the loss of fatty acids. The loss of fatty acid from the C-1 position (sn-1) of the glycerol backbone was favored over the loss of fatty acid from the C-2 position (sn-2). Ions emanating from the fragmentation of the head group (phosphocholine) included [PC+Na-59](+), [PC+Na-183](+) and [PC+Na-205](+), which corresponded to the loss of trimethylamine (TMA), non-sodiated choline phosphate and sodiated choline phosphate, respectively. Other fragments reflecting the structure of the head group were observed at m/z 183, 146 and 86. The difference in the fragmentation patterns for the PSD of [PC+Na](+) compared to [PC+H](+) is attributed to difference in the binding of Na(+) and H(+). While the proton binds to a negatively charged oxygen of the phosphate group, the sodium ion can be associated with several regions of the PC molecule. Hence, in the sodiated PC, intermolecular interaction of the negatively charged oxygen of the phosphate group, along with sodium association at multiple sites, can lead to a complex and characteristic ion fragmentation pattern. The preferential loss of sn-1 fatty acid group could be explained by the formation of an energetically favorable six-member ring intermediate, as apposed to the five-member ring intermediate formed prior to the loss of sn-2 fatty acid group.
Collapse
Affiliation(s)
- Khalid A Al-Saad
- Department of Chemistry, Washington State University, Pullman, USA
| | | | | | | | | |
Collapse
|
44
|
Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A. Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. PLANT PHYSIOLOGY 2002; 130:999-1007. [PMID: 12376663 PMCID: PMC166625 DOI: 10.1104/pp.006080] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2002] [Revised: 04/23/2002] [Accepted: 06/12/2002] [Indexed: 05/18/2023]
Abstract
The signaling events generated by a cold exposure are poorly known in plants. We were interested in checking the possible activation of enzymes of the phosphoinositide signaling pathway in response to a temperature drop. In Arabidopsis suspension cells labeled with (33)PO(4)(3-), a cold treatment induces a rapid increase of phosphatidic acid (PtdOH) content. This production was due to the simultaneous activation of phospholipase C (through diacylglycerol kinase activity) and phospholipase D, as monitored by the production of inositol triphosphate and of transphosphatidylation product, respectively. Moreover, inhibitors of the phosphoinositide pathway and of diacylglycerol kinase reduced PtdOH production. Enzyme activation occurred immediately after cells were transferred to low temperature. The respective contribution of both kind of phospholipases in cold-induced production of PtdOH could be estimated. We created conditions where phospholipids were labeled with (33)PO(4)(3-), but with ATP being nonradioactive. In such conditions, the apparition of radioactive PtdOH reflected PLD activity. Thus, we demonstrated that during a cold stress, phospholipase D activity accounted for 20% of PtdOH production. The analysis of composition in fatty acids of cold-produced PtdOH compared with that of different phospholipids confirmed that cold-induced PtdOH more likely derived mainly from phosphoinositides. The addition of chemical reagents modifying calcium availability inhibited the formation of PtdOH, showing that the cold-induced activation of phospholipase pathways is dependent on a calcium entry.
Collapse
Affiliation(s)
- Eric Ruelland
- Groupe de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre-et-Marie-Curie/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7632, 75252 Paris cedex 05, France.
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Larsen A, Mokastet E, Lundanes E, Hvattum E. Separation and identification of phosphatidylserine molecular species using reversed-phase high-performance liquid chromatography with evaporative light scattering and mass spectrometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 774:115-20. [PMID: 12052729 DOI: 10.1016/s1570-0232(02)00184-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A reversed-phase HPLC method compatible with evaporative light scattering (ELS) and electrospray mass spectrometric (ES-MS) detection was developed for separation of phosphatidylserine (PS) molecular species. The method was optimised for separation of three disaturated synthetic species: dipalmitoyl glycerophosphoserine, palmitoyl-stearoyl glycerophosphoserine and distearoyl glycerophosphoserine using isocratic elution with a mixture of 2-propanol, tetrahydrofuran and ammonium formate. Baseline separation was obtained on three different columns: one polystyrene/divinylbenzene (PS/DVB) column and two silica based C(18) and C(30) columns. The best chromatographic resolution was achieved with the C(30) column. The limit of detection for DPPS was 5 microg/ml (S/N=3) with ELS detection and 0.1 microg/ml (S/N=3) with negative ion ES-MS in the single ion monitoring mode. Baseline separation of the five main species in a biological PS sample, bovine brain PS, was obtained with the PS/DVB column. Species identification was done by using the retention times of the intact PS species and their corresponding carboxylate anion fragments obtained by in-source fragmentation. Data have shown that individual PS species can be identified by their retention times using direct ELS detection in a mixture of disaturated PS species. However, for the bovine brain PS electrospray-MS detection was necessary for species identification due to the many possible fatty acid combinations in biological PS.
Collapse
Affiliation(s)
- Asmund Larsen
- Department of Chemistry, University of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway.
| | | | | | | |
Collapse
|
47
|
Kang DH, Row KH. Fractionation of soybean phospholipids by preparative high-performance liquid chromatography with sorbents of various particle size. J Chromatogr A 2002; 949:217-23. [PMID: 11999737 DOI: 10.1016/s0021-9673(01)01477-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Normal-phase high-performance liquid chromatography was used on a preparative scale to seperate phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylcholine (PC) phospholipids from soybean. Separation was achieved using mixtures of three solvents, hexane, methanol and isopropanol. The optimized mobile phase compositions were experimentally determined while operating in a linear gradient mode using 15, 5-20, 25-40, and 40-63 microm preparative particles as well as 4 microm analytical particles. A gradient mobile phase was established on a commmercially available analytical Nova-Pak column such that hexane linearly decreased from 85 to 0 as isopropanol and methanol linearly increased in two gradient steps from 10 to 30 and 5 to 70 respectively. The total run time was 25 min at a flow-rate of 1.5 ml/min. A slight change in mobile phase composition was required to increase the resolution of phospholipids. The 15 microm particle size gave the best separation of the preparative particle sizes examined based on their resolutions between PE and PI and PI and PC. Finally, the retention factors of PE and PC were correlated in terms of mobile phase composition.
Collapse
Affiliation(s)
- Duk Hui Kang
- Center for Advanced Bioseparation Technology and Department of Chemical Engineering, Inha University, Inchon, South Korea
| | | |
Collapse
|
48
|
Pelizzi N, Catinella S, Barboso S, Zanol M. Different electrospray tandem mass spectrometric approaches for rapid characterization of phospholipid classes of Curosurf, a natural pulmonary surfactant. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:2215-2220. [PMID: 12478563 DOI: 10.1002/rcm.844] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Curosurf is a pulmonary surfactant used in the treatment or prophylaxis of neonatal respiratory distress syndrome. It contains low molecular weight hydrophobic apoproteins and a series of lipids including phosphatidylcholines, lisophosphatidylcholines, phosphatidylethanolamines, sphingomyelins, phosphatidylinositols, phosphatidylglycerols and phosphatidylserines. In the present work, a rapid method to qualitatively map the Curosurf phospholipid classes without prior derivatization or chromatographic separations is described. In particular, a series of specific electrospray tandem mass spectrometric (ES-MS/MS) experiments, i.e. product ion, precursor ion and neutral loss scans, were chosen on the basis of the chemical nature of each phospholipid class and then used to identify single components of the commercial suspension, directly infused into the ion source of the mass spectrometer.
Collapse
Affiliation(s)
- Nicola Pelizzi
- Chiesi Farmaceutici S.p.A, R & D, Analytical Chemistry Department, Via Palermo 26/A, 43100 Parma, Italy
| | | | | | | |
Collapse
|
49
|
Chapter 8 Molecular species of phospholipids during brain development. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0167-7306(02)35037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Uran S, Larsen A, Jacobsen PB, Skotland T. Analysis of phospholipid species in human blood using normal-phase liquid chromatography coupled with electrospray ionization ion-trap tandem mass spectrometry. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 758:265-75. [PMID: 11486836 DOI: 10.1016/s0378-4347(01)00188-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A narrow-bore normal-phase high-performance liquid chromatography (HPLC) method was developed for separation of phospholipid classes in human blood. The separation was obtained using an HPLC diol column and a gradient of chloroform and methanol with 0.1% formic acid, titrated to pH 5.3 with ammonia and added 0.05% triethylamine. The HPLC system was coupled on-line with an electrospray ionisation ion-trap mass spectrometer. Chromatographic baseline separation was obtained between phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, lyso-phosphatidylcholine, phosphatidylinositol and phosphatidylserine, eluting in that order. The total run time was 30 min. Plasmalogen phosphatidylethanolamine and sphingomyelin, which both are substances with structural similarities to the glycerophospholipids, had similar retention time as phosphatidylethanolamine, but were well separated from the other glycerophospholipid classes. The species from each class were identified using MS2 or MS3, which forms characteristic lyso-fragments. The combination of lyso-fragment mass, molecular ion and chromatographic retention time was used to identify each species, including 20 species of phosphatidylglycerol. The mass spectra obtained for the phospholipid classes are presented. Using this system 17 disaturated phospholipid species not earlier described to be present in blood were identified. The limit of detection varied between different phospholipid classes and was in the range 0.1-5 ng of injected substance.
Collapse
Affiliation(s)
- S Uran
- Research and Development, Nycomed Imaging AS, Oslo, Norway
| | | | | | | |
Collapse
|