1
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Zheng Y, Zhao Y, He W, Wang Y, Cao Z, Yang H, Wang W, Li S. Novel organic selenium source hydroxy-selenomethionine counteracts the blood-milk barrier disruption and inflammatory response of mice under heat stress. Front Immunol 2022; 13:1054128. [PMID: 36532046 PMCID: PMC9757697 DOI: 10.3389/fimmu.2022.1054128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heat stress (HS) in summer has caused huge economic losses to animal husbandry production recently. When mammary gland is exposed to high temperatures, it will cause blood-milk barrier damage. Hydroxy-selenomethionine (HMSeBA) is a new selenium source with better guarantee of animals' production performance under stress, but whether it has protective effect on heat stress-induced blood-milk damage is still unclear. We established mammary epithelial cells and mice heat stress injury models to fill this research gap, and hope to provide theoretical basis for using HMSeBA to alleviate heat stress damage mammary gland. The results showed that (1) Heat stress significantly decreases in vitro transepithelial electrical resistance (TEER) and cell viability (P < 0.01), and significantly decreases clinical score, histological score, and total alveoli area of mice mammary gland tissue (P < 0.01). (2) HMSeBA significantly increases TEER and fluorescein sodium leakage of HS-induced monolayer BMECs (P < 0.01), significantly improves the milk production and total area of alveoli (P < 0.01), and reduces clinical score, histological score, mRNA expression of heat stress-related proteins, and inflammatory cytokines release of heat-stressed mice (P < 0.01). (3) HMSeBA significantly improves tight junction structure damage, and significantly up-regulated the expression of tight junction proteins (ZO-1, claudin 1, and occludin) as well as signal molecules PI3K, AKT, and mTOR (P < 0.01) in heat-stressed mammary tissue. (4) HMSeBA significantly increases glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and superoxide dismutase release (SOD) (P < 0.01) and significantly reduce malondialdehyde (MDA) expression (P < 0.01) in heat-stressed mammary tissue. In conclusion, this study implemented heat-stressed cell and mice model and showed that HMSeBA significantly regulate antioxidant capacity, inhibited inflammation, and regulate tight junction proteins expression in blood-milk barrier via PI3K/AKT/mTOR signaling pathway, so as to alleviate mammary gland damage and ensure its structure and function integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, ; Shengli Li,
| | - Shengli Li
- *Correspondence: Wei Wang, ; Shengli Li,
| |
Collapse
|
3
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
4
|
The mystery behind the nostrils - technical clues for successful nasal epithelial cell cultivation. Ann Anat 2021; 238:151748. [PMID: 33940117 DOI: 10.1016/j.aanat.2021.151748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Research involving the nose reveals important information regarding the morphology and physiology of the epithelium and its molecular response to agents. The role of nasal epithelial cells and other cell subsets within the nasal epithelium play an interesting translational split between experimental and clinical research studying respiratory disorders or pathogen reactions. With an additional technical manuscript including a detailed description of important technical aspects, tips, tricks, and nuances for a successful culturing of primary, human nasal epithelial cells (NAEPCs), we here aim to improve the process of communication between experimentalists and physicians, supporting the purpose of a fruitful work for future translational projects. METHODS Based on previous work on various complex culture models of subject-derived NAEPCs, this additional manuscript harmonizes previously published facts combined with own experiences for a trouble-free implementation in laboratories. RESULTS A well-designed experimental question is essential prior to the establishment of different NAEPCs culture models. The correct method of cell extraction from the nasal cavity is essential and represent an important basis for successful culture work. Prior enzymatic processing of biopsy specimens, cell culture materials, collagenization procedure, culture conditions, and choice of culture medium are some important practical notes that increase the quality of the culture. Moreover, protocols on imaging techniques including histologic and electron microscopy must be adapted for NAEPC culture. Adapted flow cytometric protocols and transepithelial electrical resistance measurements can add valuable information. OUTLOOK A successful culturing of NAEPCs can provide an important basis for genetic studies and the implementation of omics-science, which is increasingly receiving broad attention in the scientific community. The common aim of in vitro 'mini-noses' will be a breakthrough in laboratories aiming to perform research under in vivo conditions. Here, organoid models are interesting models presenting a basis for translational studies.
Collapse
|
5
|
Abstract
The nasal route is commonly used for local delivery of drugs to treat inflammatory conditions. It is also an attractive route for systemic delivery of some drugs. Irrespective of intended use, administered drugs must permeate the epithelial or olfactory membrane to be effective. The enthusiasm for potential use of the nasal route for systemic drug delivery has not been met by comparable success. In this paper, the anatomical and physiological attributes of the nasal cavity and paranasal sinuses important for drug delivery and challenges limiting drug absorption are discussed. Efforts made so far in improving nasal drug absorption such as overcoming restrictive nasal geometry and paranasal sinuses accessibility, mucociliary clearance, absorption barriers, metabolism and drug physicochemical challenges are discussed. Highlights on future prospects of nasal drug delivery/absorption were discussed.
Collapse
|
6
|
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. ACTA ACUST UNITED AC 2015; 20:107-26. [PMID: 25586998 DOI: 10.1177/2211068214561025] [Citation(s) in RCA: 1287] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. The measurements for various cell types have been reported with commercially available measurement systems and also with custom-built microfluidic implementations. Some of the barrier models that have been widely characterized using TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in these values can arise due to factors such as temperature, medium formulation, and passage number of cells. The aim of this article is to review the different TEER measurement techniques and analyze their strengths and weaknesses, determine the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations using TEER measurements in some widely studied barrier models (BBB, GI tract, and pulmonary), and discuss the various factors that can affect TEER measurements.
Collapse
Affiliation(s)
- Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Aditya Reddy Kolli
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | | | | | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
7
|
Chen Z, Gong X, Lu Y, Du S, Yang Z, Bai J, Li P, Wu H. Enhancing effect of borneol and muscone on geniposide transport across the human nasal epithelial cell monolayer. PLoS One 2014; 9:e101414. [PMID: 24992195 PMCID: PMC4081582 DOI: 10.1371/journal.pone.0101414] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
Geniposide is widely used in the treatment of cerebral ischemic stroke and cerebrovascular diseases for its anti-thrombotic and anti-inflammatory effects. Recent studies demonstrated that geniposide could be absorbed promptly and thoroughly by intranasal administration in mice and basically transported into the brain. Here, we explored its transport mechanism and the effect of borneol and muscone on its transport by human nasal epithelial cell (HNEC) monolayer. The cytotoxicity of geniposide, borneol, muscone and their combinations on HNECs was evaluated by the MTT assay. Transcellular transport of geniposide and the influence of borneol and muscone were studied using the HNEC monolayer. Immunostaining and transepithelial electrical resistance were measured to assess the integrity of the monolayer. The membrane fluidity of HNEC was evaluated by fluorescence recovery after photobleaching. Geniposide showed relatively poor absorption in the HNEC monolayer and it was not a P-gp substrate. Geniposide transport in both directions significantly increased when co-administrated with increasing concentrations of borneol and muscone. The enhancing effect of borneol and muscone on geniposide transport across the HNEC may be attributed to the significant enhancement on cell membrane fluidity, disassembly effect on tight junction integrity and the process was reversible. These results indicated that intranasal administration has good potential to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhenzhen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Gong
- Reproductive Endocrinology Centre, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- * E-mail:
| | - Zhihui Yang
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huichao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Chen X, Zhi F, Jia X, Zhang X, Ambardekar R, Meng Z, Paradkar AR, Hu Y, Yang Y. Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel. ACTA ACUST UNITED AC 2013; 65:807-16. [PMID: 23647674 DOI: 10.1111/jphp.12043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/06/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to develop a curcumin intranasal thermosensitive hydrogel and to improve its brain targeting efficiency. METHODS The hydrogel gelation temperature, gelation time, drug release and mucociliary toxicity characteristics as well as the nose-to-brain transport in the rat model were evaluated. KEY FINDINGS The developed nasal hydrogel, composed of Pluronic F127 and Poloxamer 188, had shorter gelation time, longer mucociliary transport time and produced prolonged curcumin retention in the rat nasal cavity at body temperature. The hydrogel release mechanism was diffusion-controlled drug release, evaluated by the dialysis membrane method, but dissolution-controlled release when evaluated by the membraneless method. A mucociliary toxicity study revealed that the hydrogel maintained nasal mucosal integrity until 14 days after application. The drug-targeting efficiencies for the drug in the cerebrum, cerebellum, hippocampus and olfactory bulb after intranasal administration of the curcumin hydrogel were 1.82, 2.05, 2.07 and 1.51 times that after intravenous administration of the curcumin solution injection, respectively, indicating that the hydrogel significantly increased the distribution of curcumin into the rat brain tissue, especially into the cerebellum and hippocampus. CONCLUSIONS A thermosensitive curcumin nasal gel was developed with favourable gelation, release properties, biological safety and enhanced brain-uptake efficiency.
Collapse
Affiliation(s)
- Xi Chen
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, #185 Yuqian Road, Changzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nazar H, Caliceti P, Carpenter B, El-Mallah AI, Fatouros DG, Roldo M, van der Merwe SM, Tsibouklis J. A once-a-day dosage form for the delivery of insulin through the nasal route: in vitro assessment and in vivo evaluation. Biomater Sci 2013; 1:306-314. [DOI: 10.1039/c2bm00132b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Bijani C, Arnarez C, Brasselet S, Degert C, Broussaud O, Elezgaray J, Dufourc EJ. Stability and structure of protein-lipoamino acid colloidal particles: toward nasal delivery of pharmaceutically active proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5783-5794. [PMID: 22394194 DOI: 10.1021/la300222v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To circumvent the painful intravenous injection of proteins in the treatment of children with growth deficiency, anemia, and calcium insufficiency, we investigated the stability and structure of protein-lipoamino acid complexes that could be nasally sprayed. Preparations that ensure a colloidal and structural stability of recombinant human growth hormone (rhGH), recombinant human erythropoietin (rhEPO), and salmon calcitonin (sCT) mixed with lauroyl proline (LP) were established. Protein structure was controlled by circular dichroism, and very small sizes of ca. 5 nm were determined by dynamic light scattering. The colloidal preparations could be sprayed with a droplet size of 20-30 μm. The molecular structure of aggregates was investigated by all-atom molecular dynamics. Whereas a lauroyl proline capping of globular proteins rhGH and rhEPO with preservation of their active structure was observed, a mixed micelle of sCT and lipoamino acids was formed. In the latter, aggregated LP constitutes the inner core and the surface is covered with calcitonins that acquire a marked α-helix character. Hydrophobic/philic interaction balance between proteins and LP drives the particles' stability. Passage through nasal cells grown at confluence was markedly increased by the colloidal preparations and could reach a 20 times increase in the case of EPO. Biological implications of such colloidal preparations are discussed in terms of furtiveness.
Collapse
Affiliation(s)
- Christian Bijani
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR 5248, CNRS, Université Bordeaux, Institut Polytechnique Bordeaux, Pessac, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Sarmento B, Andrade F, da Silva SB, Rodrigues F, das Neves J, Ferreira D. Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol 2012; 8:607-21. [PMID: 22424145 DOI: 10.1517/17425255.2012.673586] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In vitro cell models have been used to predict drug permeation in early stages of drug development, since they represent an easy and reproducible method, allowing the tracking of drug absorption rate and mechanism, with an advantageous cost-benefit ratio. Such cell-based models are mainly composed of immortalized cells with an intrinsic ability to grow in a monolayer when seeded in permeable supports, maintaining their physiologic characteristics regarding epithelium cell physiology and functionality. AREAS COVERED This review summarizes the most important intestinal, pulmonary, nasal, vaginal, rectal, ocular and skin cell-based in vitro models for predicting the permeability of drugs. Moreover, the similitude between in vitro cell models and in vivo conditions are discussed, providing evidence that each model may provisionally resemble different drug absorption route. EXPERT OPINION Despite the widespread use of in vitro cell models for drug permeability and absorption evaluation purposes, a detailed study on the properties of these models and their in vitro-in vivo correlation compared with human data are required to further use in order to consider a future drug discovery optimization and clinical development.
Collapse
Affiliation(s)
- Bruno Sarmento
- Department of Pharmaceutical Technology, LTF/CICF, Faculty of Pharmacy, University of Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
12
|
Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm 2012; 81:265-72. [PMID: 22369880 DOI: 10.1016/j.ejpb.2012.02.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 11/20/2022]
Abstract
Oral delivery of protein or polypeptide drugs remains a challenge due to gastric and enzymatic degradation as well as poor permeation across the intestinal epithelia. In this study, liposomes containing bile salts were developed as a new oral insulin delivery system. The primary goal was to investigate the effect of cholate type, particle size and dosage of the liposomes on the hypoglycemic activity and oral bioavailability. Liposomes containing sodium glycocholate (SGC), sodium taurocholate (STC) or sodium deoxycholate (SDC) were prepared by a reversed-phase evaporation method. After oral administration, all liposomes elicited a certain degree of hypoglycemic effect in parallel with an increase in blood insulin level. The highest oral bioavailability of approximately 8.5% and 11.0% could be observed with subcutaneous insulin as reference for SGC-liposomes in non-diabetic and diabetic rats, respectively. Insulin-loaded liposomes showed slower and sustained action over a period of over 20 h with peak time around 8-12h. SGC-liposomes showed higher oral bioavailability than liposomes containing STC or SDC and conventional liposomes. The hypoglycemic effect was size-dependent with the highest at 150 nm or 400 nm and was proportionally correlated to the administered dose. The results supported the hypothesis of insulin absorption as intact liposomes.
Collapse
|
13
|
Thermosensitive hydrogels for nasal drug delivery: The formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 2011; 77:225-32. [DOI: 10.1016/j.ejpb.2010.11.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 11/11/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022]
|
14
|
Cros CD, Toth I, Blanchfield JT. Lipophilic derivatives of leu-enkephalinamide: in vitro permeability, stability and in vivo nasal delivery. Bioorg Med Chem 2010; 19:1528-34. [PMID: 21273080 DOI: 10.1016/j.bmc.2010.12.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
Leu-enkephalin is an endogenous pain modulating opioid pentapeptide. Its development as a potential pharmaceutic has been hampered by poor membrane permeability and susceptibility to enzymatic degradation. The addition of an unnatural amino acid containing a lipidic side chain at the N-terminus and the modification of the C-terminus to a carboxyamide was performed to enhance the nasal delivery of the peptide. Two lipidic derivatives with varying side chain lengths (C(8)-Enk-NH(2) (1), C(12)-Enk-NH(2) (2)) and their acetylated analogues were successfully synthesised. Caco-2 cell monolayer permeability and Caco-2 cell homogenate stability assays were performed. C(8)-Enk-NH(2) (1) and its acetylated analogue Ac-C8-Enk-NH(2) (3) exhibited apparent permeabilities (mean±SD) of 2.51±0.75×10(-6)cm/s and 1.06±0.62×10(-6), respectively. C12-Enk-NH(2) (2) exhibited an apparent permeability of 2.43±1.26×10(-6) cm/s while Ac-C12-Enk-NH(2) (4) was not permeable through the Caco-2 monolayers due to its poor solubility. All analogues exhibited improved Caco-2 homogenate stability compared to Leu-Enk-NH(2) with t(½) values of: C8-Enk-NH(2) (1): 31.7 min, C(12)-Enk-NH(2) (2): 14.7 min, Ac-C8-Enk-NH(2) (3): 83 min, Ac-C(12)-Enk-NH(2) (4): 27 min. However, plasma stability assays revealed that the diastereoisomers of C8-Enk-NH(2) (1) did not degrade at the same rate, with the l isomer (t(1/2)=8.9 min) degrading into Leu-enkephalinamide and then des-Tyr-Leu-Enk-NH(2), whereas the d isomer was stable (t(1/2)=120 min). In vivo nasal administration of C(8)-Enk-NH(2) to male rats resulted in concentrations of 5.9±1.84×10(-2) μM in the olfactory bulbs, 1.35±1.01×10(-2) μM in the brain and 6.53±1.87×10(-3) μM in the blood 10 min after administration.
Collapse
Affiliation(s)
- Cécile D Cros
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | | | | |
Collapse
|
15
|
|
16
|
Wong YC, Zuo Z. Intranasal delivery--modification of drug metabolism and brain disposition. Pharm Res 2010; 27:1208-23. [PMID: 20372990 DOI: 10.1007/s11095-010-0127-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/22/2010] [Indexed: 01/01/2023]
Abstract
Intranasal route continues to be one of the main focuses of drug delivery research. Although it is generally perceived that the nasal route could avoid the first-pass metabolism in liver and gastrointestinal tract, the role of metabolic conversions in systemic and brain-targeted deliveries of the parent compounds and their metabolites should not be underestimated. In this commentary, metabolite formations after intranasal and other routes of administration are compared. Also, the disposition of metabolites in plasma and brain after nasal administrations of parent drugs, prodrugs and preformed metabolites will be discussed. The importance and implications of metabolism for future nasal drug development are highlighted.
Collapse
Affiliation(s)
- Yin Cheong Wong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Room 610, Basic Medical Sciences Building, Shatin, New Territories, Hong Kong
| | | |
Collapse
|
17
|
Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: Applications. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2010; 2:72-9. [PMID: 21814436 PMCID: PMC3147107 DOI: 10.4103/0975-7406.67003] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 03/26/2010] [Accepted: 04/13/2010] [Indexed: 11/06/2022] Open
Abstract
Cyclodextrins (CDs) are a family of cyclic oligosaccharides with a hydrophilic outer surface and a lipophilic central cavity. CD molecules are relatively large with a number of hydrogen donors and acceptors and, thus in general, they do not permeate lipophilic membranes. In the pharmaceutical industry, CDs have mainly been used as complexing agents to increase aqueous solubility of poorly soluble drugs and to increase their bioavailability and stability. CDs are used in pharmaceutical applications for numerous purposes, including improving the bioavailability of drugs. Current CD-based therapeutics is described and possible future applications are discussed. CD-containing polymers are reviewed and their use in drug delivery is presented. Of specific interest is the use of CD-containing polymers to provide unique capabilities for the delivery of nucleic acids. Studies in both humans and animals have shown that CDs can be used to improve drug delivery from almost any type of drug formulation. Currently, there are approximately 30 different pharmaceutical products worldwide containing drug/CD complexes in the market.
Collapse
Affiliation(s)
- Gaurav Tiwari
- Jaipur National University, Jagatpura, Jaipur, Rajasthan, India
| | - Ruchi Tiwari
- Department of pharmaceutics, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur 208020, Uttar Pradesh, India
| | - Awani K. Rai
- Department of pharmaceutics, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur 208020, Uttar Pradesh, India
| |
Collapse
|
18
|
Venkatesh G, Majid MI, Mansor SM, Nair NK, Croft SL, Navaratnam V. In vitro and in vivo evaluation of self-microemulsifying drug delivery system of buparvaquone. Drug Dev Ind Pharm 2010; 36:735-45. [DOI: 10.3109/03639040903460446] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Abstract
Topical drug delivery for sinonasal disorders is influenced by a variety of factors. Macroscopically (or anatomically), the ability of the drug to reach the appropriate region of the paranasal system is paramount. Delivery techniques, surgical state of the sinus cavity, delivery device, and fluid dynamics (volume, pressure, position) have a significant impact on the delivery of topical therapies to the sinus mucosa. Once topical therapeutics actually reach the desired site, factors within the local microenvironment heavily influence local drug delivery. The presence and composition of the mucus blanket, mucociliary clearance, direct mucin-drug binding, and the permeability of pharmaceutical compounds will all impact drug delivery. In addition, the general therapeutic goal of topical management may lie between the potentially competing actions of mechanical lavage and pharmaceutical intervention. Techniques for the mechanical removal of mucus, antigen, and inflammatory products may not be the most efficient approach for pharmaceutical delivery. This article reviews the evolving concepts in local drug therapy, both for the factors that influence anatomic distribution within the sinonasal system and those that affect mucosal absorption.
Collapse
Affiliation(s)
- Richard J Harvey
- Rhinology and Skull Base Surgery, Department of Otolaryngology/Skull Base Surgery, St Vincent's Hospital, 354 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
20
|
Mallants R, Vlaeminck V, Jorissen M, Augustijns P. An improved primary human nasal cell culture for the simultaneous determination of transepithelial transport and ciliary beat frequency. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.07.0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The aim was to establish a preclinical in-vitro system of the nasal mucosa for the simultaneous evaluation of nasal absorption and effects on ciliary activity.
Methods
Human nasal epithelial cells were grown in collagen-coated transport inserts with transparent polyethylene terephthalate membranes (3 μm). Transepithelial transport and ciliary beat frequency values were measured every 15 min for 1 h.
Key findings
The apparent permeability coefficients (Papp) for atenolol (mainly paracellular transport) and propranolol (transcellular transport) amounted to 0.1 ± 0.1 and 23.7 ± 0.6 × 10−6 cm/s, respectively, illustrating that the system can be used to discriminate between high permeability and low permeability compounds. Transport of talinolol (substrate for the P-glycoprotein efflux carrier) did not reveal polarity (0.3 ± 0.2 and 0.2 ± 0.1 × 10−6 cm/s for absorptive and secretory transport, respectively) and was not affected by verapamil (10 μm), suggesting the absence of P-glycoprotein in the nasal cell culture. No significant effects of atenolol, propranolol and talinolol on ciliary beat frequency were observed (98 ± 20% of the control condition after 60 min). Chlorocresol significantly decreased the ciliary activity but this decrease was not accompanied by effects on the transepithelial transport of atenolol, propranolol and talinolol.
Conclusions
A new system was developed which offers possibilities as a fast screening tool for studying the potential of compounds for nasal drug administration, since permeability and a possible cilio-toxic effect can be assessed simultaneously.
Collapse
Affiliation(s)
- Roel Mallants
- Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Belgium
| | - Valerie Vlaeminck
- Laboratory for Experimental Otorhinolaryngology, Universitaire Ziekenhuizen Leuven, Belgium
| | - Mark Jorissen
- Laboratory for Experimental Otorhinolaryngology, Universitaire Ziekenhuizen Leuven, Belgium
| | - Patrick Augustijns
- Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
21
|
Agu RU, Valiveti S, Paudel KS, Klausner M, Hayden PJ, Stinchcomb AL. Permeation of WIN 55,212-2, a potent cannabinoid receptor agonist, across human tracheo-bronchial tissue in vitro and rat nasal epithelium in vivo. J Pharm Pharmacol 2007; 58:1459-65. [PMID: 17132208 DOI: 10.1211/jpp.58.11.0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The aim of this study was to investigate the intranasal absorption of R-(+)-WIN 55,212-2 mesylate in vivo and in vitro. Permeation experiments of R-(+)-WIN 55,212-2 formulations with 2% dimethyl-beta-cyclodextrin (DMbetaCD), 2% trimethyl-beta-cyclodextrin (TMbetaCD) or 2% randomly methylated-beta-cyclodextrin (RAMbetaCD) in 1:1 propylene glycol/saline and 1.5% propylene glycol +3% Tween 80 in saline were conducted using EpiAirway tissue and an anesthetized rat nasal absorption model, respectively. Samples were analysed by liquid chromatography-mass spectrometry. Mucosal tolerance was screened using paracellular marker permeation and tissue viability as indices. Nasal absorption of WIN 55,212-2 was rapid, with a t(max) (time of peak concentration) of 0.17 to 0.35 h in vivo. Relative to 1.5% propylene glycol +3% Tween 80 (control), 1:1 propylene glycol/saline, RAMbetaCD, DMbetaCD and TMbetaCD resulted in 24-, 20-, 17- and 10-fold WIN 55,212-2 permeation increases in vitro, respectively. The in vivo absolute bioavailabilities were also increased with 1:1 propylene glycol/saline, RAMbetaCD, DMbetaCD and TMbetaCD compared to 1.5% propylene glycol +3% Tween 80 (0.15 vs. 0.66-0.77). The viability of the EpiAirway tissues was significantly reduced by DMbetaCD and TMbetaCD formulations. This study showed that WIN 55,212-2 mesylate can be delivered via the nasal route. Absorption of R-(+)-WIN 55,212-2 was rapid and bioavailability was significantly improved using methylated cyclodextrins and propylene glycol-based cosolvent.
Collapse
Affiliation(s)
- Remigius U Agu
- University of Kentucky College of Pharmacy, Lexington, KY 40536-0082, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lin H, Gebhardt M, Bian S, Kwon KA, Shim CK, Chung SJ, Kim DD. Enhancing effect of surfactants on fexofenadine·HCl transport across the human nasal epithelial cell monolayer. Int J Pharm 2007; 330:23-31. [PMID: 16997520 DOI: 10.1016/j.ijpharm.2006.08.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 08/16/2006] [Accepted: 08/28/2006] [Indexed: 11/29/2022]
Abstract
The effect of various surfactants (sodium cholate, sodium taurocholate, Tween 80 and Poloxamer F68) on enhancing the transepithelial permeability of fexofenadine.HCl was evaluated in a human nasal epithelial cell monolayer model. The cytotoxicity of the surfactants on the human nasal epithelial cells was evaluated by the MTT assay. A dose-dependent reduction of cell viability was observed at higher than critical micelle concentration (CMC) of the surfactants, and the IC50 of non-ionic surfactants (Tween 80 and Poloxamer F68) was higher than that of ionic surfactants (sodium cholate and sodium taurocholate). The TEER values significantly decreased after 2 h incubation with the ionic surfactants, but were recovered after 24 h in the fresh culture media. Ionic surfactants significantly increased the transepithelial permeability (P(app)) of fexofenadine.HCl compared to the non-ionic surfactants. The reduction of TEER values upon exposing the cell monolayer to the surfactants for 2 h correlated well with the P(app) of fexofenadine.HCl, which suggests that the permeation-enhancing mechanism of the ionic surfactants is by altering the tight junction property of the paracellular pathway. F-actin staining showed that the effect of ionic surfactants on the tight junction is temporary and reversible, which is consistent with the TEER value recovery within 24 h. These results imply that ionic surfactants are potentially useful permeation enhancers for nasal delivery of hydrophilic compounds, such as fexofenadine.HCl. This study also indicated the usefulness of the human nasal epithelial cell monolayer model not only for evaluating the in vitro nasal drug transport but also for studying the mechanism and toxicity of enhancers.
Collapse
Affiliation(s)
- Hongxia Lin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Yoo JW, Kim YS, Lee SH, Lee MK, Roh HJ, Jhun BH, Lee CH, Kim DD. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharm Res 2004; 20:1690-6. [PMID: 14620527 DOI: 10.1023/a:1026112107100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To evaluate the feasibility of using a serially passaged culture of human nasal epithelial cell monolayers on a permeable support for in vitro drug transport studies. The optimum conditions for passaged culture as well as the correlation between the transepithelial electrical resistance (TEER) value and drug permeability (Papp) were evaluated. METHODS Fresh human nasal epithelial cells were collected from normal inferior turbinates and were subcultured repeatedly in serum-free bronchial epithelial cell growth media (BEGM) in petri dishes. The subcultured cells of each passage were seeded onto permeable supports at 5 x 10(5) cells/cm2 and grown in Dulbecco's modified Eagle medium (DMEM). Morphologic characteristics were observed by scanning electron microscopy (SEM). To verify the formation of tight junctions, actin staining and transmission electron microscopy (TEM) studies were conducted. In the drug transport study, [14C]mannitol and budesonide were selected as the paracellular and the transcellular route markers, respectively. RESULTS Serially passaged cells were successfully cultured on a permeable support and showed significantly high TEER values up to passage 4. After 14 days of seeding, SEM showed microvilli, and protrusions of cilia and mucin granules were detected by TEM. The paracellular marker [14C]mannitol showed a nearly constant permeability coefficient (Papp) when the TEER value exceeded 500 omega x cm2 regardless of the passage number. However, as expected, budesonide showed a higher permeability coefficient compared to [14C]mannitol and was less affected by the TEER value. CONCLUSIONS Human nasal epithelial cell monolayers were successfully subcultured on a permeable support up to passage 4. These cell culture methods may be useful in high-throughput screening of in vitro nasal transport studies of various drugs.
Collapse
Affiliation(s)
- Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Agu RU, Vu Dang H, Jorissen M, Kinget R, Verbeke N. Metabolism and absorption enhancement of methionine enkephalin in human nasal epithelium. Peptides 2004; 25:563-9. [PMID: 15165710 DOI: 10.1016/j.peptides.2004.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/20/2004] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate absorption enhancing approaches for systemic delivery of methionine enkephalin via the nose. Absorption promotion of methionine enkephalin in the presence of protease inhibitors (bestatin, puromycin) and absorption enhancers (glycocholate, dimethyl-beta-cyclodextrin) were investigated in human nasal epithelium. Co-administration of the peptide with protease inhibitors and absorption enhancers resulted in a remarkable increase in Met-Enk permeation (4- to 94-fold). The increase was proportional to transepithelial resistance reduction and permeation of paracellular marker dye. Perturbation of the epithelial tight junctions seen in vitro may not occur in vivo due to mucus protection and mucociliary clearance.
Collapse
Affiliation(s)
- Remigius U Agu
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Sciences Building, 900 S. Limestone Street, Room 461, Lexington, KY 40536-0200, USA
| | | | | | | | | |
Collapse
|
25
|
Nicolazzo JA, Reed BL, Finnin BC. The Effect of Various In Vitro Conditions on the Permeability Characteristics of the Buccal Mucosa. J Pharm Sci 2003; 92:2399-410. [PMID: 14603485 DOI: 10.1002/jps.10505] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effect of various in vitro conditions on the permeability characteristics of the buccal mucosa was assessed using caffeine (CAF) and estradiol (E(2)) as model hydrophilic and lipophilic markers, respectively. The permeation of CAF and E(2) through porcine buccal mucosa was determined in modified Ussing chambers at 37 degrees C over 4 h. Comparative permeation studies were performed through full thickness and epithelial tissues, fresh and frozen tissues, and intact and intentionally damaged tissues. Tissue integrity was monitored by the absorption of the normally impermeable fluorescein isothiocyanate (FITC)-labeled dextran 20 kDa (FD20) and tissue viability was assessed using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) biochemical assay and histological evaluation. Compared to full thickness buccal tissue, permeability through the buccal epithelium was 1.8-fold greater for CAF and 16.7-fold greater for E(2). Although the fluxes of the model compounds were no different in fresh and frozen buccal epithelium, histological evaluation demonstrated signs of cellular death in frozen tissue. FD20 permeated damaged tissue, and while this was associated with an increase in CAF transport, no significant change in E(2) transport was observed. The tissue appeared to remain viable for up to 12 h postmortem using the MTT viability assay, and this was supported by histological evaluation.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Department of Pharmaceutics, Monash University, 381 Royal Parade, Parkville, Victoria, Australia 3052
| | | | | |
Collapse
|
26
|
Agu R, Dang HV, Jorissen M, Willems T, Vandoninck S, Van Lint J, Vandenheede JV, Kinget R, Verbeke N. In vitro polarized transport of L-phenylalanine in human nasal epithelium and partial characterization of the amino acid transporters involved. Pharm Res 2003; 20:1125-32. [PMID: 12948008 DOI: 10.1023/a:1025028410131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The purpose of this study was to provide functional and molecular evidence to support the existence of large neutral amino acid transporters in human nasal epithelium using nasal primary cell culture model. METHODS L-Phenylalanine was used as a model substrate to characterize carrier-mediated permeation of amino acids across human nasal epithelium. The influence of temperature, concentration, other amino acids, metabolic/transport inhibitors, and polarity/stereo-selectivity on transport of the model compound was investigated. Reverse transcriptase polymerase chain reaction was used for molecular characterization of the existence of the transporters. RESULTS The transport of L-phenylalanine across the human nasal epithelium was polarized (apical --> basolateral >> basolateral --> apical), saturable (Km = 1.23 mM; Vmax = 805.1 nmol/mg protein/min) and stereo-selective (permeation of L-phenylalanine >> D-Phenylalanine). Its permeation was significantly (< 0.05) reduced by cationic, small and large neutral amino acids, oubain, amiloride, sodium-free medium, and temperature lowering. Reverse transcriptase polymerase chain reaction revealed the presence of the broad-scope cationic-dependent amino acid transporter gene (y+LAT-2) in the human nasal epithelium. CONCLUSIONS Based on the results of this study, one may postulate that the human nasal epithelium expresses L-amino acid transporters. More studies are necessary for detailed characterization of the transporters.
Collapse
Affiliation(s)
- Remigius Agu
- Laboratory for Pharmacotechnology and Biopharmacy, K.U. Leuven, Campus Gasthuisberg O&N, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Remigius UA, Jorissen M, Willems T, Kinget R, Verbeke N. Mechanistic appraisal of the effects of some protease inhibitors on ciliary beat frequency in a sequential cell culture system of human nasal epithelium. Eur J Pharm Biopharm 2003; 55:283-9. [PMID: 12754002 DOI: 10.1016/s0939-6411(03)00023-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate the suitability of a sequential monolayer-suspension culture system as a model to screen subacute effects of drug excipients on ciliary beat frequency (CBF). The CBF of the cultured cells was measured by computerized microscope photometry. Protease inhibitors (puromycin, bestatin, bacitracin, actinonin and thiomersal) were used as model compounds and the mechanisms of ciliary inhibition were investigated by probing the involvement of arachidonic acid metabolism, guanylate cyclase (cGMP), protein kinase C (PKC) and adenosinetriphosphate (ATP) inhibition. Bestatin concentration-dependently reduced CBF by inhibiting arachidonic acid metabolism, cGMP, PKC and endogenous ATP consumption. Thiomersal and DMSO used for dissolving actinonin reduced CBF (P<0.05) via a non-specific mechanism. Bacitracin (8 mM) and puromycin (135 mM) had no effect on CBF after acute exposure (15-30 min) (P>0.05), but significantly reduced the CBF by approximately 15.0% following daily 15-min exposure for 1 week. This study shows that (i) sequential monolayer-suspension culture system is a valid model to screen both acute and subacute effects of drug excipients on CBF; and (ii) bacitracin, puromycin and actinonin are more cilio-compatible than bestatin and thiomersal and as such are more potentially useful nasal absorption enhancer from ciliotoxicity perspective.
Collapse
|