1
|
Bao Z, Kim J, Kwok C, Le Devedec F, Allen C. A dataset on formulation parameters and characteristics of drug-loaded PLGA microparticles. Sci Data 2025; 12:364. [PMID: 40025040 PMCID: PMC11873201 DOI: 10.1038/s41597-025-04621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
Polymer microparticles (MPs) are widely used to create long-acting injectable formulations due to their ability to enable sustained drug release. This feature can significantly benefit chronic disease management by reducing dosing frequency and improving patient adherence. To support the design and development of polymer MPs, we have compiled a dataset on MPs formed from poly(lactide-co-glycolide) (PLGA), the most commonly used polymer in commercial MP drug products. This dataset, derived from the literature, covers 321 in vitro release studies involving 89 different drugs. It aims to streamline future MP development by providing a reference for the current PLGA MP design space and supporting data-driven approaches such as machine learning. Published with open access, this dataset encourages broad utilization and aims to expand the range of available MP formulations.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
| | - Jongwhi Kim
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Candice Kwok
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
2
|
Saleh SR, Khamiss SE, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Thabet EH, Ghareeb DA, Awad D, El-Bessoumy AA. Biochemical investigation and in silico analysis of the therapeutic efficacy of Ipriflavone through Tet-1 Surface-Modified-PLGA nanoparticles in Streptozotocin-Induced Alzheimer's like Disease: Reduced oxidative damage and etiological Descriptors. Int J Pharm 2025; 669:125021. [PMID: 39631714 DOI: 10.1016/j.ijpharm.2024.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Ipriflavone (IPRI), an isoflavone derivative, is clinically used to prevent postmenopausal bone loss in addition to its antioxidant and cognitive benefits. However, its poor aqueous solubility retained its bioavailability. New strategies have been developed to improve the bioavailability and solubility of neurological medications to enhance their potency and limit adverse effects. This study aimed to prepare targeted IPRI-poly-lactic-co-glycolic acid (PLGA) nanoparticles coupled with Tet-1 peptide to increase the therapeutic potency of IPRI in a rat model of Alzheimer's disease (AD). Streptozotocin (STZ) exacerbates Alzheimer-related alterations by promoting central insulin resistance resulted from defective signaling pathways related to neuroinflammation and neurotoxicity. Bilateral intracerebroventricular (icv) injection of STZ was used to introduce the AD model. Icv-STZ injection significantly affected brain insulin, oxidative stress, inflammatory, and apoptotic indicators and caused behavioral abnormalities. STZ promoted the formation of amyloid β42 (Aβ42) by increasing BACE1 and reducing ADAM10 and ADAM17 expression levels. STZ also triggered the accumulation of neurofibrillary tangles and synaptic dysfunction, which are crucial for neurological impairments. Icv-STZ injection showed evident degenerative changes in the pyramidal cell layer and significantly reduced the count of viable cells in both CA1 and prefrontal cortex, indicating increased neuronal cell death. IPRI successfully ameliorated cognitive dysfunction by improving the phosphorylated forms of cAMP-response element-binding protein (pCREB) and extracellular signal-regulated kinase 1/2 (pERK1/2) related to synaptic plasticity. Targeted IPRI nanoparticles exceeded free IPRI potential in reducing oxidative stress, acetylcholinesterase/monoamine oxidase activities, Tau phosphorylation, and Aβ42 levels revealing less degenerative changes and increased viable neuron counts. IPRI-targeted nanoparticles improved the neuroprotective potential of free IPRI, making this strategy applicable to treat many neurodegenerative diseases. Finally, the in silico study predicted its ability to cross the BBB and to bind various protein targets in the brain.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Salma E Khamiss
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eman H Thabet
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Doaa Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Ashraf A El-Bessoumy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
3
|
Zhai J, Wang YE, Zhou X, Ma Y, Guan S. Long-term sustained release Poly(lactic-co-glycolic acid) microspheres of asenapine maleate with improved bioavailability for chronic neuropsychiatric diseases. Drug Deliv 2021; 27:1283-1291. [PMID: 32885707 PMCID: PMC8216481 DOI: 10.1080/10717544.2020.1815896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia and bipolar disorder are severe chronic neuropsychiatric diseases, affecting hundreds of millions of people worldwide. Asenapine maleate (ASM) has been demonstrated as a safe and effective therapeutic agent under twice-daily administration. However, lower compliance is observed when patients are treated with ASM, which significantly limits its application in schizophrenia and bipolar disorder. Moreover, the low bioavailability of ASM caused by first-pass metabolism and poor aqueous solubility also impairs the treatment effect. A formulation of ASM with the property of long-term sustained release and improved bioavailability can be a solution to overcome these weaknesses. In this article, we prepared ASM-loaded poly(lactic-co-glycolic acid) (ASM-PLGA) microspheres through different techniques, including emulsification-solvent evaporation (ESE), Shirasu porous glass membrane emulsification (SPG-ME), and microfluidic method. In vitro and in vivo assessments demonstrated that uniform-sized microspheres generated by the microfluidic process sustainably released ASM throughout 40-days, showing low burst release and significantly improved bioavailability. The results suggest that ASM-PLGA microspheres prepared by the microfluidic method provide an efficient strategy to enhance the drug exposure of ASM as the treatment of chronic neuropsychiatric diseases. It is also evident that this microfluidic strategy has the potential to construct with other drugs, establishing long-acting formulations.
Collapse
Affiliation(s)
- Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-E Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangping Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shixia Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Lee WL, Guo WM, Ho VHB, Saha A, Chong HC, Tan NS, Tan EY, Loo SCJ. Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. single-drug loading. Acta Biomater 2015; 27:53-65. [PMID: 26340886 DOI: 10.1016/j.actbio.2015.08.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 12/23/2022]
Abstract
Double-layered microparticles composed of poly(d,l-lactic-co-glycolic acid, 50:50) (PLGA) and poly(l-lactic acid) (PLLA) were loaded with doxorubicin HCl (DOX) and paclitaxel (PCTX) through a solvent evaporation technique. DOX was localized in the PLGA shell, while PCTX was localized in the PLLA core. The aim of this study was to investigate how altering layer thickness of dual-drug, double-layered microparticles can influence drug release kinetics and their antitumor capabilities, and against single-drug microparticles. PCTX-loaded double-layered microparticles with denser shells retarded the initial release of PCTX, as compared with dual-drug-loaded microparticles. The DOX release from both DOX-loaded and dual-drug-loaded microparticles were observed to be similar with an initial burst. Through specific tailoring of layer thicknesses, a suppressed initial burst of DOX and a sustained co-delivery of two drugs can be achieved over 2months. Viability studies using spheroids of MCF-7 cells showed that controlled co-delivery of PCTX and DOX from dual-drug-loaded double-layered microparticles were better in reducing spheroid growth rate. This study provides mechanistic insights into how by tuning the layer thickness of double-layered microparticles the release kinetics of two drugs can be controlled, and how co-delivery can potentially achieve better anticancer effects. STATEMENT OF SIGNIFICANCE While the release of multiple drugs has been reported to achieve successful apoptosis and minimize drug resistance, most conventional particulate systems can only deliver a single drug at a time. Recently, although a number of formulations (e.g. micellar nanoparticles, liposomes) have been successful in delivering two or more anticancer agents, sustained co-delivery of these agents remains inadequate due to the complex agent loading processes and rapid release of hydrophilic agents. Therefore, the present work reports the multilayered particulate system that simultaneously hosts different drugs, while being able to tune their individual release over months. We believe that our findings would be of interest to the readers of Acta Biomaterialia because the proposed system could open a new avenue on how two drugs can be released, through rate-controlling carriers, for combination chemotherapy.
Collapse
Affiliation(s)
- Wei Li Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wei Mei Guo
- Molecular Engineering Laboratory, A(∗)STAR, Proteos #03-13, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Vincent H B Ho
- Molecular Engineering Laboratory, A(∗)STAR, Proteos #03-13, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amitaksha Saha
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Han Chung Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
5
|
Lee WL, Guo WM, Ho VHB, Saha A, Chong HC, Tan NS, Widjaja E, Tan EY, Loo SCJ. Inhibition of 3-D tumor spheroids by timed-released hydrophilic and hydrophobic drugs from multilayered polymeric microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3986-3996. [PMID: 24947558 DOI: 10.1002/smll.201400536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 06/03/2023]
Abstract
First-line cancer chemotherapy necessitates high parenteral dosage and repeated dosing of a combination of drugs over a prolonged period. Current commercially available chemotherapeutic agents, such as Doxil and Taxol, are only capable of delivering single drug in a bolus dose. The aim of this study is to develop dual-drug-loaded, multilayered microparticles and to investigate their antitumor efficacy compared with single-drug-loaded particles. Results show hydrophilic doxorubicin HCl (DOX) and hydrophobic paclitaxel (PTX) localized in the poly(dl-lactic-co-glycolic acid, 50:50) (PLGA) shell and in the poly(l-lactic acid) (PLLA) core, respectively. The introduction of poly[(1,6-bis-carboxyphenoxy) hexane] (PCPH) into PLGA/PLLA microparticles causes PTX to be localized in the PLLA and PCPH mid-layers, whereas DOX is found in both the PLGA shell and core. PLGA/PLLA/PCPH microparticles with denser shells allow better control of DOX release. A delayed release of PTX is observed with the addition of PCPH. Three-dimensional MCF-7 spheroid studies demonstrate that controlled co-delivery of DOX and PTX from multilayered microparticles produces a greater reduction in spheroid growth rate compared with single-drug-loaded particles. This study provides mechanistic insights into how distinctive structure of multilayered microparticles can be designed to modulate the release profiles of anticancer drugs, and how co-delivery can potentially provide better antitumor response.
Collapse
Affiliation(s)
- Wei Li Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhou W, Liu Z, Yao J, Chi F, Dong K, Yue X, Teng T, Rausch X. The Effects of Exenatide Microsphere on Serum BGP and ALP Levels in ZDF Rats after Implantation. Clin Implant Dent Relat Res 2013; 17:765-70. [PMID: 24299614 DOI: 10.1111/cid.12184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this project is to investigate the impact of diabetes mellitus and different glycemic control times on early osseointegration of dental implants by expression and significance of serum bone Gla protein (BGP) and alkaline phosphatase (ALP) levels in Zucker diabetic fatty (ZDF) rats after implantation. MATERIALS AND METHODS The animals were divided into three groups, each group with 11 rats and each rat with two dental implants (33 rats and 66 implants in total): group A, diabetic rats with dental implants (controls); group B, diabetic rats treated with insulin and implants placed simultaneously; and group C, diabetic rats treated with insulin until serum glucose at a constant level and then implants be placed. Levels of BGP and ALP in the serum were measured by enzyme-linked immunosorbent assay in each group. The software program SPSS (version 17.0 for Windows) was used to analyze all data; p < .05 was set as the level of statistical significance. RESULTS At the 7th day, serum levels of BGP in group B and C were lower than that in group A (p > 0.05). At the 14th day, serum levels of BGP in group C were significantly higher (p < 0.05). After 30 days, compared with group A, the serum levels of BGP in group B and C seems to be lower. Compared with group A, the serum levels of ALP in group B and C were significantly higher, whereas the serum levels of ALP in group C seems to be higher than B (p < 0.05). CONCLUSIONS The present results suggest that injection of delayed release microsphere of exenatide on ZDF rats can release exenatide at a steady rate and the blood glucose can be controlled at a constant level. Implant survival rates could be enhanced in DM subjects when blood plasma glucose level is under control; the serum levels of BGP in this study seems to have no relationship with local osseointegration, whereas the serum levels of ALP might offer insights into the activity of osseointegration around the implant surface.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Zhonghao Liu
- Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Jie Yao
- Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Fei Chi
- Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Kai Dong
- Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Xilong Yue
- Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Teng Teng
- Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Xiaohui Rausch
- Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, China
| |
Collapse
|
7
|
Miladi K, Sfar S, Fessi H, Elaissari A. Drug carriers in osteoporosis: preparation, drug encapsulation and applications. Int J Pharm 2013; 445:181-95. [PMID: 23376227 DOI: 10.1016/j.ijpharm.2013.01.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/10/2012] [Accepted: 01/16/2013] [Indexed: 01/23/2023]
Abstract
Carriers are largely used to enhance therapy efficiency via the encapsulation of active molecules. The encapsulation enhances the stability of drug molecules, improves the targeting properties and prolongs pharmacological activity via continuous local release of active molecules. The aim of this review is to report the carrier systems used in osteoporosis therapy. This state of the art research has mainly focused on describing all types of carriers used in this area, their elaboration and properties, the drug characteristics used in such specific application, and drug release and efficiency. In this field, various processes have been used in order to obtain well-defined capsules, spheres and more complex carriers. In this exhaustive review, each process is described, illustrated and discussed.
Collapse
Affiliation(s)
- K Miladi
- University of Lyon, F-69622, Lyon, France
| | | | | | | |
Collapse
|
8
|
Literature Alerts. J Microencapsul 2010. [DOI: 10.3109/02652040309178092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Singh M, Morris CP, Ellis RJ, Detamore MS, Berkland C. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng Part C Methods 2009; 14:299-309. [PMID: 18795865 DOI: 10.1089/ten.tec.2008.0167] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spatial and temporal control of bioactive signals in three-dimensional (3D) tissue engineering scaffolds is greatly desired. Coupled together, these attributes may mimic and maintain complex signal patterns, such as those observed during axonal regeneration or neovascularization. Seamless polymer constructs may provide a route to achieve spatial control of signal distribution. In this study, a novel microparticle-based scaffold fabrication technique is introduced as a method to create 3D scaffolds with spatial control over model dyes using uniform poly(D,L-lactide-co-glycolide) microspheres. Uniform microspheres were produced using the Precision Particle Fabrication technique. Scaffolds were assembled by flowing microsphere suspensions into a cylindrical glass mold, and then microspheres were physically attached to form a continuous scaffold using ethanol treatment. An ethanol soak of 1 h was found to be optimum for improved mechanical characteristics. Morphological and physical characterization of the scaffolds revealed that microsphere matrices were porous (41.1 +/- 2.1%) and well connected, and their compressive stiffness ranged from 142 to 306 kPa. Culturing chondrocytes on the scaffolds revealed the compatibility of these substrates with cell attachment and viability. In addition, bilayered, multilayered, and gradient scaffolds were fabricated, exhibiting excellent spatial control and resolution. Such novel scaffolds can serve as sustained delivery devices of heterogeneous signals in a continuous and seamless manner, and may be particularly useful in future interfacial tissue engineering investigations.
Collapse
Affiliation(s)
- Milind Singh
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
10
|
Effectual drug-releasing porous scaffolds from 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) for bone tissue regeneration. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Silva GA, Coutinho OP, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 2. Applications in bone. J Tissue Eng Regen Med 2008; 1:97-109. [PMID: 18038398 DOI: 10.1002/term.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Materials in particulate form have been the subjects of intensive research in view of their use as drug delivery systems. While within this application there are still issues to be addressed, these systems are now being regarded as having a great potential for tissue engineering applications. Bone repair is a very demanding task, due to the specific characteristics of skeletal tissues, and the design of scaffolds for bone tissue engineering presents several difficulties. Materials in particulate form are now seen as a means of achieving higher control over parameters such as porosity, pore size, surface area and the mechanical properties of the scaffold. These materials also have the potential to incorporate biologically active molecules for release and to serve as carriers for cells. It is believed that the combination of these features would create a more efficient approach towards regeneration. This review focuses on the application of materials in particulate form for bone tissue engineering. A brief overview of bone biology and the healing process is also provided in order to place the application in its broader context. An original compilation of molecules with a documented role in bone tissue biology is listed, as they have the potential to be used in bone tissue engineering strategies. To sum up this review, examples of works addressing the above aspects are presented.
Collapse
Affiliation(s)
- G A Silva
- 3Bs Research Group--Biomaterials, Biodegradables, Biomimetics-University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | |
Collapse
|
12
|
Demir S, Ogan A, Kayaman-Apohan N. Intrinsic factor and vitamin B12 complex-loaded poly[lactic-co-(glycolic acid)] microspheres: preparation, characterization and drug release. POLYM INT 2008. [DOI: 10.1002/pi.2371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Tarantili P, Koumoulos H. Sustained release of guaifenesin and ipriflavone from biodegradable coatings. Eur Polym J 2008. [DOI: 10.1016/j.eurpolymj.2007.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med 2007; 1:4-24. [DOI: 10.1002/term.2] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004; 25:5735-42. [PMID: 15147819 DOI: 10.1016/j.biomaterials.2004.01.066] [Citation(s) in RCA: 510] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Accepted: 01/16/2004] [Indexed: 11/26/2022]
Abstract
Even though degradation products of biodegradable polymers are known to be largely non-cytotoxic, little detailed information is available regarding the degradation rate-dependent acidic byproduct effect of the scaffold. In vitro and in vivo scaffold degradation rate could be differentiated using a fast degrading polymer (e.g., poly D, L-lactic-glycolic acid co-polymer, PLGA, 50:50) and a slow degrading polymer (e.g., poly epsilon-caprolactone, PCL). We applied a new method to develop uniform 10 microm thickness of high porous scaffolds using a computer-controlled knife coater with a motion stage and exploiting phase transition properties of a combination of salts and water in salt-leaching method. We then verified in vitro the effect of fast degradation by assessing the viability of primary mouse aortic smooth muscle cell cultured in the three-dimensional scaffolds. We found that cell viability was inversely related to degradation rate and was dependent on the depth from the seeding (upper) surface toward the lower surface. The pH measurement of culture medium using fluorescence probes showed time-dependent decrease in pH in the PLGA scaffolds, corresponding to PLGA degradation, and closely related to cell viability. In vivo analysis of scaffolds implanted subcutaneously into the back of mice, showed significant differences in inflammation and cell invasion into PLGA vs. PCL. Importantly, these were correlated with the degree of the functional angiogenesis within the scaffolds. Again, PLGA scaffolds demonstrated less cell mobilization and less angiogenesis, further supporting the negative effect of the acidic environment created by the degradation of biocompatible polymers.
Collapse
Affiliation(s)
- Hak-Joon Sung
- Wallace Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 101 Woodruff Circle WMB 2304, Atlanta, GA 30332-0363, USA
| | | | | | | |
Collapse
|