1
|
Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A Systematic Overview of Eudragit ® Based Copolymer for Smart Healthcare. Pharmaceutics 2023; 15:587. [PMID: 36839910 PMCID: PMC9962897 DOI: 10.3390/pharmaceutics15020587] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Eudragit, synthesized by radical polymerization, is used for enteric coating, precise temporal release, and targeting the entire gastrointestinal system. Evonik Healthcare Germany offers different grades of Eudragit. The ratio of methacrylic acid to its methacrylate-based monomers used in the polymerization reaction defines the final product's characteristics and consequently its potential range of applications. Since 1953, these polymers have been made to use in a wide range of healthcare applications around the world. In this review, we reviewed the "known of knowns and known of unknowns" about Eudragit, from molecule to material design, its characterization, and its applications in healthcare.
Collapse
Affiliation(s)
- Aniket Nikam
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India
| | - Priya Ranjan Sahoo
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA
| | - Shubham Musale
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India
| | - Roshani R. Pagar
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, 3004-531 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, 3004-531 Coimbra, Portugal
| | - Prabhanjan Shridhar Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
2
|
Abdellatif MM, Josef M, El-Nabarawi MA, Teaima M. Sertaconazole-Nitrate-Loaded Leciplex for Treating Keratomycosis: Optimization Using D-Optimal Design and In Vitro, Ex Vivo, and In Vivo Studies. Pharmaceutics 2022; 14:pharmaceutics14102215. [PMID: 36297650 PMCID: PMC9611087 DOI: 10.3390/pharmaceutics14102215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to develop efficient topical therapy for keratomycosis using sertaconazolenitrate (STZN)-loaded leciplex (LP). The D-optimal design was used to optimize STZN-loaded LP by utilizing soy phosphatidylcholine (SPC) molar ratio (X1), cationic surfactant molar ratio (X2), and cationic surfactant type (X3) as the independent variables, whereas their impact was studied for entrapment efficiency percent (EE; Y1), particle size (PS; Y2), polydispersity index (PDI; Y3), zeta potential (ZP; Y4), and permeability coefficient (Kp; Y5). The optimized formula was evaluated regarding morphology, ex vivo permeation, mucoadhesion, stability, and in vivo studies. The optimized formula was spherical and showed EE of 84.87 ± 1.71%, PS of 39.70 ± 1.35 nm, PDI of 0.242 ± 0.006, ZP of +54.60 ± 0.24 mV, and Kp of 0.0577 ± 0.0001 cm/h. The ex vivo permeation study revealed that the optimized formula enhanced the Kp and corneal deposition by 2.78 and 12.49 folds, respectively, compared to the aqueous drug dispersion. Furthermore, the optimized formula was stable and revealed promising mucoadhesion properties. Finally, the in vivo studies showed that the optimized formula was superior to the drug dispersion in treating rats with induced keratomycosis. These results confirmed the capabilities of LP as a promising nanocarrier for treating ocular diseases topically.
Collapse
Affiliation(s)
- Menna M. Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt
- Correspondence: ; Tel.: +2-010-056-47945
| | - Mina Josef
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
3
|
Dai C, Tong WK, Zou JJ, Gao MT, Zhang Y, Liu S, Li T, Li J, Hu J. Synergistic solubilization of phenanthrene using micro-nanobubbles and cationic surfactants: Universal verifying, amplifying, and strengthening the synergy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Klemm P, Huschke S, Rodewald M, Ehteshamzad N, Behnke M, Wang X, Cinar G, Nischang I, Hoeppener S, Weber C, Press AT, Höppener C, Meyer T, Deckert V, Schmitt M, Popp J, Bauer M, Schubert S. Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polym Chem 2021. [DOI: 10.1039/d0py01626h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 60-membered library of vitamin A-functionalized P(MMA-stat-DMAEMA)-b-PPEGMA block copolymers was synthesized by RAFT polymerization. From these, nanoparticles containing genetic material were formulated and fully characterized.
Collapse
|
5
|
Lwin WW, Puyathorn N, Senarat S, Mahadlek J, Phaechamud T. Emerging role of polyethylene glycol on doxycycline hyclate-incorporated Eudragit RS in situ forming gel for periodontitis treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00430-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Gracia R, Yus C, Abian O, Mendoza G, Irusta S, Sebastian V, Andreu V, Arruebo M. Enzyme structure and function protection from gastrointestinal degradation using enteric coatings. Int J Biol Macromol 2018; 119:413-422. [DOI: 10.1016/j.ijbiomac.2018.07.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
|
7
|
Phaechamud T, Mahadlek J, Tuntarawongsa S. Peppermint oil/doxycycline hyclate-loaded Eudragit RS in situ forming gel for periodontitis treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0340-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Roces CB, Kastner E, Stone P, Lowry D, Perrie Y. Rapid Quantification and Validation of Lipid Concentrations within Liposomes. Pharmaceutics 2016; 8:pharmaceutics8030029. [PMID: 27649231 PMCID: PMC5039448 DOI: 10.3390/pharmaceutics8030029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/18/2016] [Accepted: 09/02/2016] [Indexed: 12/01/2022] Open
Abstract
Quantification of the lipid content in liposomal adjuvants for subunit vaccine formulation is of extreme importance, since this concentration impacts both efficacy and stability. In this paper, we outline a high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) method that allows for the rapid and simultaneous quantification of lipid concentrations within liposomal systems prepared by three liposomal manufacturing techniques (lipid film hydration, high shear mixing, and microfluidics). The ELSD system was used to quantify four lipids: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, dimethyldioctadecylammonium (DDA) bromide, and d-(+)-trehalose 6,6′-dibehenate (TDB). The developed method offers rapidity, high sensitivity, direct linearity, and a good consistency on the responses (R2 > 0.993 for the four lipids tested). The corresponding limit of detection (LOD) and limit of quantification (LOQ) were 0.11 and 0.36 mg/mL (DMPC), 0.02 and 0.80 mg/mL (cholesterol), 0.06 and 0.20 mg/mL (DDA), and 0.05 and 0.16 mg/mL (TDB), respectively. HPLC-ELSD was shown to be a rapid and effective method for the quantification of lipids within liposome formulations without the need for lipid extraction processes.
Collapse
Affiliation(s)
- Carla B Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Elisabeth Kastner
- Aston Pharmacy School, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Peter Stone
- Aston Pharmacy School, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Deborah Lowry
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK.
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
9
|
Holmkvist AD, Friberg A, Nilsson UJ, Schouenborg J. Hydrophobic ion pairing of a minocycline/Ca 2+ /AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release. Int J Pharm 2016; 499:351-357. [DOI: 10.1016/j.ijpharm.2016.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 01/14/2023]
|
10
|
Jain R, Dandekar P, Loretz B, Koch M, Lehr CM. Dimethylaminoethyl methacrylate copolymer-siRNA nanoparticles for silencing a therapeutically relevant gene in macrophages. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00490f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DMC nanoparticles target Bfl1/A1 gene in lung macrophages and effective silencing of Bfl1/A1 gene by DMC nanoparticles paves the way for research on alternative treatment strategies for tuberculosis.
Collapse
Affiliation(s)
- Ratnesh Jain
- Department of Chemical Engineering
- Institute of Chemical Technology
- NP Marg
- Mumbai 400019
- India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- NP Marg
- Mumbai 400019
- India
| | - Brigitta Loretz
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - Marcus Koch
- Innovative Electron Microscopy
- INM – Leibniz Institute for New Materials
- Service Group Physical Analysis
- Campus D2 2
- Saarland University
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| |
Collapse
|
11
|
Georgieva D, Kostova B, Ivanova S, Rachev D, Tzankova V, Kondeva-Burdina M, Christova D. pH-Sensitive cationic copolymers of different macromolecular architecture as potential dexamethasone sodium phosphate delivery systems. J Pharm Sci 2014; 103:2406-13. [PMID: 24961490 DOI: 10.1002/jps.24059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023]
Abstract
This paper describes the synthesis and characterization of cationic copolymers with different macromolecular architecture and drug delivery properties of the corresponding dexamethasone sodium phosphate (DSP)-loaded systems. Copolyelectrolytes comprising poly[2-(acryloyloxy)ethyl] trimethylammonium chloride (PAETMAC) and poly(ethylene glycol) blocks as well as a tri-arm star-shaped PAETMAC were synthesized using cerium(IV) ion-mediated polymerization method. The obtained copolyelectrolytes and corresponding ionic associates with DSP have been characterized by (1)H NMR, Fourier Transform Infrared spectroscopy, and differential scanning calorimetry. The average diameter, size distribution, and ζ-potential of the copolymers and DSP-copolymer ionic associates were determined by dynamic light scattering, and particles were visualized by scanning electron microscopy and transmission electron microscopy. The biocompatibility and cytotoxicity of obtained copolymers were determined. In vitro drug release experiments were carried out to estimate the ability of the obtained nanoparticles for sustained release of DSP for a period of 24 h.
Collapse
Affiliation(s)
- Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University - Sofia, 1000 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
12
|
Perrie Y, Kastner E, Kaur R, Wilkinson A, Ingham AJ. A case-study investigating the physicochemical characteristics that dictate the function of a liposomal adjuvant. Hum Vaccin Immunother 2013; 9:1374-81. [PMID: 23584249 DOI: 10.4161/hv.24694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A range of particulate delivery systems have been considered as vaccine adjuvants. Of these systems, liposomes offer a range of advantages including versatility and flexibility in design format and their ability to incorporate a range of immunomodulators and antigens. Here we briefly outline research, from within our laboratories, which focused on the systematic evaluation of cationic liposomes as vaccines adjuvants. Our aim was to identify physicochemical characteristics that correlate with vaccine efficacy, with particular consideration of the interlink between depot-forming action and immune responses. A variety of parameters were investigated and over a range of studies we have confirmed that cationic liposomes, based on dimethyldioctadecylammonium bromide and trehalose 6,6'-dibehenate formed a depot at the injection site, which stimulates recruitment of antigen presenting cells to the injection site and promotes strong humoral and cell-mediated immune responses. Physicochemical factors which promote a strong vaccine depot include the combination of a high cationic charge and electrostatic binding of the antigen to the liposome system and the use of lipids with high transition temperatures, which form rigid bilayer vesicles. Reduction in vesicle size of cationic vesicles did not promote enhanced drainage from the injection site. However, reducing the cationic nature through substitution of the cationic lipid for a neutral lipid, or by masking of the charge using PEGylation, resulted in a reduced depot formation and reduced Th1-type immune responses, while Th2-type responses were less influenced. These studies confirm that the physicochemical characteristics of particulate-based adjuvants play a key role in the modulation of immune responses.
Collapse
Affiliation(s)
- Yvonne Perrie
- School of Life and Health Sciences; Aston University; Birmingham, UK
| | | | | | | | | |
Collapse
|
13
|
Uchegbu IF, Schätzlein AG, Cheng WP, Lalatsa A. Vaccines. FUNDAMENTALS OF PHARMACEUTICAL NANOSCIENCE 2013. [PMCID: PMC7120629 DOI: 10.1007/978-1-4614-9164-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines continue to offer the key line of protection against a range of infectious diseases; however, the range of vaccines currently available is limited. One key consideration in the development of a vaccine is risk-versus-benefit, and in an environment of perceived low risk, the benefit of vaccination may not be recognised. To address this, there has been a move towards the use of subunit-based vaccines, which offer low side-effect profiles but are generally weakly immunogenic. This can be compensated for by the development of effective adjuvants. Nanotechnology offers key attributes in this field through the ability of nanoparticulates to incorporate and protect antigens from rapid degradation, combined with their potential to effectively deliver the antigens to appropriate cells within the immune system. These characteristics can be exploited in the development of new adjuvants. This chapter will outline the applications of nanosystems in vaccine formulations and consider the mechanisms of action behind a range of formulations.
Collapse
Affiliation(s)
- Ijeoma F. Uchegbu
- UCL School of Pharmacy, University College London, London, United Kingdom
| | | | | | - Aikaterini Lalatsa
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
14
|
Cortesi R, Ravani L, Menegatti E, Esposito E, Ronconi F. Eudragit(®) microparticles for the release of budesonide: a comparative study. Indian J Pharm Sci 2012; 74:415-21. [PMID: 23716869 PMCID: PMC3660867 DOI: 10.4103/0250-474x.108416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 01/19/2023] Open
Abstract
This study compares the behaviour of budesonide-containing microparticles made of Eudragit(®)RS or Eudragit(®)RS/Eudragit(®)RL 70:30 (w/w) prepared either by solvent evaporation or spray-drying technique. The loading efficiency of budesonide within microparticles was about 72% for microparticles prepared by solvent evaporation and around 78% for spray-dried microparticles. Thermal analyses were assessed to collect information about the structural stability of budesonide within the polymeric microspheres. The in vitro release was performed using simulating gastric (fasted state simulated gastric fluid) and intestinal (fasted state simulated intestinal fluid) fluids as the receiving solutions. After 3 h the drug release from Eudragit(®)RS/Eudragit(®)RL microparticles was about 6-fold higher than that obtained in the case of monopolymer microparticles. Using fasted state simulated intestinal fluid the drug was released between 4 and 30% in both types of preparations. Eudragit(®)RS microparticles showed a better protection of the drug from gastric acidity than those of Eudragit(®)RS/Eudragit(®)RL allowing us to propose Eudragit(®)RS microparticles as a hypothetical system of colon specific controlled delivery.
Collapse
Affiliation(s)
- Rita Cortesi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121-Ferrara, Italy
| | - Laura Ravani
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121-Ferrara, Italy
| | - Enea Menegatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121-Ferrara, Italy
| | - Elisabetta Esposito
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121-Ferrara, Italy
| | - F. Ronconi
- Department of Physics, University of Ferrara, 44121-Ferrara, Italy
| |
Collapse
|
15
|
Guzmán ML, Manzo RH, Olivera ME. Eudragit E100 as a drug carrier: the remarkable affinity of phosphate ester for dimethylamine. Mol Pharm 2012; 9:2424-33. [PMID: 22808998 DOI: 10.1021/mp300282f] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Therapeutic agents containing phosphate groups in their molecules have increasing therapeutic impact. The object of this study was to characterize the cationic polyelectrolyte Eudragit E100 (EuE100) as a carrier for drugs containing phosphate groups, using dexamethasone phosphate (DP) as a model. A series of EuE100-DP complexes was obtained by acid-base reaction in which DP neutralized 12.5-75% of the basic groups of EuE100. The solids obtained after solvent evaporation revealed by spectroscopic characterization the complete reaction between the components through the ionic interaction between the amine groups of EuE100 and the phosphate groups of DP. The reversibility of the counterion condensation, evaluated through the proton-withdrawing effect produced by the ionic exchange generated by titration with NaCl, showed a remarkable high affinity between EuE100 and DP. In line, drug delivery in bicompartimental Franz cells toward water as receptor medium was very slow (2% in 6 h). However, it was increased as water was replaced by NaCl solution, which upon diffusion generates ionic exchange. A sustained release of DP with noticeable zero order kinetics accounted for a remarkable high affinity, mainly due to the electrostatic attraction. The release rate remains constant regardless of the saline concentration of the media. Besides, the delivery control is maintained even in gastric simulated fluid, a property not informed previously for EuE100 complexes.
Collapse
Affiliation(s)
- M L Guzmán
- Department of Pharmacy, Faculty of Chemical Sciences, Pharmaceutical Technology Research Unit, National University of Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria (5000), Córdoba, Argentina
| | | | | |
Collapse
|
16
|
Madhusudhan S, Panda AK, Parimalakrishnan S, Manavalan R, Manna PK. Design, in vitro and in vivo evaluation of glipizide Eudragit microparticles. J Microencapsul 2010; 27:281-91. [PMID: 20515261 DOI: 10.3109/02652040903131319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glipizide microparticles made with Eudragit (RS 100 and RL 100), prepared by emulsion solvent evaporation technique were evaluated for various in-vitro properties viz. encapsulation efficiency, particle size and surface morphology, drug release pattern and in-vivo hypoglycaemic activity. The optimized formulation parameters were used to prepare smooth and spherical microparticles (2-32 microm) with higher entrapment efficiency (67-89%). Drug release patterns of glipizide microparticles of Eudragit RS 100 and Eudragit RL 100 with drug-to-polymer ratio of 1 : 4 (i.e. EGM14 and ELGM14) have shown gradual and extended release for 24 h with cumulative release of glipizide to the extent of 72.3% and 83.9%, respectively. However, EGM14 showed a significant in-vivo hypoglycaemic effect up to 12 h in rabbits while ELGM14 showed for 9 h. Hence, glipizide microparticles of Eudragit RS 100 (glipizide: polymer 1 : 4) is better suited for oral sustained release formulation.
Collapse
Affiliation(s)
- S Madhusudhan
- Department of Pharmacy, Annamalai University, Annamalai Nagar, India
| | | | | | | | | |
Collapse
|
17
|
Gargouri M, Sapin A, Bouali S, Becuwe P, Merlin JL, Maincent P. Optimization of a New Non-viral Vector for Transfection: Eudragit Nanoparticles for the Delivery of a DNA Plasmid. Technol Cancer Res Treat 2009; 8:433-44. [DOI: 10.1177/153303460900800605] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The development of new vectors to deliver DNA into cells for therapy of cancers or genetic diseases has been a major area of research for many years. However, the clinical application of this technology requires the development of efficient, reliable and sterile vectors enabling the transfer of genes in vivo. Non viral, polymer or lipid-based vectors offer a new impetus to gene therapy because they are less toxic than viral vectors (no endogenous recombination, fewer immunological reactions, easy production and delivery of large-sized plasmid). The aim of this study is to develop a new tool for DNA delivery composed of methacrylic polymeric (Eudragit® RS and RL) nanoparticles. These nanoparticles were prepared by two methods: nanoprecipitation and double emulsion. The nanoparticles were characterized by their size, zeta potential and amount of DNA adsorption. Cytotoxicity tests based on mitochondrial activity (MTT test) revealed that the nanoparticles had limited cytotoxicity and that this depended on both the cell type and the nanoparticle concentration. Transgene expression was observed using the Green Fluorescence Protein gene as reporter gene, and was evaluated by flow cytometry in FaDu, MDA-MB 231 and MCF-7 cell lines. The results showed that transfection rates ranging between 4 and 7% were achieved in FaDu and MDA-MB 231 cells with nanoparticles prepared by the nanoprecipitation method. In MCF-7 cells transfected with nanoparticles prepared by either the double emulsion or the nanoprecipitation method, the transfection efficiency was between 2 and 4%. Nanoparticles prepared by nanoprecipitation were slightly more efficient than nanoparticles prepared from a double emulsion. Particle size was not an important factor for transfection, since no significant difference was observed with size between 50 and 350 nm. We showed that Eudragit® RS and RL nanoparticles could introduce the transgene into different types of cells, but were generally less effective than the lipofectamine control.
Collapse
Affiliation(s)
- M. Gargouri
- Laboratoire de Pharmacie Galénique et Biopharmacie, Nancy Université, Faculté de Pharmacie, EA 3452, 5, rue A. Lebrun, BP 80403, F-54001 Nancy, France
| | - A. Sapin
- Laboratoire de Pharmacie Galénique et Biopharmacie, Nancy Université, Faculté de Pharmacie, EA 3452, 5, rue A. Lebrun, BP 80403, F-54001 Nancy, France
| | - S. Bouali
- Unité de Biologie des Tumeurs Centre Alexis Vautrin, Vandoeuvre lès Nancy, France
- EA SIGRETO 4421, Nancy Université
| | - P. Becuwe
- Laboratoire de Biologie cellulaire, Henri-Poincaré Nancy Université, Vandoeuvre lès Nancy, France
- EA SIGRETO 4421, Nancy Université
| | - JL Merlin
- Unité de Biologie des Tumeurs Centre Alexis Vautrin, Vandoeuvre lès Nancy, France
- EA SIGRETO 4421, Nancy Université
| | - P. Maincent
- Laboratoire de Pharmacie Galénique et Biopharmacie, Nancy Université, Faculté de Pharmacie, EA 3452, 5, rue A. Lebrun, BP 80403, F-54001 Nancy, France
| |
Collapse
|
18
|
Gomes AJ, Lunardi LO, Marchetti JM, Lunardi CN, Tedesco AC. Photobiological and Ultrastructural Studies of Nanoparticles of Poly(lactic-co-glycolic acid)-Containing Bacteriochlorophyll-aas a Photosensitizer Useful for PDT Treatment. Drug Deliv 2008; 12:159-64. [PMID: 16025845 DOI: 10.1080/10717540590931846] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The interaction of polymeric nanoparticles formulated from the biodegradable polymer poly(DL-lactide-co-glycolide) loaded with bacteriochlorophyll-a was studied in homogeneous solution and in vitro in the presence of a macrophage cell line (P388-D1-ATCC). Photodynamic therapy (PDT) activity after different laser doses also was investigated. Scanning electron microscopy analysis of cell phagocyte nanoparticles showed that after 30 min of incubation most of the nanoparticles are in a clear adhesion process to the cell surface. The majority of nanoparticles became phagocytic after 2 hr of incubation time. After laser irradiation of the dye-containing system a total photodamage by nanoparticle phagocyte cells was observed and the cell survival was quantified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test. Our results indicate that polymeric nanoparticles work as an efficient drug delivery system for PDT drugs. This approach can be widely used for many other hydrophobic photosensitizers with higher aggregation tendency in neoplastic cell treatment.
Collapse
Affiliation(s)
- Anderson J Gomes
- Instituto de Química da Universidade Federal de Uberlândia, Brazil
| | | | | | | | | |
Collapse
|
19
|
Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AGA, Perrie Y. Liposomes act as stronger sub-unit vaccine adjuvants when compared to microspheres. J Drug Target 2008; 16:543-54. [DOI: 10.1080/10611860802228558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Gomes AJ, Lunardi CN, Tedesco AC. Characterization of Biodegradable Poly(D,L-Lactide-co-Glycolide) Nanoparticles Loaded with Bacteriochlorophyll-a for Photodynamic Therapy. Photomed Laser Surg 2007; 25:428-35. [DOI: 10.1089/pho.2007.2089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Anderson J. Gomes
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Claure N. Lunardi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Antonio C. Tedesco
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Hu L, Chu LY, Yang M, Wang HD, Hui Niu C. Preparation and characterization of novel cationic pH-responsive poly(-dimethylamino ethyl methacrylate) microgels. J Colloid Interface Sci 2007; 311:110-7. [PMID: 17397857 DOI: 10.1016/j.jcis.2007.02.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/18/2007] [Accepted: 02/22/2007] [Indexed: 12/01/2022]
Abstract
Novel monodisperse cationic pH-responsive microgels were successfully prepared by dispersion polymerization in ethanol/water mixture using N,N'-dimethylamino ethyl methacrylate (DMAEMA) as the monomer, poly(vinyl pyrrolidone) (PVP) as the steric stabilizer and N,N'-methylenebisacrylamide (MBA) as the cross-linker. The effects of various polymerization parameters, such as medium polarity, concentration of cross-linker, concentration of monomer, and concentration and molecular weight of stabilizer on the final diameter and monodispersity of poly(N,N'-dimethylamino ethyl methacrylate) (PDMAEMA) microgels were systematically studied. The pH-responsive characteristics of PDMAEMA microgels were also investigated. The experimental results showed that these microgels exhibited excellent pH-responsivity and significantly swelled at low pH values. The maximum ratio of volume change of the prepared microgels in response to pH variation was more than 11 times. It was found that the prepared microgels completely aggregated at the isoelectric point (IEP) around pH 6. On the other hand, the microgels were stable in aqueous solution at both low and high pH values. The results can be used for effectively controlled separation of particles.
Collapse
Affiliation(s)
- Lin Hu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | | | | | | | | |
Collapse
|
22
|
Basarkar A, Devineni D, Palaniappan R, Singh J. Preparation, characterization, cytotoxicity and transfection efficiency of poly(DL-lactide-co-glycolide) and poly(DL-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA. Int J Pharm 2007; 343:247-54. [PMID: 17611054 PMCID: PMC6186392 DOI: 10.1016/j.ijpharm.2007.05.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 05/12/2007] [Accepted: 05/14/2007] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the effect of formulation parameters (i.e. polymer molecular weight and homogenization speed) on various physicochemical and biological properties of cationic nanoparticles. Cationic nanoparticles were prepared using different molecular weights of poly(DL-lactide-co-glycolide) (PLGA) and poly(DL-lactic acid) (PLA) by double emulsion solvent evaporation at two different homogenization speeds, and were characterized in terms of size, surface charge, morphology, loading efficiency, plasmid release, plasmid integrity, cytotoxicity, and transfection efficiency. Cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used to provide positive charge on the surface of nanoparticles. Reporter plasmid gWIZ Beta-gal was loaded on the surface of nanoparticles by incubation. Use of higher homogenization speed and lower molecular weight polymer led to a decrease in mean particle size, increase in zeta potential, increase in plasmid loading efficiency, and a decrease in burst release. The nanoparticles displayed good morphology as evident from scanning electron micrographs. In vitro cytotoxicity study by MTT assay showed a low toxicity. Structural integrity of the pDNA released from nanoparticles was maintained. Transfecting human embryonic kidney (HEK293) cells with nanoparticles prepared from low molecular weight PLGA and PLA resulted in an increased expression of beta-galactosidase as compared to those prepared from high molecular weight polymer. Our results demonstrate that the PLGA and PLA cationic nanoparticles can be used to achieve prolonged release of pDNA, and the plasmid release rate and transfection efficiency are dependent on the formulation variables.
Collapse
Affiliation(s)
- Ashwin Basarkar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Dilip Devineni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | - Ravi Palaniappan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, ND 58105, USA
- Corresponding author: Telephone: (701) 231-7943; Facsimile: (701) 231-8333;
| |
Collapse
|
23
|
Gomes AJ, Assunção RMN, Filho GR, Espreafico EM, Machado AEDH. Preparation and characterization of poly(D,L-lactic-co-glycolic acid) nanoparticles containing 3-(benzoxazol-2-yl)-7-(N,N-diethyl amino)chromen-2-one. J Appl Polym Sci 2007. [DOI: 10.1002/app.26204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
de Jesus Gomes A, Lunardi CN, Caetano FH, Lunardi LO, da Hora Machado AE. Phagocytosis of PLGA microparticles in rat peritoneal exudate cells: a time-dependent study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2006; 12:399-405. [PMID: 16984666 DOI: 10.1017/s1431927606060284] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 01/06/2006] [Indexed: 05/11/2023]
Abstract
With the purpose of enhancing the efficacy of microparticle-encapsulated therapeutic agents, in this study we evaluated the phagocytic ability of rat peritoneal exudate cells and the preferential location of poly(d,l-lactide-co-glycolic acid) (PLGA) microparticles inside these cells. The microparticles used were produced by a solvent evaporation method and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Size distribution analysis using DLS and SEM showed that the particles were spherical, with diameters falling between 0.5 and 1.5 mum. Results from cell adhesion by SEM assay, indicated that the PLGA microparticles are not toxic to cells and do not cause any distinct damage to them as confirmed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Among the large variety of cell populations found in the peritoneal exudates (neutrophils, eosinophils, monocytes, and macrophages), TEM showed that only the latter phagocytosed PLGA microparticles, in a time-dependent manner. The results obtained indicate that the microparticles studied show merits as possible carriers of drugs for intracellular delivery.
Collapse
Affiliation(s)
- Anderson de Jesus Gomes
- Laboratório de Fotoquímica, Instituto de Química, Universidade Federal de Uberlândia, CEP 38400-089 Uberlândia, MG, Brazil.
| | | | | | | | | |
Collapse
|
25
|
Jubeh TT, Antler S, Haupt S, Barenholz Y, Rubinstein A. Local prevention of oxidative stress in the intestinal epithelium of the rat by adhesive liposomes of superoxide dismutase and tempamine. Mol Pharm 2005; 2:2-11. [PMID: 15804172 DOI: 10.1021/mp0499095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to investigate whether the local prevention of luminal superoxide-mediated biological damage in the rat jejunal mucosa could be achieved by liposomal superoxide dismutase (SOD) and the SOD mimic tempamine (TMN). Cationic liposomes loaded with either SOD or TMN were perfused in the rat jejunum prior to the induction of oxidative insult. Reactive hydroxyl radicals were generated in situ in a closed circulating intestinal loop of the rat from the reaction between hypoxanthine and xanthine oxidase in the presence of chelated ferrous sulfate. Mucosal activity of lactate dehydrogenase and levels of potassium ions were used to quantify the tissue damage. Intracellular uptake and locality of SOD were examined in HT-29 cells. The intestinal uptake of SOD and TMN was further measured by using rat colon sacs. Entrapment in cationic liposomes was found to significantly enhance the antioxidant effect of SOD and TMN against the induced oxidative damage in the jejunal mucosa, compared with their free forms. The effect was found to be local and was caused by the increased mucosal adhesion of the liposomes. The cationic liposomes also triggered SOD uptake into the HT-29 cell line. It is concluded that the increased residence time of the cationic liposomes of SOD and TMN in the jejunal mucosa resulted in a local effect against oxidative injury. This local protection may be exploited for drug delivery purposes.
Collapse
Affiliation(s)
- Tareq Taha Jubeh
- The Hebrew University of Jerusalem, Faculty of Medicine, School of Pharmacy, P.O. Box 12065, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
26
|
Mischiati C, Sereni A, Finotti A, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, Bianchi N, Pedone C, Borgatti M, Gambari R. Complexation to cationic microspheres of double-stranded peptide nucleic acid-DNA chimeras exhibiting decoy activity. J Biomed Sci 2005; 11:697-704. [PMID: 15316146 DOI: 10.1007/bf02256136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 04/15/2004] [Indexed: 11/28/2022] Open
Abstract
The major aim of this paper was to determine whether cationic microspheres (CM), consisting of the permeable polymer Eudragit RS 100 plus the cationic surfactant dioctadecyl-dimethyl-ammonium bromide (DDAB(18)), could bind to double-stranded peptide nucleic acid PNA-DNA-PNA (PDP) chimeras exhibiting decoy activity against NF-kappaB transcription factors. Microspheres were produced by the 'solvent evaporation method' and centrifugation at 500, 1,000 and 3,000 rpm to obtain different-sized microparticles. Microsphere morphology, size and size distribution were determined by optical and electron microscopy observations. In order to determine their binding activity, double-stranded DNA-based and PDP-based decoy molecules were incubated with different amounts of microparticles in the presence of 100 ng of either (32)P-labeled DNA-DNA or DNA-PDP hybrid molecules or cold PDP-PDP hybrids. The complexes were analyzed by agarose gel electrophoresis. The resistance of (32)P-labeled DNA-DNA and DNA-PDP molecules in the presence of serum or cellular extracts was evaluated after binding to CM by gel electrophoresis analysis. DDAB(18) Eudragit RS 100 microspheres are able to bind to DNA-PDP and PDP-PDP hybrids, to deliver these molecules to target cells and to protect DNA-PDP molecules from enzymatic degradation in simulated biological fluids. In addition, when assayed in ex vivo conditions, DDAB(18) Eudragit RS 100 microspheres exhibited low toxicity. The results presented in this paper demonstrate that CM can be considered suitable formulations for pharmacogenomic therapy employing double-stranded PDP chimeras.
Collapse
Affiliation(s)
- Carlo Mischiati
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cortesi R, Mischiati C, Borgatti M, Breda L, Romanelli A, Saviano M, Pedone C, Gambari R, Nastruzzi C. Formulations for natural and peptide nucleic acids based on cationic polymeric submicron particles. AAPS J 2004; 6:10-21. [PMID: 18465254 PMCID: PMC2750937 DOI: 10.1208/ps060102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Accepted: 11/09/2003] [Indexed: 12/29/2022] Open
Abstract
This article describes the production and characterization of cationic submicron particles constituted with Eudragit RS 100, plus different cationic surfactants, such as dioctadecyl-dimethyl-ammonium bromide (DDAB18) and diisobutyphenoxyethyl-dimethylbenzyl ammonium chloride (DEBDA), as a transport and delivery system for DNA/DNA and DNA/peptide nucleic acid (PNA) hybrids and PNA-DNA chimeras. Submicron particles could offer advantages over other delivery systems because they maintain unaltered physicochemical properties for long time periods, allowing long-term storage, and are suitable for industrial production. Submicron particles were characterized in terms of size, size distribution, morphology, and zeta potential. Moreover, the in vitro activity and ability of submicron particles to complex different types of nucleic acids were described. Finally, the ability of submicron particles to deliver functional genes to cells cultured in vitro was determined by a luciferase activity assay, demonstrating that submicron particles possess superior transfection efficiency with respect to commercially available, liposome-based transfection kits.
Collapse
Affiliation(s)
- Rita Cortesi
- />Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Carlo Mischiati
- />Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- />Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Laura Breda
- />Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | - Michele Saviano
- />Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - Carlo Pedone
- />Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - Roberto Gambari
- />Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
- />Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassemia, Biotechnology Centre, University of Ferrara, Italy
| | - Claudio Nastruzzi
- />Department of Pharmaceutical Chemistry and Technology, University of Perugia Dipartimento di Chimica e Tecnologia del Farmaco, via del Liceo, 06100 Perugia, Italy
| |
Collapse
|
28
|
Mondal K, Lalvani SB. Electrochemical hydrogenation of canola oil using a hydrogen transfer agent. J AM OIL CHEM SOC 2003. [DOI: 10.1007/s11746-003-0832-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kanchan Mondal
- ; Department of Mechanical Engineering and Energy Processes; Southern Illinois University; 62901 Carbondale Illinois
| | - Shashi B. Lalvani
- ; Department of Mechanical Engineering and Energy Processes; Southern Illinois University; 62901 Carbondale Illinois
- ; Paper Science and Engineering; Miami University; 45056 Oxford OH
| |
Collapse
|
29
|
|
30
|
Abstract
Gene therapy has emerged as a new concept of therapeutic strategies to treat diseases which do not respond to the conventional therapies. The principle of gene therapy is to introduce genetic materials into patient cells to produce therapeutic proteins in these cells. Gene therapy is now at the stage where a number of dinical trials have been carried out to patients with gene-deficiency disease or cancer. Genetic materials for gene therapy are generally composed of gene expression system and gene delivery system. For the dinical application of gene therapy in a way which conventional drugs are used, researches have been focused on the design of gene delivery system which can offer high transfection efficiency with minimal toxicity. Currently, viral delivery systems generally provide higher transfection efficiency compared with non-viral delivery systems while non-viral delivery systems are less toxic, less immunogenic and manufacturable in large scale compared with viral systems. Recently, novel strategies towards the design of new non-viral delivery system, combination of viral and non-viral delivery systems and targeted delivery system have been extensively studied. The continued effort in this area will lead us to develop gene medicine as 'gene as a drug' in the near future.
Collapse
Affiliation(s)
- C K Kim
- National Research Laboratory for Drug and Gene Delivery, College of Pharmacy, Seoul National University, Korea.
| | | | | |
Collapse
|