1
|
Tang Y, Zhou A, Zhou S, Ruan J, Qian C, Wu C, Ye L. Preparation of VC nanoliposomes by high pressure homogenization: Process optimization and evaluation of efficacy, transdermal absorption, and stability. Heliyon 2024; 10:e29516. [PMID: 38707316 PMCID: PMC11066132 DOI: 10.1016/j.heliyon.2024.e29516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Vitamin C (VC) possesses antioxidant and whitening effects. However, its effectiveness is hindered by challenges such as instability, impaired solubility, and limited bioavailability hinder. In this study, VC was encapsulated in nanoliposomes by primary emulsification and high-pressure homogenization. The VC nanoliposomes were comprehensively characterized for their microscopic morphology, particle size, polydispersity index (PDI), and encapsulation efficiency (EE). Orthogonal experiments were designed to optimize the optimal preparation process, and the antioxidant activity, whitening efficacy, transdermal absorption, and stability of VC nanoliposomes were evaluated based on this optimized process. The findings demonstrated the high reproducibility of the optimal process, with particle size, PDI, and EE values of 113.502 ± 4.360 nm, 0.104 ± 0.010, and 56.09 ± 1.01 %, respectively. Differential scanning calorimetry analysis showed effective encapsulation of VC nanoliposomes with better thermal stability than aqueous VC solution. Besides, the VC nanoliposomes demonstrated excellent antioxidant and whitening effects in efficacy experiments, stronger skin permeability in transdermal experiments and fluorescence tracking. Furthermore, storage stability tests indicated that the VC in nanoliposomes remained relatively stable after 60 days of storage. These findings highlighted the potential use of VC nanoliposomes in a wide range of applications for the cosmetic market, especially in the development of ingredients for skin care products.
Collapse
Affiliation(s)
- Yunqi Tang
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Ankun Zhou
- Hangzhou Yayan Cosmetics Co. Ltd., #9 Shunle Road, Hangzhou, Zhejiang Province, 311123, PR China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Jiancheng Ruan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Chen Wu
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Linlin Ye
- Hangzhou Yayan Cosmetics Co. Ltd., #9 Shunle Road, Hangzhou, Zhejiang Province, 311123, PR China
| |
Collapse
|
2
|
Nazeri SA, Rezayat SM, Amani A, Hadjati J, Partoazar A, Zamani P, Mashreghi M, Jaafari MR. A novel formulation of cyclosporine A/phosphatidylserine-containing liposome using remote loading method: Potential product for immunosuppressive effects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113:211-228. [PMID: 28087380 DOI: 10.1016/j.ejpb.2016.12.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
During the past few decades, polymeric micelles have raised special attention as novel nano-sized drug delivery systems for optimizing the treatment and diagnosis of numerous diseases. These nanocarriers exhibit several in vitro and in vivo advantages as well as increased stability and solubility to hydrophobic drugs. An interesting approach for optimizing these properties and overcoming some of their disadvantages is the combination of two or more polymers in order to assemble polymeric mixed micelles. This review article gives an overview on the current state of the art of several mixed micellar formulations as nanocarriers for drugs and imaging probes, evaluating their ongoing status (preclinical or clinical stage), with special emphasis on type of copolymers, physicochemical properties, in vivo progress achieved so far and toxicity profiles. Besides, the present article presents relevant research outcomes about polymeric mixed micelles as better drug delivery systems, when compared to polymeric pristine micelles. The reported data clearly illustrates the promise of these nanovehicles reaching clinical stages in the near future.
Collapse
Affiliation(s)
- Maximiliano Cagel
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fiorella C Tesan
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Buenos Aires, Argentina
| | - Ezequiel Bernabeu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria J Salgueiro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Buenos Aires, Argentina
| | - Marcela B Zubillaga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela A Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Park YH, Min KA, Song YK, Ham S, Kim CK. Chemically conjugated novel liposomal formulation for intravenous delivery of cyclosporin A. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Carmona-Ribeiro AM, de Melo Carrasco LD. Novel formulations for antimicrobial peptides. Int J Mol Sci 2014; 15:18040-83. [PMID: 25302615 PMCID: PMC4227203 DOI: 10.3390/ijms151018040] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/30/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Letícia Dias de Melo Carrasco
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Lee JH, Park KH, Kim SH, Choi HC, Kim BK, Yin Y. 5.3:Invited Paper: AH-IPS, Superb Display for Mobile Device. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/j.2168-0159.2013.tb06132.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Karn PR, Cho W, Park HJ, Park JS, Hwang SJ. Characterization and stability studies of a novel liposomal cyclosporin A prepared using the supercritical fluid method: comparison with the modified conventional Bangham method. Int J Nanomedicine 2013; 8:365-77. [PMID: 23378759 PMCID: PMC3556922 DOI: 10.2147/ijn.s39025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel method to prepare cyclosporin A encapsulated liposomes was introduced using supercritical fluid of carbon dioxide (SCF-CO2) as an antisolvent. To investigate the strength of the newly developed SCF-CO2 method compared with the modified conventional Bangham method, particle size, zeta potential, and polydispersity index (PDI) of both liposomal formulations were characterized and compared. In addition, entrapment efficiency (EE) and drug loading (DL) characteristics were analyzed by reversed-phase high-performance liquid chromatography. Significantly larger particle size and PDI were revealed from the conventional method, while EE (%) and DL (%) did not exhibit any significant differences. The SCF-CO2 liposomes were found to be relatively smaller, multilamellar, and spherical with a smoother surface as determined by transmission electron microscopy. SCF-CO2 liposomes showed no significant differences in their particle size and PDI after more than 3 months, whereas conventional liposomes exhibited significant changes in their particle size. The initial yield (%), EE (%), and DL (%) of SCF-CO2 liposomes and conventional liposomes were 90.98 ± 2.94, 92.20 ± 1.36, 20.99 ± 0.84 and 90.72 ± 2.83, 90.24 ± 1.37, 20.47 ± 0.94, respectively, which changed after 14 weeks to 86.65 ± 0.30, 87.63 ± 0.72, 18.98 ± 0.22 and 75.04 ± 8.80, 84.59 ± 5.13, 15.94 ± 2.80, respectively. Therefore, the newly developed SCF-CO2 method could be a better alternative compared with the conventional method and may provide a promising approach for large-scale production of liposomes.
Collapse
Affiliation(s)
- Pankaj Ranjan Karn
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Yeonsu-gu, Incheon, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Elhissi AMA, Ahmed W, McCarthy D, Taylor KMG. A Study of Size, Microscopic Morphology, and Dispersion Mechanism of Structures Generated on Hydration of Proliposomes. J DISPER SCI TECHNOL 2012. [DOI: 10.1080/01932691.2011.599233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Hu H, Liu D, Zhao X, Qiao M, Chen D. Preparation, characterization, cellular uptake and evaluationin vivoof solid lipid nanoparticles loaded with cucurbitacin B. Drug Dev Ind Pharm 2012; 39:770-9. [DOI: 10.3109/03639045.2012.702348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Nakarani M, Patel P, Patel J, Patel P, Murthy RSR, Vaghani SS. Cyclosporine a-nanosuspension: formulation, characterization and in vivo comparison with a marketed formulation. Sci Pharm 2010; 78:345-61. [PMID: 21179351 PMCID: PMC3002797 DOI: 10.3797/scipharm.0908-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 04/14/2010] [Indexed: 11/22/2022] Open
Abstract
Cyclosporine A-nanosuspensions were prepared using zirconium oxide beads as a milling media, Poloxamer 407 as a stabilizer and distilled water as an aqueous medium using the Pearl Milling technique. The optimized formulation was characterized in terms of particle size distribution, surface morphology, drug-surfactant interaction, drug content, saturation solubility, osmolarity, and stability. The nanoparticles consisting of Poloxamer-bound cyclosporin A with a mean diameter of 213 nm revealed a spherical shape and 5.69 fold increased saturation solubility as compared to the parent drug. The formulation was found to be iso-osmolar with blood and stable up to 3 months at 2â8ÂC. In-vivo studies were carried out in albino rats and the pharmacokinetic parameters were compared with a marketed formulation, which indicated better results of the prepared formulation than the marketed one.
Collapse
|
11
|
Malaekeh-Nikouei B, Jaafari MR, Tabassi SAS, Samiei A. The enhancement of immunosuppressive effects of cyclosporine A on human T-cells using fusogenic liposomes. Colloids Surf B Biointerfaces 2008; 67:238-44. [DOI: 10.1016/j.colsurfb.2008.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 08/31/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
|
12
|
Guo J, Wu T, Ping Q, Chen Y, Shen J, Jiang G. Solubilization and Pharmacokinetic Behaviors of Sodium Cholate/Lecithin-Mixed Micelles Containing Cyclosporine A. Drug Deliv 2008; 12:35-9. [PMID: 15801719 DOI: 10.1080/10717540590889691] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The purpose of this study was to investigate the solubilization capacity of sodium cholate/lecithin-mixed micelles and to evaluate the potential of mixed micelles as a carrier of cyclosporine A for intravenous infusion. The mixed micelles were prepared by coprecipitation technique. The formulation components and preparation procedures, which may affect the solubilization of cyclosporine A, were studied. The dilution stability of cyclosporine A-containing mixed micelles was investigated. Pharmacokinetic behaviors of mixed micelles in rabbits after intravenous infusion were compared with Sandimmun. Results showed the strategies to increase the solubility of cyclosporine A include lowering the molar ratio of sodium cholate to lecithin, increasing the concentration of lecithin, and reducing the ionic strength of the dispersion medium and temperature. The largest solubility was found to be 5.42 +/- 0.16 mg/ml. The leakage of mixed micelles in 5% glucose (5.84%) was much less than that in saline solution (36.7%). The relative bioavailability of mixed micelles versus Sandimmun was 112 +/- 20%, and statistical analysis demonstrated both preparations were bioequivalent. Sodium cholate/lecithin-mixed micelles are promising carriers in the intravenous delivery of cyclosporine A, considering their capability of large-scale production and low-toxic property.
Collapse
Affiliation(s)
- J Guo
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| | | | | | | | | | | |
Collapse
|
13
|
Beauchesne PR, Chung NSC, Wasan KM. Cyclosporine A: A Review of Current Oral and Intravenous Delivery Systems. Drug Dev Ind Pharm 2008; 33:211-20. [PMID: 17454054 DOI: 10.1080/03639040601155665] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
As early as 1978, the immunosuppressive effect of cyclosporine A (CsA), a metabolite of the fungus Tolypocladium inflatum (Borel, 1989), was reported to be effective in inhibiting organ rejection in patients receiving kidney transplants from mismatched cadaver donors (Calne et al., 1978) and in the treatment of graft-versus-host disease in patients with acute leukemia following bone marrow transplants (Powles et al., 1978). Today, CsA is still indicated to prevent rejection following solid organ transplantations, prevent and treat graft-vs-host disease following bone marrow transplants, and has also been used in the treatment of autoimmune disease such as psoriasis, rheumatoid arthritis, and nephrotic syndrome (Canadian Pharmacists Association, 2006). The effectiveness of CsA is derived from its ability to specifically and reversibly inhibit immunocompetent lymphocytes in the G(0) and G(1) phase of the cell cycle. The T-helper cells are the main target, but suppression of the T-suppressor cells also occurs. The production and release of lymphokines, including interleukin-2 are also inhibited (Novartis, 2005a). CsA can be administered intravenously as well as orally in the form of a solution or a soft gelatin capsule. The following review will focus on the evolution of the emulsion-based oral formulations from the first generation as Sandimmune to the second generation Neoral, both products of Novartis Pharmaceutical, as well as on the Sandimmune commercial intravenous formulation. The potential of alternative delivery systems, including micelles, micro- and nanoparticles, and liposomes, will also be discussed.
Collapse
Affiliation(s)
- Pascal R Beauchesne
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
14
|
Velluto D, Demurtas D, Hubbell JA. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example. Mol Pharm 2008; 5:632-42. [PMID: 18547055 DOI: 10.1021/mp7001297] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block.
Collapse
Affiliation(s)
- Diana Velluto
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Centre Integratif de Genomique (CIG), University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
15
|
Abstract
Ciclosporin A has been used as an immunosuppressor for organ transplantation and other autoimmune disorders for a number of years. Its poor biopharmaceutical characteristics of low solubility and permeability makes the uphill task of designing delivery systems even more challenging for the drug delivery scientist. Works have been performed to investigate administration through various body routes, and have employed approaches that use as emulsions, microspheres, nanoparticles, liposomes, physical and chemical penetration enhancers. Although progress has been made, there is still room for improvement in the application of ciclosporin A, as none of these formulations is ideal.
Collapse
Affiliation(s)
- Hongzhuo Liu
- Pharmaceutical University of Shenyang, School of Pharmaceutics, Shenyang 110016, P. R. China
| | | | | |
Collapse
|
16
|
Lee MK, Lim SJ, Kim CK. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 2007; 28:2137-46. [PMID: 17257668 DOI: 10.1016/j.biomaterials.2007.01.014] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 01/06/2007] [Indexed: 11/16/2022]
Abstract
In an effort to develop an alternative formulation of paclitaxel suitable for parenteral administration, paclitaxel-loaded sterically stabilized solid lipid nanoparticles (SLNs) were prepared, characterized and examined for in vitro cytotoxicity. The SLNs, comprising trimyristin (TM) as a solid lipid core and egg phosphatidylcholine and pegylated phospholipid as stabilizers, were prepared using a hot homogenization method. Regardless of paclitaxel loading, the particle sizes and zeta potentials of the prepared SLNs were around 200nm and -38mV, respectively, suggesting that they would be suitable as a parenteral formulation. Cryo-scanning electron microscopy showed that the SLNs were homogeneous and spherical in shape, while differential scanning calorimetry measurement of the melting peak revealed that the TM exists as a solid in our formulation. Paclitaxel was loaded to the solid cores at a w/w ratio of 6%. Gel column chromatography showed that paclitaxel co-eluted with the phospholipids, indicating that paclitaxel was incorporated in the SLNs. An in vitro drug release study showed that paclitaxel was released from the SLNs in a slow but time-dependent manner. Furthermore, treatment of the OVCAR-3 human ovarian cancer cell line and the MCF-7 breast cancer cell line with paclitaxel-loaded SLNs yielded cytotoxicities comparable to those of a commercially available Cremophor EL-based paclitaxel formulation. These results collectively suggest that our optimized SLN formulation may have a potential as alternative delivery system for parenteral administration of paclitaxel.
Collapse
Affiliation(s)
- Mi-Kyung Lee
- Laboratory of Excellency for Drug and Gene Delivery, College of Pharmacy, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | |
Collapse
|
17
|
Abstract
Polymeric micelles have been the subject of many studies in the field of drug delivery for the past two decades. The interest has specifically been focused on the potential application of polymeric micelles in three major areas in drug delivery: drug solubilisation, controlled drug release and drug targeting. In this context, polymeric micelles consisting of poly(ethylene oxide)-b-poly(propylene oxide), poly(ethylene oxide)-b-poly(ester)s and poly(ethylene oxide)-b-poly(amino acid)s have shown a great promise and are in the front line of development for various applications. The purpose of this manuscript is to provide an update on the current status of polymeric micelles for each application and highlight important parameters that may lead to the development of successful polymeric micellar systems for individual delivery requirements.
Collapse
|
18
|
|
19
|
Aliabadi HM, Brocks DR, Lavasanifar A. Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials 2005; 26:7251-9. [PMID: 16005061 DOI: 10.1016/j.biomaterials.2005.05.042] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to assess the potential of polymeric micelles to modify the pharmacokinetics and tissue distribution of cyclosporine A (CsA). Drug-loaded methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) micellar solutions in isotonic medium were prepared and administered intravenously to healthy Sprague-Dawley rats. Blood and tissues were harvested and assayed for CsA, and resultant pharmacokinetic parameters and tissue distribution of CsA in its polymeric micellar formulation were compared to its commercially available intravenous formulation (Sandimmune). In the pharmacokinetic assessment, a 6.1 fold increase in the area under the blood concentration versus time curve (AUC) was observed for CsA when given as polymeric micellar formulation as compared to Sandimmune. The volume of distribution and clearance of CsA as PEO-b-PCL formulation were observed to be 10.0 and 7.6 fold lower, respectively, compared to the commercial formulation. No significant differences in t(1/2) or MRT could be detected. In the biodistribution study, analysis of tissue samples indicated that the mean AUC of CsA in polymeric micelles was lower in liver, spleen and kidney (1.5, 2.1 and 1.4-fold, respectively). Similar to the pharmacokinetic study in these rats, the polymeric micellar formulation gave rise to 5.7 and 4.9-fold increase in the AUC of CsA in blood and plasma, respectively. Our results show that PEO-b-PCL micelles can effectively solubilize CsA, at the same time confining CsA to the blood circulation and restricting its access to tissues such as kidney, perhaps limiting the onset of toxicity.
Collapse
|
20
|
Aliabadi HM, Mahmud A, Sharifabadi AD, Lavasanifar A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release 2005; 104:301-11. [PMID: 15907581 DOI: 10.1016/j.jconrel.2005.02.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 01/06/2005] [Accepted: 02/19/2005] [Indexed: 10/25/2022]
Abstract
The commercial formulation of Cyclosporine A (CsA) for intravenous administration contains Cremophor EL, a low molecular weight surfactant known to be toxic. In this study, micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) were investigated as alternative vehicles for the solubilization and delivery of CsA. PEO-b-PCL block copolymers having identical PEO chain lengths and PCL molecular weights of 5000, 13,000, or 24,000 g mol(-)(1) were synthesized and assembled into polymeric micelles using a co-solvent evaporation method. PEO-b-PCL micelles were then compared to Cremophor EL micelles for their functional properties in drug delivery including micellar size, thermodynamic stability, core viscosity, CsA encapsulation, and in vitro CsA release. Among different PCL block lengths, optimum solubilization was achieved by utilizing polymeric micelles having a PCL block of 13,000 g mol(-)(1). CsA reached an aqueous solubility of 1.3 mg/mL in the presence of PEO-b-PCL micelles. This concentration is comparable to injectable CsA levels in its Cremophor EL formulation (0.5-2.5 mg/mL). In contrast to the Cremophor EL formulation, the in vitro rate of CsA release was significantly sustained by the polymeric micellar carrier. Within 12 h, only 5.8% of CsA was released from polymeric micelles while Cremophor EL micelles released 77% of their drug content. Accordingly, viscosity of the PEO-b-PCL micellar core was found to be significantly higher than Cremophor EL micelles. The results points to a potential for PEO-b-PCL micelles as nanoscopic drug carriers for efficient solubilization and controlled delivery of CsA.
Collapse
|
21
|
Ubrich N, Schmidt C, Bodmeier R, Hoffman M, Maincent P. Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. Int J Pharm 2005; 288:169-75. [PMID: 15607269 DOI: 10.1016/j.ijpharm.2004.09.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 09/07/2004] [Accepted: 09/10/2004] [Indexed: 11/16/2022]
Abstract
The hydrophobic cyclic undecapeptide cyclosporin A (CyA) used in the prevention of graft rejection and in the treatment of autoimmune diseases was encapsulated by nanoprecipitation within non-biodegradable polymeric nanoparticles. The effect of polymers (Eudragit RS or RL) and additives within the alcoholic phase (fatty acid esters and polyoxyethylated castor oil) on the size, zeta potential and the encapsulation efficiency of the nanoparticles was investigated. The mean diameter of the various CyA nanoparticles ranged from 170 to 310 nm. The size as well as the zeta potential increased by adding fatty acid ester and polyoxyethylated castor oil within the organic phase. No significant differences in surface potential were observed for all formulations tested. Probably due to the very low water solubility of the drug, high encapsulation efficiencies were observed in a range from 70 to 85%. The oral absorption of CyA from these polymeric nanoparticles was studied in rabbits and compared to that of Neoral capsule. Based on comparison of the area under the blood concentration-time curve values, the relative bioavailability of CyA from each nanoparticulate formulation ranged from 20 to 35%.
Collapse
Affiliation(s)
- N Ubrich
- Laboratoire de Pharmacie Galénique, EA 3452, Faculté de Pharmacie, 5, rue Albert Lebrun, B.P. 403, 54001 Nancy Cedex, France.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Shi M, Yang YY, Chaw CS, Goh SH, Moochhala SM, Ng S, Heller J. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties. J Control Release 2003; 89:167-77. [PMID: 12711441 DOI: 10.1016/s0168-3659(02)00493-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.
Collapse
Affiliation(s)
- Meng Shi
- Institute of Materials Research and Engineering, No. 3 Research Link, 117602, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
24
|
El-Shabouri MH. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 2002; 249:101-8. [PMID: 12433438 DOI: 10.1016/s0378-5173(02)00461-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, cyclosporin-A (Cy-A) a highly lipophilic, poorly absorbable drug can be prepared easily and reproducibly as positively and negatively charged nanoparticles with the aim of improving its bioavailability and reducing its inter- and intra-individual variability. The nanoparticles were prepared by emulsification solvent diffusion method, using lecithin and poloxamer 188 as emulsifiers, and chitosan HCl, gelatin-A or sodium glycocholate (SGC) as charge inducing agents. The prepared nanoparticles were evaluated with respect to particle size, zeta potential, drug content and encapsulation efficiency. The bioavailability Cy-A from nanoparticles in comparison with the currently available Cy-A microemulsion (Neoral) were assessed in beagle dogs. The results obtained revealed that, it was possible to prepare Cy-A as nanoparticles with size range of 104-148 nm. Chitosan HCl and gelatin-A nanoparticles exhibited +31.2 and +23.1 mV zeta potential, respectively; while SGC-nanoparticles exhibited -41.6 mV zeta potential. The in vivo results showed that, chitosan-nanoparticles gave the highest C(max) (2762.8 ng/ml) of Cy-A after 2.17 h (T(max)), while SGC-nanoparticles gave the lowest one (1202.4 ng/ml after 4.0 h). Furthermore, AUC(0-24) of Cy-A from chitosan-nanoparticles was markedly increased by about 2.6-fold when compared with SGC-nanoparticles and increased by about 1.8-fold when compared with the reference Neoral microemulsion. However, in case of gelatin-nanoparticles the AUC(0-24) of Cy-A increased by about 1.8 and 1.2-fold when compared with SGC-nanoparticles and the reference Neoral microemulsion, respectively. The relative bioavailability of Cy-A from chitosan-nanoparticles was increased by about 73%, and by about 18% from gelatin nanoparticles, while it was decreased by about 36% from SGC-nanoparticles.
Collapse
Affiliation(s)
- M H El-Shabouri
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
25
|
Kim SJ, Choi HK, Suh SP, Lee YB. Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion and microsphere formulations in rabbits. Eur J Pharm Sci 2002; 15:497-502. [PMID: 12036726 DOI: 10.1016/s0928-0987(02)00048-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
O/W-emulsion and microspheres containing cyclosporin A (CSA) were prepared to investigate the feasibility of developing new formulations. The pharmacokinetic and pharmacodynamic characteristics of these preparations were evaluated in rabbits and compared to two commercial products, Sandimmun Neoral for oral administration and CIPOL Inj. for intravenous administration. After oral or intravenous administration (10 mg/kg) to male rabbits, CSA concentration and lymphocyte population in whole blood were measured by TDxFLx and Coulter STKS, respectively. Total clearance (CL(t)) was increased after intravenous administration of CSA O/W-emulsion compared with intravenous administration of CIPOL Inj. In case of oral administration, AUC and bioavailability of CSA microspheres and O/W-emulsion were not significantly different (P>0.05) from those of Sandimmun Neoral, however, MRT and T(max) of CSA microspheres and O/W-emulsion were significantly increased (P<0.05). There were no significant differences in the area between the baseline and effect curves (ABEC) among these formulations (P>0.05), but the pharmacodynamic availability (F(PD)) of CSA O/W-emulsion was 5.51-fold higher than that of CIPOL Inj. and was significantly greater than that of Sandimmun Neoral (P<0.05). These results suggest that CSA microspheres and O/W-emulsion have sustained release characteristics and may be used as such formulations for oral or intravenous administration of CSA.
Collapse
Affiliation(s)
- Soo-Jin Kim
- College of Pharmacy, Chonnam National University, 300 Yongbong-dong, Buk-gu, Kwangju 500-757, South Korea
| | | | | | | |
Collapse
|
26
|
Abstract
Gene therapy has emerged as a new concept of therapeutic strategies to treat diseases which do not respond to the conventional therapies. The principle of gene therapy is to introduce genetic materials into patient cells to produce therapeutic proteins in these cells. Gene therapy is now at the stage where a number of dinical trials have been carried out to patients with gene-deficiency disease or cancer. Genetic materials for gene therapy are generally composed of gene expression system and gene delivery system. For the dinical application of gene therapy in a way which conventional drugs are used, researches have been focused on the design of gene delivery system which can offer high transfection efficiency with minimal toxicity. Currently, viral delivery systems generally provide higher transfection efficiency compared with non-viral delivery systems while non-viral delivery systems are less toxic, less immunogenic and manufacturable in large scale compared with viral systems. Recently, novel strategies towards the design of new non-viral delivery system, combination of viral and non-viral delivery systems and targeted delivery system have been extensively studied. The continued effort in this area will lead us to develop gene medicine as 'gene as a drug' in the near future.
Collapse
Affiliation(s)
- C K Kim
- National Research Laboratory for Drug and Gene Delivery, College of Pharmacy, Seoul National University, Korea.
| | | | | |
Collapse
|