1
|
Oh SY, Kang JJ, Kim S, Lee JM, Kim JS, Dieterich M. A preliminary trial of botulinum toxin type A in patients with vestibular migraine: A longitudinal fMRI study. Front Neurol 2022; 13:955158. [PMID: 35959394 PMCID: PMC9358216 DOI: 10.3389/fneur.2022.955158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study aims to investigate the efficacy of botulinum toxin type A (BTX-A) in the prophylactic management of vestibular migraine (VM) and to determine whether this treatment modulates intrinsic functional brain network. Methods Vestibular migraine patients (n = 20, mean age 45.4 years) who were resistant to conventional prophylactic therapies had BTX-A injection and rs-fMRI before and 2 months after the injection. We also measured the changes in the frequency of vertigo and migraine attacks, symptomatic functional disability scores, and neuropsychiatric inventories. Results After BTX-A injection, the mean monthly frequencies of migraine and vertigo episodes decreased significantly compared with the baseline (p < 0.01, paired t-test). The Headache Impact Test-6 score and the Migraine Disability Assessment, and the vertigo parameters, measured by the Dizziness Handicap Inventory and the Vertigo Symptom Scale, showed an improvement, as did the anxiety and depression scores 2 months after BTX-A treatment. The low-frequency fluctuation analysis of the rs-fMRI data found significant changes in the functional connectivity of the right superior temporal gyrus. Adoption of this cluster as the seed region increased the functional connectivity with the left post-central gyrus, right supramarginal gyrus, and right middle temporal gyrus after BTX-A treatment. Conclusion This prospective study suggests that BTX-A treatment is effective at ameliorating migraine and vertigo symptoms in VM patients who were resistant to conventional therapies. Along with symptomatic improvements, changes in the functional connectivity within the multisensory vestibular and pain networks suggest a dysmodulation of multimodal sensory integration and abnormal cortical processing of the vestibular and pain signals in VM patients.
Collapse
Affiliation(s)
- Sun-Young Oh
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju-si, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju-si, South Korea
- *Correspondence: Sun-Young Oh
| | - Jin-Ju Kang
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju-si, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju-si, South Korea
| | - Sohui Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
- Jong-Min Lee
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neurology, Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Marianne Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
2
|
Ramakrishna Y, Sadeghi SG. Activation of GABA B receptors results in excitatory modulation of calyx terminals in rat semicircular canal cristae. J Neurophysiol 2020; 124:962-972. [PMID: 32816581 PMCID: PMC7509296 DOI: 10.1152/jn.00243.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Previous studies have found GABA in vestibular end organs. However, existence of GABA receptors or possible GABAergic effects on vestibular nerve afferents has not been investigated. The current study was conducted to determine whether activation of GABAB receptors affects calyx afferent terminals in the central region of the cristae of semicircular canals. We used patch-clamp recording in postnatal day 13-18 (P13-P18) Sprague-Dawley rats of either sex. Application of GABAB receptor agonist baclofen inhibited voltage-sensitive potassium currents. This effect was blocked by selective GABAB receptor antagonist CGP 35348. Application of antagonists of small (SK)- and large-conductance potassium (BK) channels almost completely blocked the effects of baclofen. The remaining baclofen effect was blocked by cadmium chloride, suggesting that it could be due to inhibition of voltage-gated calcium channels. Furthermore, baclofen had no effect in the absence of calcium in the extracellular fluid. Inhibition of potassium currents by GABAB activation resulted in an excitatory effect on calyx terminal action potential firing. While in the control condition calyces could only fire a single action potential during step depolarizations, in the presence of baclofen they fired continuously during steps and a few even showed repetitive discharge. We also found a decrease in threshold for action potential generation and a decrease in first-spike latency during step depolarization. These results provide the first evidence for the presence of GABAB receptors on calyx terminals, showing that their activation results in an excitatory effect and that GABA inputs could be used to modulate calyx response properties.NEW & NOTEWORTHY Using in vitro whole cell patch-clamp recordings from calyx terminals in the vestibular end organs, we show that activation of GABAB receptors result in an excitatory effect, with decreased spike-frequency adaptation and shortened first-spike latencies. Our results suggest that these effects are mediated through inhibition of calcium-sensitive potassium channels.
Collapse
Affiliation(s)
- Yugandhar Ramakrishna
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Communication Disorders and Sciences, California State University, Northridge, Northridge, California
| | - Soroush G Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York
- Neuroscience Program, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
3
|
Yu Z, McIntosh JM, Sadeghi SG, Glowatzki E. Efferent synaptic transmission at the vestibular type II hair cell synapse. J Neurophysiol 2020; 124:360-374. [PMID: 32609559 DOI: 10.1152/jn.00143.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the vestibular peripheral organs, type I and type II hair cells (HCs) transmit incoming signals via glutamatergic quantal transmission onto afferent nerve fibers. Additionally, type I HCs transmit via "non-quantal" transmission to calyx afferent fibers, by accumulation of glutamate and potassium in the synaptic cleft. Vestibular efferent inputs originating in the brainstem contact type II HCs and vestibular afferents. Here, synaptic inputs to type II HCs were characterized by using electrical and optogenetic stimulation of efferent fibers combined with in vitro whole cell patch-clamp recording from type II HCs in the rodent vestibular crista. Properties of efferent synaptic currents in type II HCs were similar to those found in cochlear HCs and mediated by activation of α9-containing nicotinic acetylcholine receptors (nAChRs) and small-conductance calcium-activated potassium (SK) channels. While efferents showed a low probability of release at low frequencies of stimulation, repetitive stimulation resulted in facilitation and increased probability of release. Notably, the membrane potential of type II HCs during optogenetic stimulation of efferents showed a strong hyperpolarization in response to single pulses and was further enhanced by repetitive stimulation. Such efferent-mediated inhibition of type II HCs can provide a mechanism to adjust the contribution of signals from type I and type II HCs to vestibular nerve fibers, with a shift of the response to be more like that of calyx-only afferents with faster non-quantal responses.NEW & NOTEWORTHY Type II vestibular hair cells (HCs) receive inputs from efferent neurons in the brain stem. We used in vitro optogenetic and electrical stimulation of vestibular efferent fibers to study their synaptic inputs to type II HCs. Stimulation of efferents inhibited type II HCs, similar to efferent effects on cochlear HCs. We propose that efferent inputs adjust the contribution of signals from type I and II HCs to vestibular nerve fibers.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, and The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Soroush G Sadeghi
- Department of Communicative Disorders and Sciences, and Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York.,Neuroscience Program, State University of New York at Buffalo, Buffalo, New York
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, and The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Poppi LA, Holt JC, Lim R, Brichta AM. A review of efferent cholinergic synaptic transmission in the vestibular periphery and its functional implications. J Neurophysiol 2019; 123:608-629. [PMID: 31800345 DOI: 10.1152/jn.00053.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been over 60 years since peripheral efferent vestibular terminals were first identified in mammals, and yet the function of the efferent vestibular system remains obscure. One reason for the lack of progress may be due to our deficient understanding of the peripheral efferent synapse. Although vestibular efferent terminals were identified as cholinergic less than a decade after their anatomical characterization, the cellular mechanisms that underlie the properties of these synapses have had to be inferred. In this review we examine how recent mammalian studies have begun to reveal both nicotinic and muscarinic effects at these terminals and therefore provide a context for fast and slow responses observed in classic electrophysiological studies of the mammalian efferent vestibular system, nearly 40 years ago. Although incomplete, these new results together with those of recent behavioral studies are helping to unravel the mysterious and perplexing action of the efferent vestibular system. Armed with this information, we may finally appreciate the behavioral framework in which the efferent vestibular system operates.
Collapse
Affiliation(s)
- L A Poppi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| | - J C Holt
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - R Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| | - A M Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
5
|
Holland PR, Saengjaroentham C, Vila-Pueyo M. The role of the brainstem in migraine: Potential brainstem effects of CGRP and CGRP receptor activation in animal models. Cephalalgia 2018; 39:390-402. [DOI: 10.1177/0333102418756863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Migraine is a severe debilitating disorder of the brain that is ranked as the sixth most disabling disorder globally, with respect to disability adjusted life years, and there remains a significant unmet demand for an improved understanding of its underlying mechanisms. In conjunction with perturbed sensory processing, migraine sufferers often present with diverse neurological manifestations (premonitory symptoms) that highlight potential brainstem involvement. Thus, as the field moves away from the view of migraine as a consequence of purely vasodilation to a greater understanding of migraine as a complex brain disorder, it is critical to consider the underlying physiology and pharmacology of key neural networks likely involved. Discussion The current review will therefore focus on the available evidence for the brainstem as a key regulator of migraine biology and associated symptoms. We will further discuss the potential role of CGRP in the brainstem and its modulation for migraine therapy, given the emergence of targeted CGRP small molecule and monoclonal antibody therapies. Conclusion The brainstem forms a functional unit with several hypothalamic nuclei that are capable of modulating diverse functions including migraine-relevant trigeminal pain processing, appetite and arousal regulatory networks. As such, the brainstem has emerged as a key regulator of migraine and is appropriately considered as a potential therapeutic target. While currently available CGRP targeted therapies have limited blood brain barrier penetrability, the expression of CGRP and its receptors in several key brainstem nuclei and the demonstration of brainstem effects of CGRP modulation highlight the significant potential for the development of CNS penetrant molecules.
Collapse
Affiliation(s)
- Philip Robert Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Chonlawan Saengjaroentham
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marta Vila-Pueyo
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
6
|
Jordan PM, Fettis M, Holt JC. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse. J Comp Neurol 2015; 523:1258-80. [PMID: 25560461 DOI: 10.1002/cne.23738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 11/07/2022]
Abstract
In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed.
Collapse
Affiliation(s)
- Paivi M Jordan
- Department of Otolaryngology, University of Rochester, Rochester, New York
| | | | | |
Collapse
|
7
|
Pujol R, Pickett SB, Nguyen TB, Stone JS. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs. J Comp Neurol 2014; 522:3141-59. [PMID: 24825750 DOI: 10.1002/cne.23625] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/29/2022]
Abstract
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates.
Collapse
Affiliation(s)
- Rémy Pujol
- The Virginia Merrill Bloedel Hearing Research Center, and the Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, 98195-7923; INSERM Unit 1051, Institute of Neuroscience, 34091, Montpellier, France
| | | | | | | |
Collapse
|
8
|
Xiaocheng W, Zhaohui S, Ka B, Junhui X, Lei Z, Feng X, Guoqing Y, Lining F, Zuoming Z. The expression of calcitonin gene-related Peptide and acetylcholine in the vestibular-related nucleus population of wild-type mice and retinal degeneration fast mice after rotary stimulation. J Mol Neurosci 2013; 51:514-21. [PMID: 24037277 DOI: 10.1007/s12031-013-0087-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/29/2013] [Indexed: 01/04/2023]
Abstract
Due to the lack of an appropriate animal model, few studies have addressed the integration of visual and vestibular information in the visual system. Using a mouse model with a visual defect (retinal degeneration fast, rdf), we have verified that the prepositus hypoglossal nucleus (PrH) and the Kooy cap of the inferior olive medial nucleus (IOK) are key regions in which visual and vestibular information integrate. Although the integration regions were identified, the precise mechanisms of integration require further investigation. The rdf mice and wild-type Kunming mice were randomly assigned to experimental and control subgroups, respectively. Mice in the experimental groups were exposed to rotary motion for 30 min three times at 24-h intervals, whereas mice in the control groups were not exposed to rotary motion. Differences in the number of calcitonin gene-related peptide positive (CGRP-positive) and choline acetyltransferase positive (ChAT-positive) neurons in the vestibular-related nucleus populations of two types of mice were determined. After rotatory stimulus, the number of CGRP-positive and ChAT-positive neurons in the PrH and the IOK was significantly less in rdf mice compared with that in wild-type mice. There were differences in the number of CGRP-positive and ChAT-positive neurons in the other vestibular-related regions, but the differences were not significant, except the difference in the number of ChAT-positive neurons in the medial vestibular nucleus. The expression patterns of CGRP and ChAT were similar to that of Fos in the vestibular-related regions in the two types of mice after rotatory stimulus. The number of CGRP-positive and ChAT-positive neurons and the number of active nerve cells were consistent in those regions in the two types of mice after rotary stimulus. Therefore, we speculated that CGRP and Ach generated and released by neurons in the PrH and the IOK may play roles in the sensory integration of visual and vestibular information in mice.
Collapse
Affiliation(s)
- Wang Xiaocheng
- Department of Clinical Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, The Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhou T, Wang Y, Guo CK, Zhang WJ, Yu H, Zhang K, Kong WJ. Two distinct channels mediated by m2mAChR and α9nAChR co-exist in type II vestibular hair cells of guinea pig. Int J Mol Sci 2013; 14:8818-31. [PMID: 23615472 PMCID: PMC3676758 DOI: 10.3390/ijms14058818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/29/2013] [Accepted: 04/17/2013] [Indexed: 11/16/2022] Open
Abstract
Acetylcholine (ACh) is the principal vestibular efferent neurotransmitter among mammalians. Pharmacologic studies prove that ACh activates a small conductance Ca2+-activated K+ channels (KCa) current (SK2), mediated by α9-containing nicotinic ACh receptor (α9nAChR) in mammalian type II vestibular hair cells (VHCs II). However, our studies demonstrate that the m2 muscarinic ACh receptor (m2mAChR) mediates a big conductance KCa current (BK) in VHCs II. To better elucidate the correlation between these two distinct channels in VHCs II of guinea pig, this study was designed to verify whether these two channels and their corresponding AChR subtypes co-exist in the same VHCs II by whole-cell patch clamp recordings. We found that m2mAChR sensitive BK currents were activated in VHCs II isolated by collagenase IA, while α9nAChR sensitive SK2 currents were activated in VHCs II isolated by trypsin. Interestingly, after exposing the patched cells isolated by trypsin to collagenase IA for 3 min, the α9nAChR sensitive SK2 current was abolished, while m2mAChR-sensitive BK current was activated. Therefore, our findings provide evidence that the two distinct channels and their corresponding AChR subtypes may co-exist in the same VHCs II, and the alternative presence of these two ACh receptors-sensitive currents depended on isolating preparation with different enzymes.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Yi Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Chang-Kai Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Wen-Juan Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Hong Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Kun Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-27-8572-6900; Fax: +86-27-8577-6343
| |
Collapse
|
10
|
Xiaocheng W, Zhaohui S, Junhui X, Lei Z, Lining F, Zuoming Z. Expression of calcitonin gene-related peptide in efferent vestibular system and vestibular nucleus in rats with motion sickness. PLoS One 2012; 7:e47308. [PMID: 23056625 PMCID: PMC3467246 DOI: 10.1371/journal.pone.0047308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/11/2012] [Indexed: 12/25/2022] Open
Abstract
Motion sickness presents a challenge due to its high incidence and unknown pathogenesis although it is a known fact that a functioning vestibular system is essential for the perception of motion sickness. Recent studies show that the efferent vestibular neurons contain calcitonin gene-related peptide (CGRP). It is a possibility that the CGRP immunoreactivity (CGRPi) fibers of the efferent vestibular system modulate primary afferent input into the central nervous system; thus, making it likely that CGRP plays a key role in motion sickness. To elucidate the relationship between motion sickness and CGRP, the effects of CGRP on the vestibular efferent nucleus and the vestibular nucleus were investigated in rats with motion sickness.
Collapse
Affiliation(s)
- Wang Xiaocheng
- Department of Clinical Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, The Fourth Military Medical University, Xi'an, China
| | - Shi Zhaohui
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xue Junhui
- Department of Clinical Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, The Fourth Military Medical University, Xi'an, China
| | - Zhang Lei
- Department of Clinical Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, The Fourth Military Medical University, Xi'an, China
| | - Feng Lining
- Department of Clinical Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, The Fourth Military Medical University, Xi'an, China
- * E-mail: (FL); (ZZ)
| | - Zhang Zuoming
- Department of Clinical Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, The Fourth Military Medical University, Xi'an, China
- * E-mail: (FL); (ZZ)
| |
Collapse
|
11
|
Yao Q, Cheng H, Guo C, Zhou T, Huang X, Kong W. Muscarinic acetylcholine receptor subtype expression in type vestibular hair cells of guinea pigs. ACTA ACUST UNITED AC 2011; 31:682. [PMID: 22038361 DOI: 10.1007/s11596-011-0582-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Indexed: 10/16/2022]
Abstract
Recent studies have demonstrated that five subtypes (M1-M5) of muscarinic acetylcholine receptor (mAChR) are expressed in the vestibular periphery. However, the exact cellular location of the mAChRs is not clear. In this study, we investigated whether there is the expression of M1-M5 muscarinic receptor mRNA in isolated type II vestibular hair cells of guinea pig by using single-cell RT-PCR. In vestibular end-organ, cDNA of the expected size was obtained by RT-PCR. Moreover, mRNA was identified by RT-PCR from individually isolated type II vestibular hair cells (single-cell RT-PCR). Sequence analysis confirmed that the products were M1-M5 mAChR. These results demonstrated that M1-M5 mAChR was expressed in the type II vestibular hair cells of the guinea pig, which lends further support for the role of M1-M5 mAChR as a mediator of efferent cholinergic signalling pathway in vestibular hair cells.
Collapse
Affiliation(s)
- Qi Yao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huamao Cheng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changkai Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Huang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Inagaki M, Kon K, Suzuki S, Kobayashi N, Kaga M, Nanba E. Characteristic findings of auditory brainstem response and otoacoustic emission in the Bronx waltzer mouse. Brain Dev 2006; 28:617-24. [PMID: 16730938 DOI: 10.1016/j.braindev.2006.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/01/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were evaluated serially from 1 to 22 months in Bronx waltzer homozygotes (bv/bv), heterozygotes (+/bv) and control (+/+) mice, which were differentiated by means of PCR of marker DNA (D5Mit209). The wave IV threshold of the click-evoked ABR was higher than the DPOAE threshold with the DP growth method in each bv/bv, although the two thresholds were almost the same in the +/+ group. The DP value at 2f(1) - f(2) in the bv/bv showed an apparent decrease at 2 to 3 months of age with 80 dB SPL stimulation using f(2) frequency 7996 Hz and frequency ratio f(2)/f(1) = 1.22, compared to control or heterozygote mice. It was characteristic that the 2f(2) - f(1) DP signal-to-noise ratio (SNR) value was more preserved from 80 to 60 dB SPL than the 2f(1) - f(2) DP value at f(2) frequency 7996 Hz in most bv/bv, however, control mice showed almost the same levels of 2f(1) - f(2) and 2f(2) - f(1) SNR value at both f(2) frequencies of 6006 and 7996 Hz. The preservation of a substantial 2f(2) - f(1) DP suggested that it would be generated basal to the primary-tone place on the basilar membrane and there might be a reflection of the unique function of the remaining outer hair cells in the Bronx waltzer mice. These findings suggest that combination of ABR with DPOAE could offer useful information about differentiating the mechanism of hair cell dysfunction of the hereditary hearing impairment in the clinical fields.
Collapse
Affiliation(s)
- Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa Higashi, Kodaira 187-8553, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Kong WJ, Guo CK, Zhang S, Hao J, Wang YJ, Li ZW. The properties of ACh-induced BK currents in guinea pig type II vestibular hair cells. Hear Res 2005; 209:1-9. [PMID: 16005587 DOI: 10.1016/j.heares.2005.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 05/28/2005] [Indexed: 11/17/2022]
Abstract
Molecular biological studies have demonstrated that both muscarinic receptor subtypes and nicotinic receptor subunits were located in mammalian vestibular sensorineural epithelium. However, the functional roles are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9nAChR). In this study, the properties of acetylcholine (ACh)-induced currents were investigated by whole-cell patch clamp technique in isolated type II vestibular hair cells (VHCs II) of guinea pig. VHCs II displayed a sustained, non-inactivating current when extracellular application of ACh. ACh-induced currents restored gradually and it took about 60 s to get a complete recovery. ACh-induced current was not affected by extracellular Na(+), but strongly affected by extracellular K(+) and Ca(2+). Depletion of the intracellular Ca(2+) stores by intracellular application of inositol 1,4,5-trisphosphate (IP3) or blocking of the release of intracellular Ca(2+) stores by intracellular application of heparin failed to inhibit this current. ACh-induced currents were inhibited by nifedipine, Cd(2+), tetraethylammonium (TEA), charybdotoxin (CTX), iberiotoxin (IBTX), atropine and d-tubocurarine (DTC), respectively, but not by apamin. In conclusion, ACh stimulates a large conductance, Ca(2+)-activated K(+) current (BK) in guinea pig VHCs II by activation of the influx of Ca(2+) ions, which is mediated by an ACh receptor that could not be defined to be the odd-number muscarinic receptor.
Collapse
Affiliation(s)
- Wei-Jia Kong
- Department of Otolaryngology, Union Hospital of Tongji Medical College, Hua-Zhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
14
|
Sterbing SJ, Schrott-Fischer A. Neuronal responses in the inferior colliculus of mutant mice (Bronx waltzer) with hereditary inner hair cell loss. Hear Res 2003; 177:91-9. [PMID: 12618321 DOI: 10.1016/s0378-5955(02)00805-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bronx waltzer mice lose a great proportion of their cochlear inner hair cells during early development. Hair cell counts revealed that these mice lacked on average 86% of their inner hair cells. Outer hair cells were present in a normal number, but appeared disarranged. The effect of this inner hair cell loss on the properties of central auditory neurons was investigated by recording neuronal responses in the inferior colliculus. Neuronal thresholds were on average elevated by 40 dB compared to CBA controls. The frequency tuning curves of the mutants were broad, and in part (18.5%) multi-peaked. The tonotopy found in the inferior colliculus of the Bronx waltzer mice appeared diffuse. Both the driven and spontaneous discharge rates were not statistically significantly different from the controls. However, the average first spike latency was significantly longer in the Bronx waltzer mice.
Collapse
Affiliation(s)
- S J Sterbing
- Department of Zoology and Neurobiology, Ruhr University, Bochum, Germany.
| | | |
Collapse
|