1
|
Kim J, Hemachandran S, Cheng AG, Ricci AJ. Identifying targets to prevent aminoglycoside ototoxicity. Mol Cell Neurosci 2022; 120:103722. [PMID: 35341941 PMCID: PMC9177639 DOI: 10.1016/j.mcn.2022.103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sriram Hemachandran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Waissbluth S, Maass JC, Sanchez HA, Martínez AD. Supporting Cells and Their Potential Roles in Cisplatin-Induced Ototoxicity. Front Neurosci 2022; 16:867034. [PMID: 35573297 PMCID: PMC9104564 DOI: 10.3389/fnins.2022.867034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin is a known ototoxic chemotherapy drug, causing irreversible hearing loss. Evidence has shown that cisplatin causes inner ear damage as a result of adduct formation, a proinflammatory environment and the generation of reactive oxygen species within the inner ear. The main cochlear targets for cisplatin are commonly known to be the outer hair cells, the stria vascularis and the spiral ganglion neurons. Further evidence has shown that certain transporters can mediate cisplatin influx into the inner ear cells including organic cation transporter 2 (OCT2) and the copper transporter Ctr1. However, the expression profiles for these transporters within inner ear cells are not consistent in the literature, and expression of OCT2 and Ctr1 has also been observed in supporting cells. Organ of Corti supporting cells are essential for hair cell activity and survival. Special interest has been devoted to gap junction expression by these cells as certain mutations have been linked to hearing loss. Interestingly, cisplatin appears to affect connexin expression in the inner ear. While investigations regarding cisplatin-induced hearing loss have been focused mainly on the known targets previously mentioned, the role of supporting cells for cisplatin-induced ototoxicity has been overlooked. In this mini review, we discuss the implications of supporting cells expressing OCT2 and Ctr1 as well as the potential role of gap junctions in cisplatin-induced cytotoxicity.
Collapse
Affiliation(s)
- Sofia Waissbluth
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Sofia Waissbluth, ;
| | - Juan Cristóbal Maass
- Department of Otolaryngology, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Helmuth A. Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Trevino M, Escabi CD, Zang A, Pawlowski K, Lobarinas E. Effect of Selective Carboplatin-Induced Inner Hair Cell Loss on Temporal Integration in Chinchillas. J Assoc Res Otolaryngol 2022; 23:379-389. [DOI: 10.1007/s10162-022-00843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
|
4
|
Lobarinas E, Salvi R, Ding D. Gap Detection Deficits in Chinchillas with Selective Carboplatin-Induced Inner Hair Cell Loss. J Assoc Res Otolaryngol 2020; 21:475-483. [PMID: 32804336 DOI: 10.1007/s10162-020-00744-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/04/2020] [Indexed: 11/29/2022] Open
Abstract
Temporal resolution is essential for processing complex auditory information such as speech. In hearing impaired persons, temporal resolution, often assessed by detection of brief gaps in continuous sound stimuli, is typically poorer than in individuals with normal hearing. At low stimulus presentation levels, hearing impaired individuals perform poorly but the deficits are greatly reduced when the sensation level of the stimuli are adjusted to match their normal hearing peers. In the present study, we evaluated the effect of selective inner hair cell loss on gap detection in chinchillas treated with carboplatin, an anticancer drug that selectively damages inner hair cells and afferents in this species. Treatment with carboplatin-induced inner hair cell loss of ~ 70 % but had little effect on audiometric thresholds in quiet and produced no evidence of outer hair cell loss. In contrast, selective inner hair cell loss had a significant effect on gap detection ability across a wide range of presentation levels. These results suggest that gap detection tasks are more sensitive to inner hair cell pathology than audiometric thresholds.
Collapse
Affiliation(s)
- Edward Lobarinas
- School of Behavioral and Brain Sciences, Callier Center for Communication Disorders, The University of Texas at Dallas, 1966 Inwood Road, Dallas, TX, 75235, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Dalian Ding
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
5
|
Wang F, Gong S, Zhou Y, Huang C, Li T, Li Q, Ceng X, Wang C. Establishment of a Gentamicin Cochlear Poisoning Model in Guinea Pigs and Cochlear Nerve Endings Recognition of Ultrasound Signals. Med Sci Monit 2018; 24:9429-9435. [PMID: 30592260 PMCID: PMC6322371 DOI: 10.12659/msm.913205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Aminoglycosides, a type of gram-negative antibacterial, are broad-spectrum antibiotics that are highly potent and have satisfactory therapeutic efficacy in the treatment of life-threatening infections. Our study aimed to establish a gentamicin-induced cochlear injury model and to investigate the cochlear nerve endings’ recognition of ultrasound signals. Material/Methods A guinea pig cochlear injury model was established by intraperitoneal injection of gentamycin. Auditory brainstem response (ABR) and fMRI an affected cerebral cortex region of interest (ROI) of the cerebral cortex blood oxygenation level dependent (BOLD) effect was induced by bone-conducted ultrasound. Immunofluorescence was used to detect expression of Prestin in outer hair cells, Otoferlin in inner hair cells, and cochlear hair cell microfilament protein (F-Actin). Results For 30–35 KHz bone-conducted ultrasound, the induction rate of ABR threshold or ROI in the control group and the cochlear injury group was 40% and 0%, respectively, and for 80–90 KHz the induction rate was 20% and 20%, respectively. Gentamicin poisoning induced downregulation of expression of Prestin in cochlear outer cochlea, and Otoferlin and F-Actin in cochlear hair cells in different regions. Conclusions Gentamicin poisoning can cause different degrees of damage to cochlea hair cells in different regions. Guinea pigs with gentamicin poisoning can recognize high-frequency ultrasonic signals.
Collapse
Affiliation(s)
- Fusen Wang
- Department of Otorhinolaryngology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen, Guangdong, China (mainland)
| | - Shusheng Gong
- Capital University of Medical Sciences Affiliated Friendship Hospital ENT, Beijing, China (mainland)
| | - Yuee Zhou
- Department of Electrocardiography, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen, Guangdong, China (mainland)
| | - Chengcheng Huang
- Department of Otorhinolaryngology, Wuhan General Hospital of People's Liberation Army (PLA), Wuhan, Hubei, China (mainland)
| | - Tiegang Li
- Molecular Imaging Center, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Qian Li
- Chinese People's Liberation Army 301 Hospital ENT Research Institute, Beijing, China (mainland)
| | - Xinyu Ceng
- Department of Otorhinolaryngology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen, Guangdong, China (mainland)
| | - Chaoyan Wang
- Department of Otorhinolaryngology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
6
|
Gao K, Ding D, Sun H, Roth J, Salvi R. Kanamycin Damages Early Postnatal, but Not Adult Spiral Ganglion Neurons. Neurotox Res 2017; 32:603-613. [PMID: 28656549 PMCID: PMC5711550 DOI: 10.1007/s12640-017-9773-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Although aminoglycoside antibiotics such as kanamycin are widely used clinically to treat life-threatening bacterial infections, ototoxicity remains a significant dose-limiting side effect. The prevailing view is that the hair cells are the primary ototoxic target of aminoglycosides and that spiral ganglion neurons begin to degenerate weeks or months after the hair cells have died due to lack of neurotrophic support. To test the early developmental aspects of this issue, we compared kanamycin-induced hair cell and spiral ganglion pathology in rat postnatal day 3 cochlear organotypic cultures with adult whole cochlear explants. In both adult and postnatal day 3 cultures, hair cell damage began at the base of the cochleae and progressed toward the apex in a dose-dependent manner. In postnatal day 3 cultures, spiral ganglion neurons were rapidly destroyed by kanamycin prior to hair cell loss. In contrast, adult spiral ganglion neurons were resistant to kanamycin damage even at the highest concentration, consistent with in vivo models of delayed SGN degeneration. In postnatal day 3 cultures, kanamycin preferentially damaged type I spiral ganglion neurons, whereas type II neurons were resistant. Spiral ganglion degeneration of postnatal day 3 neurons was associated with upregulation of the superoxide radical and caspase-3-mediated cell death. These results show for the first time that kanamycin is toxic to postnatal day 3 spiral ganglion neurons, but not adult neurons.
Collapse
Affiliation(s)
- Kelei Gao
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Jerome Roth
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan
| | - Richard Salvi
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China.
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan.
| |
Collapse
|
7
|
Cristóbal Maass J, Hanuch F, Ormazábal M. AVANCES EN REGENERACIÓN AUDITIVA. ESTADO ACTUAL Y PERSPECTIVAS FUTURAS. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Ototoxic effects and mechanisms of loop diuretics. J Otol 2016; 11:145-156. [PMID: 29937824 PMCID: PMC6002634 DOI: 10.1016/j.joto.2016.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
Over the past two decades considerable progress has been made in understanding the ototoxic effects and mechanisms underlying loop diuretics. As typical representative of loop diuretics ethacrynic acid or furosemide only induces temporary hearing loss, but rarely permanent deafness unless applied in severe acute or chronic renal failure or with other ototoxic drugs. Loop diuretic induce unique pathological changes in the cochlea such as formation of edematous spaces in the epithelium of the stria vascularis, which leads to rapid decrease of the endolymphatic potential and eventual loss of the cochlear microphonic potential, summating potential, and compound action potential. Loop diuretics interfere with strial adenylate cyclase and Na+/K+-ATPase and inhibit the Na-K-2Cl cotransporter in the stria vascularis, however recent reports indicate that one of the earliest effects in vivo is to abolish blood flow in the vessels supplying the lateral wall. Since ethacrynic acid does not damage the stria vascularis in vitro, the changes in Na+/K+-ATPase and Na-K-2Cl seen in vivo may be secondary effects results from strial ischemia and anoxia. Recent observations showing that renin is present in pericytes surrounding stria arterioles suggest that diuretics may induce local vasoconstriction by renin secretion and angiotensin formation. The tight junctions in the blood-cochlea barrier prevent toxic molecules and pathogens from entering cochlea, but when diuretics induce a transient ischemia, the barrier is temporarily disrupted allowing the entry of toxic chemicals or pathogens.
Collapse
|
9
|
Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss. J Assoc Res Otolaryngol 2015; 17:89-101. [PMID: 26691159 DOI: 10.1007/s10162-015-0550-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022] Open
Abstract
Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.
Collapse
|
10
|
Recent advances in local drug delivery to the inner ear. Int J Pharm 2015; 494:83-101. [PMID: 26260230 DOI: 10.1016/j.ijpharm.2015.08.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
Inner ear diseases are not adequately treated by systemic drug administration mainly because of the blood-perilymph barrier that reduces exchanges between plasma and inner ear fluids. Local drug delivery methods including intratympanic and intracochlear administrations are currently developed to treat inner ear disorders more efficiently. Intratympanic administration is minimally invasive but relies on diffusion through middle ear barriers for drug entry into the cochlea, whereas intracochlear administration offers direct access to the colchlea but is rather invasive. A wide range of drug delivery systems or devices were evaluated in research and clinic over the last decade for inner ear applications. In this review, different strategies including medical devices, hydrogels and nanoparticulate systems for intratympanic administration, and cochlear implant coating or advanced medical devices for intracoclear administration were explored with special attention to in vivo studies. This review highlights the promising systems for future clinical applications as well as the current hurdles that remain to be overcome for efficient inner ear therapy.
Collapse
|
11
|
Abstract
Safety pharmacology satisfies a key requirement in the process of drug development. Safety pharmacology studies are required to assess the impact of a new chemical entity (NCE) or biotechnology-derived product for human use on vital systems, such as those subserving auditory function. Safety pharmacology studies accordingly are defined as those studies that investigate the potential undesirable effects of a substance on auditory functions in relation to exposure in and above the therapeutic range. Auditory safety studies should be designed with the primary objective of determining how administration of a compound influences normal hearing. If an effect on hearing is identified, then it is necessary to determine through histopathology the underlying mechanism for the observed hearing loss. Since the auditory system contains a heterogeneous mixture of structural and cellular components that are organized in a very complex and integrated manner, it is necessary to clearly identify the underlying primary mechanism or target of the new chemical entity that produced the hearing loss. This chapter will highlight major components of auditory function with regard to potential opportunities for drug interaction. Aspects of designing ototoxicity studies will be discussed with an emphasis on standards deemed necessary by the US Food and Drug Administration. Additionally, classes of ototoxic compounds and their proposed mechanisms of action are described in depth.
Collapse
|
12
|
Pattern of hair cell loss and delayed peripheral neuron degeneration in inner ear by a high-dose intratympanic gentamicin. J Otol 2014. [DOI: 10.1016/j.joto.2014.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
13
|
Vestibular damage in chronic ototoxicity: a mini-review. Neurotoxicology 2013; 43:21-27. [PMID: 24333467 DOI: 10.1016/j.neuro.2013.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Ototoxicity is a major cause of the loss of hearing and balance in humans. Ototoxic compounds include pharmaceuticals such as aminoglycoside antibiotics, anti-malarial drugs, loop diuretics and chemotherapeutic platinum agents, and industrial chemicals including several solvents and nitriles. Human and rodent data indicate that the main target of toxicity is hair cells (HCs), which are the mechanosensory cells responsible for sensory transduction in both the auditory and the vestibular system. Nevertheless, the compounds may also affect the auditory and vestibular ganglion neurons. Exposure to ototoxic compounds has been found to cause HC apoptosis, HC necrosis, and damage to the afferent terminals, of differing severity depending on the ototoxicity model. One major pathway frequently involved in HC apoptosis is the c-jun N-terminal kinase (JNK) signaling pathway activated by reactive oxygen species, but other apoptotic pathways can also play a role in ototoxicity. Moreover, little is known about the effects of chronic low-dose exposure. In rodent vestibular epithelia, extrusion of live HCs from the sensory epithelium may be the predominant form of cell demise during chronic ototoxicity. In addition, greater involvement of the afferent terminals may occur, particularly the calyx units contacting type I vestibular HCs. As glutamate is the neurotransmitter in this synapse, excitotoxic phenomena may participate in afferent and ganglion neuron damage. Better knowledge of the events that take place in chronic ototoxicity is of great interest, as it will increase understanding of the sensory loss associated with chronic exposure and aging.
Collapse
|
14
|
Topographic and quantitative evaluation of gentamicin-induced damage to peripheral innervation of mouse cochleae. Neurotoxicology 2013; 40:86-96. [PMID: 24308912 DOI: 10.1016/j.neuro.2013.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/24/2022]
Abstract
Ototoxicity induced by aminoglycoside antibiotics appears to occur both in hair cells (HCs) and the cochlear nerves that innervate them. Although HC loss can be easily quantified, neuronal lesions are difficult to quantify because two types of afferent dendrites and two types of efferent axons are tangled beneath the hair cells. In the present study, ototoxicity was induced by gentamicin in combination with the diuretic agent furosemide. Neuronal lesions were quantified in cochlear whole-mount preparations combined with microsections across the habenular perforate (HP) openings to achieve a clear picture of the topographic relationship between neuronal damage and HC loss. Multiple immunostaining methods were employed to differentiate the two types of afferent dendrites and two types of efferent axons. The results show that co-administration of gentamicin and furosemide resulted in a typical dynamic pattern of HC loss that spread from the basal turn to the outer hair cells to the apex and inner hair cells, depending on the dose and survival time after drug administration. Lesions of the innervation appeared to occur at two stages. At the early stage (2-4 days), the loss of labeling of the two types of afferent dendrites was more obvious than the loss of labeled efferent axons. At the late stage (2-4 weeks), the loss of labeled efferent axons was more rapid. In the high-dose gentamicin group, the loss of outer HCs was congruent with afferent dendrite loss at the early stage and efferent axon loss at the late stage. In the low-dose gentamicin group, the loss of labeling for cochlear innervation was more severe and widespread. Thus, we hypothesize that the gentamicin-induced damage to cochlear innervation occurs independently of hair cell loss.
Collapse
|
15
|
|
16
|
Liu H, Ding DL, Jiang HY, Wu XW, Salvi R, Sun H. Ototoxic destruction by co-administration of kanamycin and ethacrynic acid in rats. J Zhejiang Univ Sci B 2012; 12:853-61. [PMID: 21960349 DOI: 10.1631/jzus.b1100040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well known that ethacrynic acid (EA) can potentiate the ototoxicity of aminoglycoside antibiotics (AmAn) such as kanamycin (KM), if they were applied at the same time. Currently, to create the model of EA-KM-induced cochlear lesion in rats, adult rats received a single injection of EA (75 mg/kg, intravenous injection), or followed immediately by KM (500 mg/kg, intramuscular injection). The hearing function was assessed by auditory brainstem response (ABR) measurement in response to click and/or tone bursts at 4, 8, 12, 16, 20, 24, and 32 kHz. The static microcirculation status in the stria vascularis after a single EA injection was evaluated with eosin staining. The pathological changes in cochlear and vestibular hair cells were also quantified after co-administration of EA and KM. After a single EA injection, blood flow in vessels supplying the stria vascularis rapidly diminished. However, the blood supply to the cochlear lateral wall partially recovered 5 h after EA treatment. Threshold changes in ABR were basically parallel to the microcirculation changes in stria vascularis after single EA treatment. Importantly, disposable co-administration of EA and KM resulted in a permanent hearing loss and severe damage to the cochlear hair cells, but spared the vestibular hair cells. Since the cochlear lateral wall is the important part of the blood-cochlea barrier, EA-induced anoxic damage to the epithelium of stria vascularis may enhance the entry of KM to the cochlea. Thus, experimental animal model of selective cochlear damage with normal vestibular systems can be reliably created through co-administration of EA and KM.
Collapse
Affiliation(s)
- Hong Liu
- Center for Hearing and Deafness, University at Buffalo, State University of New York, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
17
|
Weiwei G, Fen–qian Y, Hui–zhan L, Shi–ming Y. Effects of combined administration of furosemide and kanamycin on rat auditory nerve. J Otol 2011. [DOI: 10.1016/s1672-2930(11)50004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
18
|
Sun H, Huang A, Cao S. Current status and prospects of gene therapy for the inner ear. Hum Gene Ther 2011; 22:1311-22. [PMID: 21338273 DOI: 10.1089/hum.2010.246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inner ear diseases are common and often result in hearing disability. Sensorineural hearing loss is the main cause of hearing disability. So far, no effective treatment is available although some patients may benefit from a hearing aid equipped with a hearing amplifier or from cochlear implantation. Inner ear gene therapy has become an emerging field of study for the treatment of hearing disability. Numerous new discoveries and tremendous advances have been made in inner ear gene therapy including gene vectors, routes of administration, and therapeutic genes and targets. Gene therapy may become a treatment option for inner ear diseases in the near future. In this review, we summarize the current state of inner ear gene therapy including gene vectors, delivery routes, and therapeutic genes and targets by examining and analyzing publications on inner ear gene therapy from the literature and patent documents, and identify promising patents, novel techniques, and vital research projects. We also discuss the progress and prospects of inner ear gene therapy, the advances and shortcomings, with possible solutions in this field of research.
Collapse
Affiliation(s)
- Hong Sun
- Department of Otolaryngology, Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | |
Collapse
|
19
|
Smith JL, Campbell-Ward M, Else RW, Pamela EJJ. Undifferentiated Carcinoma of the Salivary Gland in a Chinchilla (Chinchilla Lanigera). J Vet Diagn Invest 2010; 22:152-5. [DOI: 10.1177/104063871002200134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A 12-year-old chinchilla ( Chinchilla lanigera) developed a slow-growing, soft, fluctuating, nonpainful mass on the ventral neck with focally extensive alopecia over a period of approximately 8 months. On postmortem examination, an extensive, multilobulated, cystic, neoplastic mass extended subcutaneously over the ventral and lateral neck with metastatic spread to submandibular lymph nodes, spleen, liver, and lungs. Neoplastic cells were strongly positive for vimentin and pan-cytokeratin but were negative for alpha–smooth muscle actin, S100, and myosin; no intracytoplasmic myofibrils were detected on phosphotungstic acid hematoxylin staining. Histologic and immunohistochemical examination of the mass led to a diagnosis of undifferentiated carcinoma of the salivary gland and contributes to the paucity of knowledge concerning neoplasia in chinchillas.
Collapse
Affiliation(s)
- Johanna L. Smith
- Veterinary Pathology Unit, The University of Edinburgh, Roslin, Midlothian, UK
| | - Michelle Campbell-Ward
- Exotic Animal and Wildlife Service, Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, Midlothian, UK
| | - Roderick W. Else
- Veterinary Pathology Unit, The University of Edinburgh, Roslin, Midlothian, UK
| | - E. J. Johnston Pamela
- Division of Pathological Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, UK
| |
Collapse
|
20
|
Sun W, Salvi RJ. Brain derived neurotrophic factor and neurotrophic factor 3 modulate neurotransmitter receptor expressions on developing spiral ganglion neurons. Neuroscience 2009; 164:1854-66. [PMID: 19778585 DOI: 10.1016/j.neuroscience.2009.09.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 12/25/2022]
Abstract
Cochlear spiral ganglion neurons (SGN) provide the only pathway for transmitting sound evoked activity from the hair cells to the central auditory system. Neurotrophic factor 3 (NT-3) and brain derived neurotrophic factor (BDNF) released from hair cells and supporting cells exert a profound effect on SGN survival and neural firing patterns; however, it is unclear what the effects NT-3 and BDNF have on the type of neurotransmitter receptors expressed on SGN. To address this question, the whole-cell patch clamp recording technique was used to determine what effect NT-3 and BDNF had on the function and expression of glutamate, GABA and glycine receptors (GlyR) on SGN of cochlea from postnatal C57 mouse. Receptor currents induced by the agonist of each receptor were recorded from SGN cultured with or without BDNF or NT-3. NT-3 and BDNF exerted different effects. NT-3, and to a lesser extent BDNF, enhanced the expression of GABA receptors and had comparatively little effect on glutamate receptors. Absence of BDNF and NT-3 resulted in the emergence of glycine-induced currents; however, GlyR currents were absent from the short term cultured SGN. In contrast, NT-3 and BDNF suppressed GlyR expression on SGN. These results indicate that NT-3 and BDNF exert a profound effect on the types of neurotransmitter receptors expressed on postnatal SGN, results that may have important implications for neural development and plasticity.
Collapse
Affiliation(s)
- W Sun
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, 137 Cary Hall, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
21
|
Ding D, Jiang H, Salvi RJ. Mechanisms of rapid sensory hair-cell death following co-administration of gentamicin and ethacrynic acid. Hear Res 2009; 259:16-23. [PMID: 19715747 DOI: 10.1016/j.heares.2009.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Concurrent administration of a high dose of gentamicin (GM; 125mg/kg IM) and ethacrynic acid (EA; 40mg/kg IV) results in rapid destruction of virtually all cochlear hair cells; however, the cell death signaling pathways underlying this rapid form of hair-cell degeneration are unclear. To elucidate the mechanisms underlying GM/EA-mediated cell death, several key cell death markers were assessed in the chinchilla cochlea during the early stages of degeneration. In the middle and basal turns of the cochlea, massive hair-cell loss including destruction of the stereocilia and cuticular plate occurred 12h after GM/EA treatment. Condensation and fragmentation of outer hair-cell nuclei, morphological features of apoptosis, were first observed 5-6h post-treatment in the basal turn of the cochlea. Metabolic function, reflected by succinate dehydrogenase histochemistry and mitochondrial staining, decreased significantly in the basal turn 4h following GM/EA treatment; these early changes were accompanied by the release of cytochrome c from the mitochondria into the cytosol and intense expression of initiator caspase-9 and effector caspase-3. GM/EA failed to induce expression of extrinsic initiator caspase-8. These results suggest that the rapid loss of hair cells following GM/EA treatment involves cell death pathways mediated by mitochondrial dysfunction leading to the release of cytochrome c, activation of initiator caspase-9 and effector caspase-3.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, Dept. of Communicative Disorders and Sciences, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
22
|
Abstract
OBJECTIVE Our study examined the relationship between variant stereociliary bundles of cochlear outer hair cells (OHCs) and auditory function to analyze assessment criteria for rotated stereociliary bundles in the guinea pig cochlea. METHODS Auditory brainstem response and distortion product otoacoustic emission (DPOAE) were recorded on 100 guinea pigs. Variant hair cells were identified and counted by scanning electron and light microscopy. RESULTS The most common variation observed was rotation of stereociliary bundles in the first-row OHCs (OHC1), with most 13.3% variant OHC1 rotated 90 degrees and a few 2.5% rotated 180 degrees. Occasionally, the length and angle of the 2 arms of an OHC deviated from the norm. The auditory brainstem response threshold of affected animals increased only slightly, 20- to 30-dB sound pressure level. More importantly, amplitude of DPOAE increased significantly (40.5 dB sound pressure level). CONCLUSION Our study suggests that rotation of stereociliary bundles in the cochlear OHC was found to be prevalent in 28% of the animals. We established the assessment criteria for rotated stereociliary bundles that were more than 10% OHC1 rotated. This hair bundle seemed to be rotated by 90 degrees from the normal orientation and was accompanied with changes of auditory function. Increased amplitude of DPOAE is associated with the variation of rotated OHC that might result in hearing loss.
Collapse
|
23
|
Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 2007; 9:44-64. [PMID: 18057986 DOI: 10.1007/s10162-007-0105-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 10/25/2007] [Indexed: 01/12/2023] Open
Abstract
In comparison to other mammals, mice have proved extremely resistant to aminoglycoside-induced hair cell ablation in vivo. In this paper we examine the pattern and extent of cochlear lesions rapidly induced with a combination of a single dose of aminoglycoside (kanamycin) followed by a loop diuretic (bumetanide). With this protocol, the vestibular system was unaffected, but in the cochlea, there was extensive loss of outer hair cells (OHC) that commenced in the basal coil and progressed apically so that, by 48 h, OHC loss was almost complete. TUNEL-positive nuclei and activated caspase-3 labeling demonstrated that most OHC died via a classical apoptotic pathway. However, scattered debris within the OHC region suggested that many apoptotic cells ruptured prior to completion of apoptosis. Following lesion repair, supporting cells retained characteristics of differentiated cells but positional shift occurred. In comparison to OHC loss, inner hair cell (IHC) death was delayed and only observed in 50% of all cochleae examined even after extensive reorganization of the tissue. The coadmininstration of diuretic with FM1-43, used as a tracer for aminoglycoside uptake, indicated entry into IHC as readily as OHC, suggesting that the differential response to aminoglycoside was not due to differential uptake. Where IHC death was ongoing, there were indications of different modes of cell death: cells with morphological features of autophagy, necrosis, and apoptosis were apparent. In addition to damage to the organ of Corti, there was a significant and progressive decrease in strial thickness beginning as early as 7 days posttreatment. This was due predominantly to degeneration of marginal cells. The strial pathology resembled that reported after noise damage and with aging. This in vivo protocol provides a robust model in which to obtain extensive OHC loss in the mature cochleae of mice and is a means with which to examine different aspects of cochlear pathology in transgenic or mutant strains.
Collapse
|
24
|
Poncelet L, Deltenre P, Coppens A, Michaux C, Coussart E. Brain stem auditory potentials evoked by clicks in the presence of high-pass filtered noise in dogs. Res Vet Sci 2006; 80:167-74. [PMID: 16002109 DOI: 10.1016/j.rvsc.2005.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 03/09/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
This study evaluates the effects of a high-frequency hearing loss simulated by the high-pass-noise masking method, on the click-evoked brain stem-evoked potentials (BAEP) characteristics in dogs. BAEP were obtained in response to rarefaction and condensation click stimuli from 60 dB normal hearing level (NHL, corresponding to 89 dB sound pressure level) to wave V threshold, using steps of 5 dB in eleven 58 to 80-day-old Beagle puppies. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation potential (RCDP). The procedure was repeated while constant level, high-pass filtered (HPF) noise was superposed to the click. Cut-off frequencies of the successively used filters were 8, 4, 2 and 1 kHz. For each condition, wave V and RCDP thresholds, and slope of the wave V latency-intensity curve (LIC) were collected. The intensity range at which RCDP could not be recorded (pre-RCDP range) was calculated. Compared with the no noise condition, the pre-RCDP range significantly diminished and the wave V threshold significantly increased when the superposed HPF noise reached the 4 kHz area. Wave V LIC slope became significantly steeper with the 2 kHz HPF noise. In this non-invasive model of high-frequency hearing loss, impaired hearing of frequencies from 8 kHz and above escaped detection through click BAEP study in dogs. Frequencies above 13 kHz were however not specifically addressed in this study.
Collapse
Affiliation(s)
- L Poncelet
- Anatomy and Embryology, Faculty of Medicine, Free University of Brussels, 808 route de Lennik, B-1070 Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
25
|
Ding D, McFadden SL, Browne RW, Salvi RJ. Late dosing with ethacrynic acid can reduce gentamicin concentration in perilymph and protect cochlear hair cells. Hear Res 2004; 185:90-6. [PMID: 14599696 DOI: 10.1016/s0378-5955(03)00258-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A key factor in the well-known interaction between ethacrynic acid (EA) and aminoglycoside antibiotics (AABs) is disruption of the blood-labyrinth barrier (BLB), leading to rapid entry of EA and AABs into the cochlear fluids. The idea that the blood-labyrinthine fluid concentration gradient might be utilized in a protective manner was tested in the current experiment. We hypothesized that administering EA when gentamicin (GM) levels are higher in the cochlea than in the blood might actually reduce cochlear damage by permitting efflux of GM from the cochlear fluids into the bloodstream, down a concentration gradient and across a temporarily disrupted BLB. Guinea pigs received 1, 11, 14 or 20 injections of GM (125 mg/kg i.m.). Approximately half of the animals also received a single injection of EA (40 mg/kg i.v.) either concurrently or 12-18 h after the last GM injection. Concurrent injection of EA significantly increased GM concentration in serum and perilymph at all time points sampled (2.5, 5-8, and 12 h post injection). Compared to animals that received GM only, animals that received a delayed injection of EA had a significantly lower GM concentration in perilymph, lower thresholds of the compound action potential, and less outer hair cell loss. Collectively, the evidence suggests that EA can reduce GM ototoxicity if it is administered 12-18 h after GM, but the mechanism remains to be elucidated. The results may have implications for the clinical management of aminoglycoside ototoxicity in humans, as well as for understanding the mechanisms underlying AAB/EA interactions.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, 215 Parker Hall, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
26
|
McFadden SL, Ding D, Jiang H, Salvi RJ. Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla. Brain Res 2004; 997:40-51. [PMID: 14715148 DOI: 10.1016/j.brainres.2003.10.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ethacrynic acid (EA) is known to interact with aminoglycoside antibiotics such as gentamicin (GM). In the chinchilla, co-administration of GM and EA can produce hair cell lesions ranging from a small loss of outer hair cells (OHCs) in the base of the cochlea to complete destruction of all hair cells, depending on dosing parameters. Although hair cell loss has been characterized, little is known about the fate of efferent fibers or spiral ganglion neurons (SGNs) in this model. To study the time course of efferent fiber and SGN loss, chinchillas were injected with GM (125 mg/kg IM) followed immediately by EA (40 mg/kg IV). Estimates of efferent fiber loss and density changes were made after 3 days or 1, 2, 3, or 4 weeks of survival. Estimates of SGN loss and density changes were made after 15 days or 1, 2, 4, or 6 months of survival. Cochlear function was rapidly abolished and all cochlear hair cells were missing within 24 h after treatment. Inner hair cells (IHCs) in the middle turn of the cochlea died earlier than cells in the apex or base, and OHCs in Rows 1 and 2 died earlier than OHCs in Row 3. Degeneration of efferent nerve fibers began 3-7 days post-injection, versus 15-30 days for SGNs, and the loss of efferent fibers was essentially complete within 1 month, versus 2-4 months for SGNs. The rapid time course of efferent fiber and SGN loss in the chinchilla may make it a practical model for studying mechanisms of neural loss and survival in the mammalian inner ear.
Collapse
Affiliation(s)
- Sandra L McFadden
- Center for Hearing and Deafness, University at Buffalo, 215 Parker Hall, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|