1
|
Lehner E, Honeder C, Knolle W, Binder W, Scheffler J, Plontke SK, Liebau A, Mäder K. Towards the optimization of drug delivery to the cochlear apex: Influence of polymer and drug selection in biodegradable intracochlear implants. Int J Pharm 2023; 643:123268. [PMID: 37488058 DOI: 10.1016/j.ijpharm.2023.123268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
There is growing need for new drug delivery systems for intracochlear application of drugs to effectively treat inner ear disorders. In this study, we describe the development and characterization of biodegradable, triamcinolone-loaded implants based on poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) respectively, prepared by hot-melt extrusion. PEG 1500 was used as a plasticizer to improve flexibility and accelerate drug release. The sterilization process was performed by electron beam irradiation, resulting in minimal but acceptable polymer degradation for PEG-PLGA implants. The implants have been characterized by texture analysis, differential scanning calorimetry and X-ray powder diffraction. Compared to PLGA implants, PEG-PLGA implants offer similar flexibility but with improved mechanical stability, which will ease the handling and intracochlear application. A controlled release over three months was observed for dexamethasone and triamcinolone extrudates (drug load of 10%) with similar release profiles for both drugs. PEG-PLGA implants showed an initial slow release rate over several days regardless of the amount of PEG added. Mathematical simulations of the pharmacokinetics of the inner ear based on the in vitro release kinetics indicate a complete distribution of triamcinolone in the whole human scala tympani, which underlines the high potential of the developed formulation.
Collapse
Affiliation(s)
- E Lehner
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| | - C Honeder
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - W Knolle
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - W Binder
- Institute of Chemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - J Scheffler
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - S K Plontke
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| | - A Liebau
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - K Mäder
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| |
Collapse
|
2
|
Gausterer JC, Saidov N, Ahmadi N, Zhu C, Wirth M, Reznicek G, Arnoldner C, Gabor F, Honeder C. Intratympanic application of poloxamer 407 hydrogels results in sustained N-acetylcysteine delivery to the inner ear. Eur J Pharm Biopharm 2020; 150:143-155. [DOI: 10.1016/j.ejpb.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/20/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
|
3
|
Videhult Pierre P, Fransson A, Kisiel MA, Damberg P, Nikkhou Aski S, Andersson M, Hällgren L, Laurell G. Middle Ear Administration of a Particulate Chitosan Gel in an in vivo Model of Cisplatin Ototoxicity. Front Cell Neurosci 2019; 13:268. [PMID: 31293387 PMCID: PMC6603134 DOI: 10.3389/fncel.2019.00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
Background Middle ear (intratympanic, IT) administration is a promising therapeutic method as it offers the possibility of achieving high inner ear drug concentrations with low systemic levels, thus minimizing the risk of systemic side effects and drug-drug interactions. Premature elimination through the Eustachian tube may be reduced by stabilizing drug solutions with a hydrogel, but this raises the secondary issue of conductive hearing loss. Aim This study aimed to investigate the properties of a chitosan-based particulate hydrogel formulation when used as a drug carrier for IT administration in an in vivo model of ototoxicity. Materials and Methods Two particulate chitosan-based IT delivery systems, Thio-25 and Thio-40, were investigated in albino guinea pigs (n = 94). Both contained the hearing protecting drug candidate sodium thiosulfate with different concentrations of chitosan gel particles (25% vs. 40%). The safety of the two systems was explored in vivo. The most promising system was then tested in guinea pigs subjected to a single intravenous injection with the anticancer drug cisplatin (8 mg/kg b.w.), which has ototoxic side effects. Hearing status was evaluated with acoustically evoked frequency-specific auditory brainstem response (ABR) and hair cell counting. Finally, in vivo magnetic resonance imaging was used to study the distribution and elimination of the chitosan-based system from the middle ear cavity in comparison to a hyaluronan-based system. Results Both chitosan-based IT delivery systems caused ABR threshold elevations (p < 0.05) that remained after 10 days (p < 0.05) without evidence of hair cell loss, although the elevation induced by Thio-25 was significantly lower than for Thio-40 (p < 0.05). Thio-25 significantly reduced cisplatin-induced ABR threshold elevations (p < 0.05) and outer hair cell loss (p < 0.05). IT injection of the chitosan- and hyaluronan-based systems filled up most of the middle ear space. There were no significant differences between the systems in terms of distribution and elimination. Conclusion Particulate chitosan is a promising drug carrier for IT administration. Future studies should assess whether the physical properties of this technique allow for a smaller injection volume that would reduce conductive hearing loss.
Collapse
Affiliation(s)
- Pernilla Videhult Pierre
- Division of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anette Fransson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Peter Damberg
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, Stockholm, Sweden
| | - Sahar Nikkhou Aski
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Andersson
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, Södertälje, Sweden
| | - Lotta Hällgren
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, Södertälje, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res 2018; 362:25-37. [PMID: 29277248 PMCID: PMC5911243 DOI: 10.1016/j.heares.2017.12.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
The environment of the inner ear is highly regulated in a manner that some solutes are permitted to enter while others are excluded or transported out. Drug therapies targeting the sensory and supporting cells of the auditory and vestibular systems require the agent to gain entry to the fluid spaces of the inner ear, perilymph or endolymph, which surround the sensory organs. Access to the inner ear fluids from the vasculature is limited by the blood-labyrinth barriers, which include the blood-perilymph and blood-strial barriers. Intratympanic applications provide an alternative approach in which drugs are applied locally. Drug from the applied solution enters perilymph through the round window membrane, through the stapes, and under some circumstances, through thin bone in the otic capsule. The amount of drug applied to the middle ear is always substantially more than the amount entering perilymph. As a result, significant amounts of the applied drug can pass to the digestive system, to the vasculature, and to the brain. Drugs in perilymph pass to the vasculature and to cerebrospinal fluid via the cochlear aqueduct. Conversely, drugs applied to cerebrospinal fluid, including those given intrathecally, can enter perilymph through the cochlear aqueduct. Other possible routes in or out of the ear include passage by neuronal pathways, passage via endolymph and the endolymphatic sac, and possibly via lymphatic pathways. A better understanding of the pathways for drug movements in and out of the ear will enable better intervention strategies.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA.
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA
| |
Collapse
|
5
|
Differential localizations of the myo-inositol transporters HMIT and SMIT1 in the cochlear stria vascularis. Neurosci Lett 2018; 674:88-93. [PMID: 29551423 DOI: 10.1016/j.neulet.2018.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/28/2018] [Accepted: 03/13/2018] [Indexed: 11/22/2022]
Abstract
The cochlear stria vascularis produces endolymph and thereby plays an active role in inner ear homeostasis. We recently reported that the H+/myo-inositol cotransporter (HMIT) gene is expressed in the stria vascularis. Here, we examined the protein localization of HMIT and Na+/myo-inositol cotransporter 1 (SMIT1) in the stria vascularis by immunohistochemistry. HMIT and SMIT1 were detected in the lateral wall of the cochlear duct. HMIT was widely detected throughout the stria vascularis, while SMIT1 was enriched in the strial basal cells. To examine the localization of HMIT in the stria vascularis in more detail, dissociated strial cells were immunostained, which resulted in the detection of HMIT immunoreactivity in marginal cells. These results indicate that HMIT is expressed in marginal cells and basal cells of the stria vascularis, while SMIT1 expression is enriched in basal cells. We speculate that HMIT and SMIT1 may play important roles in the homeostasis of cochlear fluids, for example by participating in pH regulation and osmoregulation.
Collapse
|
6
|
Capelo IOJ, Batista AMA, Brito YNF, Diniz KB, Brito GADC, Freitas MRD. Study of the protective effect of dexamethasone on cisplatin-induced ototoxicity in rats. Acta Cir Bras 2018; 32:873-880. [PMID: 29160374 DOI: 10.1590/s0102-865020170100000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To evaluate the ability of dexamethasone to protect against cisplatin (CDDP)-induced ototoxicity. METHODS Male Wistar rats were divided into the following three groups: 1) Control (C): 6 animals received intraperitoneal (IP) saline solution, 8 ml/kg/day for four days; 2) C + CDDP: 11 animals received 8 ml/kg/day of IP saline and, 90 min after saline administration, 8 mg/kg/day of IP CDDP for four days; and 3) DEXA15 + CDDP: 11 animals received IP dexamethasone 15 mg/kg/day and, 90 min after dexamethasone administration, received 8 mg/kg/day of IP CDDP for four days. RESULTS It was found that dexamethasone did not protect against weight loss in CDDP-exposed animals. The mortality rate was comparable with that previously reported in the literature. The auditory threshold of animals in the DEXA15 + CDDP group was not significantly altered after exposure to CDDP. The stria vascularis of animals in the DEXA15 + CDDP group was partially preserved after CDDP exposure. CONCLUSIONS Dexamethasone at the dose of 15 mg/kg/day partially protected against CDDP-induced ototoxicity, based on functional evaluation by brainstem evoked response audiontry (BERA) and morphological evaluation by optical microscopy. However, dexamethasone did not protect against systemic toxicity.
Collapse
Affiliation(s)
- Isabelle Oliveira Jatai Capelo
- MSc, Department of Surgery, Universidade Federal do Ceará (UFC), Fortaleza-CE, Brazil. Acquisition and interpretation of data, technical procedures, manuscript preparation
| | | | | | - Krissia Braga Diniz
- Graduate student, UFC, Fortaleza-CE, Brazil. Acquisition of data, technical procedures
| | - Gerly Anne de Castro Brito
- PhD, Associate Professor, Morphology Department, School of Medicine, UFC, Fortaleza-CE, Brazil. Analysis and interpretation of data, technical procedures, critical revision
| | - Marcos Rabelo de Freitas
- PhD, Associate Professor, School of Medicine, UFC, Fortaleza-CE, Brazil. Conception, design, intellectual and scientific content of the study; analysis and interpretation of data; critical revision
| |
Collapse
|
7
|
Stawicki TM, Owens KN, Linbo T, Reinhart KE, Rubel EW, Raible DW. The zebrafish merovingian mutant reveals a role for pH regulation in hair cell toxicity and function. Dis Model Mech 2015; 7:847-56. [PMID: 24973752 PMCID: PMC4073274 DOI: 10.1242/dmm.016576] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Control of the extracellular environment of inner ear hair cells by ionic transporters is crucial for hair cell function. In addition to inner ear hair cells, aquatic vertebrates have hair cells on the surface of their body in the lateral line system. The ionic environment of these cells also appears to be regulated, although the mechanisms of this regulation are less understood than those of the mammalian inner ear. We identified the merovingian mutant through genetic screening in zebrafish for genes involved in drug-induced hair cell death. Mutants show complete resistance to neomycin-induced hair cell death and partial resistance to cisplatin-induced hair cell death. This resistance is probably due to impaired drug uptake as a result of reduced mechanotransduction ability, suggesting that the mutants have defects in hair cell function independent of drug treatment. Through genetic mapping we found that merovingian mutants contain a mutation in the transcription factor gcm2. This gene is important for the production of ionocytes, which are cells crucial for whole body pH regulation in fish. We found that merovingian mutants showed an acidified extracellular environment in the vicinity of both inner ear and lateral line hair cells. We believe that this acidified extracellular environment is responsible for the defects seen in hair cells of merovingian mutants, and that these mutants would serve as a valuable model for further study of the role of pH in hair cell function.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - Kelly N Owens
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA. Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Katherine E Reinhart
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA. Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Hearing Loss After Cisplatin: Oxidative Stress Pathways and Potential for Protection. FREE RADICALS IN ENT PATHOLOGY 2015. [DOI: 10.1007/978-3-319-13473-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Transtympanic Injections of N-acetylcysteine for the Prevention of Cisplatin-induced Ototoxicity. Am J Clin Oncol 2013; 36:1-6. [DOI: 10.1097/coc.0b013e31822e006d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Griffith AJ, Wangemann P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res 2011; 281:11-7. [PMID: 21669267 PMCID: PMC3183377 DOI: 10.1016/j.heares.2011.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 02/08/2023]
Abstract
Enlargement of the vestibular aqueduct (EVA) is one of the most common inner ear malformations associated with sensorineural hearing loss in children. The delayed onset and progressive nature of this phenotype offer a window of opportunity to prevent or retard progression of hearing loss. EVA is not the direct cause of hearing loss in these patients, but rather is a radiologic marker for some underlying pathogenetic defect. Mutations of the SLC26A4 gene are a common cause of EVA. Studies of an Slc26a4 knockout mouse demonstrate that acidification and enlargement of the scala media are early events in the pathogenesis of deafness. The enlargement is driven by fluid secretion in the vestibular labyrinth and a failure of fluid absorption in the embryonic endolymphatic sac. Elucidating the mechanism of hearing loss may offer clues to potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, 5 Research Court, Rockville, Maryland 20850-3320, USA.
| | | |
Collapse
|
11
|
de Freitas MR, da Silva VC, de Castro Brito GA, de Carvalho JV, Gomes RM, de Albuquerque Ribeiro R. Distortion-product otoacoustic emissions and auditory brainstem responses sensitivity assessment in cisplatin-induced ototoxicity in rats. Braz J Otorhinolaryngol 2009. [PMID: 19784413 PMCID: PMC9446066 DOI: 10.1016/s1808-8694(15)30483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cisplatin (cis-diamminedicloroplatinum) is an antineoplastic drug used in the treatment of a variety of cancers, especially head-and-neck cancer. Its ototoxicity, however, has been noted as a common side-effect which limits its use and causes significant morbidity. Aim to assess distortion-product otoacoustic emissions (DPOAE) and brainstem evoked response audiometry (BERA) sensitivity to detect secondary ototoxicity caused by different doses and means of administration of cisplatin in rats. Study Design Experimental. Materials and Methods Male Wistar rats were intraperitoneally (i.p.) injected with 24 mg/kg cisplatin, divided into three equal doses (8mg/kg) or a single i.p. injection of 16 mg/kg. The animals were evaluated by distortion product otoacoustic emission (DPOAE) or brainstem evoked response audiometry (BERA) on the 3rd and 4th days after the cisplatin injection. Results Treatment with cisplatin 24 mg/kg resulted in significant DPOAE decrease and it raised the BERA electrophysiological threshold. The 16mg/kg dose could not significantly reduce the DPOAE amplitude, but it raised the animals' hearing thresholds – detected by the BERA. Conclusion In rats, BERA was more sensitivity than DPOAE at detecting cisplatin-induced ototoxicity in rats considering different doses and means of administration.
Collapse
|
12
|
Light microscopy study of cisplatin-induced ototoxicity in rats. The Journal of Laryngology & Otology 2009; 123:590-7. [PMID: 19144244 DOI: 10.1017/s0022215109004319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although most studies on animal ototoxicity employ scanning electron microscopy, all cochlear structures may be identified with light microscopy. This paper describes a simple method of histological assessment of cisplatin-induced ototoxicity in rats, and relates morphological changes to functional changes in hearing detected by distortion product evoked otoacoustic emissions. MATERIALS AND METHODS Male Wistar rats were injected with 8 mg/kg/day cisplatin, or with an equivalent volume of saline solution, for three consecutive days. They underwent distortion product evoked otoacoustic emission testing at baseline and at 24 or 48 hours after the last administration. At the end of the experiment, the animals were sacrificed and their cochleae were retrieved and prepared for haematoxylin and eosin staining. RESULTS A four-point scoring system was used to grade injury to the external ciliated cells, as indicated by the number of cells absent from the basal turn of the cochlear duct. A four-point scoring system was also used to grade stria vascularis injury, as indicated by the degree of shrinkage of the intermediate cells. Scores were significantly higher in groups treated with cisplatin compared with controls. Morphological changes were confirmed by decreased distortion product evoked otoacoustic emission amplitudes in animals treated with cisplatin. CONCLUSION This method is simple to perform with routine histology equipment and is appropriate for the study of acute, cisplatin-induced ototoxicity in rats.
Collapse
|
13
|
Stria vascularis and vestibular dark cells: characterisation of main structures responsible for inner-ear homeostasis, and their pathophysiological relations. The Journal of Laryngology & Otology 2008; 123:151-62. [DOI: 10.1017/s0022215108002624] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe regulation of inner-ear fluid homeostasis, with its parameters volume, concentration, osmolarity and pressure, is the basis for adequate response to stimulation. Many structures are involved in the complex process of inner-ear homeostasis. The stria vascularis and vestibular dark cells are the two main structures responsible for endolymph secretion, and possess many similarities. The characteristics of these structures are the basis for regulation of inner-ear homeostasis, while impaired function is related to various diseases. Their distinct morphology and function are described, and related to current knowledge of associated inner-ear diseases. Further research on the distinct function and regulation of these structures is necessary in order to develop future clinical interventions.
Collapse
|
14
|
Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 2007; 293:C1187-208. [PMID: 17670895 DOI: 10.1152/ajpcell.00024.2007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of ion channels and transporters are expressed in both the inner ear and kidney. In the inner ear, K+cycling and endolymphatic K+, Na+, Ca2+, and pH homeostasis are critical for normal organ function. Ion channels and transporters involved in K+cycling include K+channels, Na+-2Cl−-K+cotransporter, Na+/K+-ATPase, Cl−channels, connexins, and K+/Cl−cotransporters. Furthermore, endolymphatic Na+and Ca2+homeostasis depends on Ca2+-ATPase, Ca2+channels, Na+channels, and a purinergic receptor channel. Endolymphatic pH homeostasis involves H+-ATPase and Cl−/HCO3−exchangers including pendrin. Defective connexins (GJB2 and GJB6), pendrin (SLC26A4), K+channels (KCNJ10, KCNQ1, KCNE1, and KCNMA1), Na+-2Cl−-K+cotransporter (SLC12A2), K+/Cl−cotransporters (KCC3 and KCC4), Cl−channels (BSND and CLCNKA + CLCNKB), and H+-ATPase (ATP6V1B1 and ATPV0A4) cause hearing loss. All these channels and transporters are also expressed in the kidney and support renal tubular transport or signaling. The hearing loss may thus be paralleled by various renal phenotypes including a subtle decrease of proximal Na+-coupled transport (KCNE1/KCNQ1), impaired K+secretion (KCNMA1), limited HCO3−elimination (SLC26A4), NaCl wasting (BSND and CLCNKB), renal tubular acidosis (ATP6V1B1, ATPV0A4, and KCC4), or impaired urinary concentration (CLCNKA). Thus, defects of channels and transporters expressed in the kidney and inner ear result in simultaneous dysfunctions of these seemingly unrelated organs.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tübingen, Gmelinstrasse 5, Tübingen, Germany.
| | | | | | | |
Collapse
|
15
|
Videhult P, Laurell G, Wallin I, Ehrsson H. Kinetics of Cisplatin and its monohydrated complex with sulfur-containing compounds designed for local otoprotective administration. Exp Biol Med (Maywood) 2006; 231:1638-45. [PMID: 17060685 DOI: 10.1177/153537020623101009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The anticancer drug cisplatin can cause permanent inner ear damage. We have determined the second-order degradation rate constant, k(Nu), of cisplatin and its more toxic monohydrated complex (MHC) in the presence of each of the sulfur-containing nucleophiles N-acetyl-l-cysteine, l-cysteine methyl ester, 1,3-dimethyl-2-thiourea, d-methionine, and thiosulfate, compounds that are under evaluation for local administration to prevent cisplatin-induced ototoxicity. MHC was isolated from a hydrolysis solution of cisplatin using liquid chromatography (LC). The degradations were evaluated by measuring the disappearance of MHC and cisplatin at 37 degrees C and pH 7.4 in the presence of each of the nucleophiles using LC and photometric detection. The k(Nu) of MHC and of cisplatin was 0.044 M(-1)sec(-1) and 0.012 M(-1)sec(-1) with N-acetyl-l-cysteine, 0.24 M(-1)sec(-1) and 0.067 M(-1)sec(-1) with l-cysteine methyl ester, 0.16 M(-1)sec(-1) and 0.074 M(-1)sec(-1) with 1,3-dimethyl-2-thiourea, 0.070 M(-1)sec(-1) and 0.069 M(-1)sec(-1) with d-methionine, and 3.9 M(-1)sec(-1) and 0.091 M(-1)sec(-1) with thiosulfate, respectively. Our results suggest that thiosulfate, as being the strongest nucleophile, is a promising candidate for local application in order to reduce the inner ear content of MHC and cisplatin. However, otoprotection is a multifactorial event, and it remains to be established how important nucleophilicity is for the effectiveness of the protecting agent.
Collapse
Affiliation(s)
- Pernilla Videhult
- Karolinska Pharmacy, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
16
|
Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 2006; 576:11-21. [PMID: 16857713 PMCID: PMC1995626 DOI: 10.1113/jphysiol.2006.112888] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/14/2006] [Indexed: 12/13/2022] Open
Abstract
The exquisite sensitivity of the cochlea, which mediates the transduction of sound waves into nerve impulses, depends on the endocochlear potential and requires a highly specialized environment that enables and sustains sensory function. Disturbance of cochlear homeostasis is the cause of many forms of hearing loss including the most frequently occurring syndromic and non-syndromic forms of hereditary hearing loss, Pendred syndrome and Cx26-related deafness. The occurrence of these and other monogenetic disorders illustrates that cochlear fluid homeostasis and the generation of the endocochlear potential are poorly secured by functional redundancy. This review summarizes the most prominent aspects of cochlear fluid homeostasis. It covers cochlear fluid composition, the generation of the endocochlear potential, K(+) secretion and cycling and its regulation, the role of gap junctions, mechanisms of acid-base homeostasis, and Ca(2+) transport.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy & Physiology Department, 205 Coles Hall, Kansas State University, Manhattan, 66506, USA.
| |
Collapse
|