1
|
Papesh MA, Hurley LM. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors. Hear Res 2015; 332:121-136. [PMID: 26688176 DOI: 10.1016/j.heares.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.
Collapse
Affiliation(s)
- Melissa A Papesh
- Indiana University, Department of Speech and Hearing Sciences, 200 South Jordan Avenue, Bloomington, IN 47405, USA.
| | - Laura M Hurley
- Indiana University, Department of Biology, Center for the Integrative Study of Animal Behavior, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Abstract
The dorsal cochlear nucleus (DCN) is one of the first stations within the central auditory pathway where the basic computations underlying sound localization are initiated and heightened activity in the DCN may underlie central tinnitus. The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT), is associated with many distinct behavioral or cognitive states, and serotonergic fibers are concentrated in the DCN. However, it remains unclear what is the function of this dense input. Using a combination of in vitro electrophysiology and optogenetics in mouse brain slices, we found that 5-HT directly enhances the excitability of fusiform principal cells via activation of two distinct 5-HT receptor subfamilies, 5-HT2A/2CR (5-HT2A/2C receptor) and 5-HT7R (5-HT7 receptor). This excitatory effect results from an augmentation of hyperpolarization-activated cyclic nucleotide-gated channels (Ih or HCN channels). The serotonergic regulation of excitability is G-protein-dependent and involves cAMP and Src kinase signaling pathways. Moreover, optogenetic activation of serotonergic axon terminals increased excitability of fusiform cells. Our findings reveal that 5-HT exerts a potent influence on fusiform cells by altering their intrinsic properties, which may enhance the sensitivity of the DCN to sensory input.
Collapse
|
3
|
Hurley LM, Sullivan MR. From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits 2012; 6:58. [PMID: 22973195 PMCID: PMC3434355 DOI: 10.3389/fncir.2012.00058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system. Serotonergic inputs to the IC originate from centralized raphe nuclei, release serotonin in the IC, and activate serotonin receptors expressed by auditory neurons. Different types of serotonin receptors act as parallel pathways regulating specific features of circuitry within the IC. This results from variation in subcellular localizations and effector pathways of different receptors, which consequently influence auditory responses in distinct ways. Serotonin receptors may regulate GABAergic inhibition, influence response gain, alter spike timing, or have effects that are dependent on the level of activity. Serotonin receptor types additionally interact in nonadditive ways to produce distinct combinatorial effects. This array of effects of serotonin is likely to depend on behavioral context, since the levels of serotonin in the IC transiently increase during behavioral events including stressful situations and social interaction. These studies support a broad model of serotonin receptors as a link between behavioral context and reconfiguration of circuitry in the IC, and the resulting possibility that plasticity at the level of specific receptor types could alter the relationship between context and circuit function.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
4
|
Administration of serotonin inhibitor p-Chlorophenylalanine induces pessimistic-like judgement bias in sheep. Psychoneuroendocrinology 2011; 36:279-88. [PMID: 20833479 DOI: 10.1016/j.psyneuen.2010.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 11/20/2022]
Abstract
Judgement bias has potential as a measure of affective state in animals. The serotonergic system may be one mechanism involved with the formation of negative judgement biases. It was hypothesised that depletion of brain serotonin would induce negative judgement biases in sheep. A dose response trial established that 40 mg/kg of p-Chlorophenylalanine (pCPA) administered to sheep for 3 days did not affect feeding motivation or locomotion required for testing judgement biases. Thirty Merino ewes (10 months old) were trained to an operant task for 3 weeks. Sheep learnt to approach a bucket when it was placed in one corner of the testing facility to receive a feed reward (go response), and not approach it when in the alternate corner (no-go response) to avoid a negative reinforcer (exposure to a dog). Following training, 15 sheep were treated with pCPA (40 mg/kg daily) for an extended duration (5 days). Treated and control sheep were tested for judgement bias following 3 and 5 days of treatment, and again 5 days after cessation of treatment. Testing involved the bucket being presented in ambiguous locations between the two learnt locations, and the response of the sheep (go/no-go) measured their judgement of the bucket locations. Following 5 days of treatment, pCPA-treated sheep approached the most positive ambiguous location significantly less than control sheep, suggesting a pessimistic-like bias (treatment × bucket location interaction F(1,124.6)=49.97, p=0.011). A trend towards a significant interaction was still evident 5 days after the cessation of pCPA treatment (p=0.068), however no significant interaction was seen on day 3 of testing (p=0.867). These results support the suggestion that judgement bias is a cognitive measure of affective state, and that the serotonergic pathway may be involved.
Collapse
|
5
|
Gopal KV, Bishop CE, Carney L. Auditory measures in clinically depressed individuals. II. Auditory evoked potentials and behavioral speech tests. Int J Audiol 2009; 43:499-505. [PMID: 15726840 DOI: 10.1080/14992020400050064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This is the second paper in a series of two papers comparing auditory measures in depressed and non-depressed individuals. In this paper, we describe the auditory brainstem responses (ABRs), auditory late responses (ALRs) and behavioral speech measures obtained from the same set of 36 individuals as in our previous paper. No changes were made to the inclusion criteria or subject classification. The results indicated a significantly larger amplitude growth with increase in intensity for ABR peak V and ALR peak N1P2 in the unmedicated group compared to the normal group. The unmedicated group performed less favorably on most behavioral speech tests administered compared to the control group, but the difference was significant only in the left ear for the Low Predictability Sentence List of the R-SPIN (Revised-Speech Perception in Noise) test. The mean test scores of the medicated group were closer to the scores of the control group.
Collapse
Affiliation(s)
- Kamakshi V Gopal
- Department of Speech and Hearing Sciences, University of North Texas, Denton, Texas 76203, USA.
| | | | | |
Collapse
|
6
|
Brainstem auditory-evoked potential habituation and intensity-dependence related to serotonin metabolism in migraine: a longitudinal study. Clin Neurophysiol 2008; 119:1190-200. [PMID: 18316245 DOI: 10.1016/j.clinph.2008.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 11/20/2007] [Accepted: 01/19/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Reduced habituation and increased intensity-dependence of cortical auditory-evoked potentials have been reported in migraine, but it is not known if brainstem mechanisms are chiefly or partly responsible for this hypersensitivity, if brainstem excitability or habituation changes across the migraine cycle, or how excitability relates to symptoms and serotonin metabolism. METHODS Brainstem auditory-evoked potentials (BAEPs) to 40, 55, and 70dB binaural rarefaction clicks were recorded in four blocks of 750 stimuli in a blinded longitudinal study in 41 migraine patients. Serotonin was measured in a blood sample from the cubital vein. The test day was classified as baseline, attack, pre-attack or post-attack. RESULTS Pre-attack BAEP changes were not found. Wave I, V and interpeak III-V latency increased after the attack. III-V latency correlated with headache history duration and usual headache attack duration. Habituation in wave IV-V dispersion to 40dB was found in controls but not in migraine (p=0.04). Serotonin correlated with BAEP amplitude in controls. Low serotonin correlated with more autonomic symptoms. BAEP intensity-dependence was normal in migraine. CONCLUSIONS BAEP latencies, but not amplitude, increase temporarily after a migraine attack. Abnormal habituation of brainstem wave IV-V dispersion in migraine may suggest increased excitation in colliculus inferior at low sound intensities, but no relation to the migraine cycle was found for wave IV-V amplitude, dispersion or habituation. The correlation between BAEP amplitude and serotonin was deranged in migraine patients, but reappeared temporarily within 72h after an attack. SIGNIFICANCE No evidence for pre-attack brainstem auditory sensitization was found in migraine. Intensity-dependence of AEP in migraine is probably not a passive reflection of brainstem dysfunction. BAEP changes seem to reflect a slight impact of migraine on serotonergic brainstem pathways.
Collapse
|
7
|
Abstract
Previous studies indicate expression of various serotonin receptor subtypes, including the 5-HT(1A) receptor subtype, in rodent cochlear nucleus. Our long-term goal is to identify the types of cochlear nucleus neurons, which are well described in cat, that express 5-HT receptors. In the current study, the reverse transcriptase/polymerase chain reaction and the in situ hybridization method were used to detect the mRNA encoding a portion of the 5-HT(1A) receptor subtype in the cochlear nucleus of the cat.
Collapse
Affiliation(s)
- Ann M Thompson
- Department of Otorhinolaryngology, The University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City 73190, USA.
| | | |
Collapse
|
8
|
Hurley LM, Thompson AM. Serotonergic innervation of the auditory brainstem of the Mexican free-tailed bat,Tadarida brasiliensis. J Comp Neurol 2001; 435:78-88. [PMID: 11370012 DOI: 10.1002/cne.1194] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anatomical and electrophysiological evidence suggests that serotonin alters the processing of sound in the auditory brainstem of many mammalian species. The Mexican free-tailed bat is a hearing specialist, like other microchiropteran bats. At the same time, many aspects of its auditory brainstem are similar to those in other mammals. This dichotomy raises an interesting question regarding the serotonergic innervation of the bat auditory brainstem: Is the serotonergic input to the auditory brainstem similar in bats and other mammals, or are there specializations in the serotonergic innervation of bats that may be related to their exceptional hearing capabilities? To address this question, we immunocytochemically labeled serotonergic fibers in the brainstem of the Mexican free-tailed bat, Tadarida brasiliensis. We found many similarities in the pattern of serotonergic innervation of the auditory brainstem in Tadarida compared with other mammals, but we also found two striking differences. Similarities to staining patterns in other mammals included a higher density of serotonergic fibers in the dorsal cochlear nucleus and in granule cell regions than in the ventral cochlear nucleus, a high density of fibers in some periolivary nuclei of the superior olive, and a higher density of fibers in peripheral regions of the inferior colliculus compared with its core. The two novel features of serotonergic innervation in Tadarida were a high density of fibers in the fusiform layer of the dorsal cochlear nucleus relative to surrounding layers and a relatively high density of serotonergic fibers in the low-frequency regions of the lateral and medial superior olive.
Collapse
Affiliation(s)
- L M Hurley
- Section of Neurobiology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
9
|
Sand T, Vingen JV. Visual, long-latency auditory and brainstem auditory evoked potentials in migraine: relation to pattern size, stimulus intensity, sound and light discomfort thresholds and pre-attack state. Cephalalgia 2000; 20:804-20. [PMID: 11167910 DOI: 10.1046/j.1468-2982.2000.00098.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We aimed to estimate primary sensory evoked potential (EP) amplitude, amplitude-intensity functions and habituation in migraine patients compared with healthy control subjects and to investigate the possible relation to check size, sound and light discomfort thresholds, and the time to the next attack. Amplitudes of cortical visual evoked potentials (VEP, check size 8' and 33'), cortical long latency auditory evoked potential (AEP NIP1; 40, 55 and 70 dB SL tones) and brainstem auditory evoked potential (BAEP wave IV-V; 40, 55 and 65 dB SL clicks) were recorded and analysed in a blind and balanced design. The difference between the response to the first and the second half of the stimulus sequence was used as a measure of habituation. Twenty-one migraine patients (16 women and five men, mean age 39.3 years, six with aura, 15 without aura) and 22 sex- and age-matched healthy control subjects were studied (18 women and four men, mean age 39.5 years). Low sound discomfort threshold correlated significantly with low levels of BAEP wave IV-V amplitude habituation (r = -0.30, P = 0.05). VEP an AEP amplitudes, habituation, and amplitude-intensity function (ASF) slopes did not differ between groups when ANOVA main factors were considered. Control group VEP habituation was found for small check stimuli (P = 0.04), while potentiation was observed for medium sized checks (P = 0.02). The eight migraine patients who experienced headache within 24 h after the test tended to have increased BAEP wave IV-V ASF slopes (P = 0.08). This subgroup did also have a significant VEP habituation to small checks (P = 0.04). No correlation was found between different modalities. These results suggest that: (i) VEP habituation/potentiation state and brainstem activatio state may depend on the attack-interval cycle in migraine; (ii) VEP habituation/ potentiation may depend on spatial stimulus frequency; (iii) phonophobia (and possibly photophobia) may depend more on subcortical (brainstem) function than on cortical mechanisms; (iv) low cortical preactivation in migraine could not be confirmed; (v) EP habituation and ASF analysis may reflect sensory modality-specific, not generalized, central nervous system states in migraine and healthy control subjects.
Collapse
Affiliation(s)
- T Sand
- Department of Clinical Neurosciences, Trondheim University Hospital, Norwegian University of Science and Technology.
| | | |
Collapse
|
10
|
Serotonin differentially modulates responses to tones and frequency-modulated sweeps in the inferior colliculus. J Neurosci 1999. [PMID: 10479707 DOI: 10.1523/jneurosci.19-18-08071.1999] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although almost all auditory brainstem nuclei receive serotonergic innervation, little is known about its effects on auditory neurons. We address this question by evaluating the effects of serotonin on sound-evoked activity of neurons in the inferior colliculus (IC) of Mexican free-tailed bats. Two types of auditory stimuli were used: tone bursts at the neuron's best frequency and frequency-modulated (FM) sweeps with a variety of spectral and temporal structures. There were two main findings. First, serotonin changed tone-evoked responses in 66% of the IC neurons sampled. Second, the influence of serotonin often depended on the type of signal presented. Although serotonin depressed tone-evoked responses in most neurons, its effects on responses to FM sweeps were evenly mixed between depression and facilitation. Thus in most cells serotonin had a different effect on tone-evoked responses than it did on FM-evoked responses. In some neurons serotonin depressed responses evoked by tone bursts but left the responses to FM sweeps unchanged, whereas in others serotonin had little or no effect on responses to tone bursts but substantially facilitated responses to FM sweeps. In addition, serotonin could differentially affect responses to various FM sweeps that differed in temporal or spectral structure. Previous studies have revealed that the efficacy of the serotonergic innervation is partially modulated by sensory stimuli and by behavioral states. Thus our results suggest that the population activity evoked by a particular sound is not simply a consequence of the hard wiring that connects the IC to lower and higher regions but rather is highly dynamic because of the functional reconfigurations induced by serotonin and almost certainly other neuromodulators as well.
Collapse
|
11
|
Oh CK, Drescher MJ, Hatfield JS, Drescher DG. Selective expression of serotonin receptor transcripts in the mammalian cochlea and its subdivisions. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:135-40. [PMID: 10381551 DOI: 10.1016/s0169-328x(99)00110-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Expression of serotonin receptor (5-HTR) mRNA has been determined in the mammalian cochlea and its subdivisions by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Specific primers targeting individual 5-HTRs 1-7 directed amplification of 5-HTR subtypes 1A, 1B, 2B, 2C, 3, 5B, and 6 from mouse cochlea cDNA. No evidence of expression was obtained for 5-HTRs 1D, 2A, 4 (L and S), 5A, and 7. The distribution of receptor mRNA within the cochlea was determined with application of RT-PCR to morphologically defined microdissected subfractions of the rat cochlea. Messages for 5-HTR subtypes 1A, 1B, 2B, and 6 were present in the organ of Corti, lateral wall, and spiral ganglion subfractions. Messages for 5-HTR subtypes 2C, 3 and 5B were found in the spiral ganglion, but not in the organ of Corti or lateral wall fractions. The existence of transcripts for 5-HTRs 1A, 1B, 2B and 6 in the organ of Corti is consistent with a role for these receptors in serotonin-mediated modulation of the mechanosensory signal.
Collapse
Affiliation(s)
- C K Oh
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|