1
|
Manley GA, Maat B, Begall S, Malkemper P, Caspar KR, Moritz L, van Dijk P. Otoacoustic emissions in African mole-rats. Hear Res 2024; 445:108994. [PMID: 38520899 DOI: 10.1016/j.heares.2024.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
African mole-rats display highly derived hearing that is characterized by low sensitivity and a narrow auditory range restricted to low frequencies < 10 kHz. Recently, it has been suggested that two species of these rodents do not exhibit distortion product otoacoustic emissions (DPOAE), which was interpreted as evidence for a lack of cochlear amplification. If true, this would make them unique among mammals. However, both theoretical considerations on the generation of DPOAE as well as previously published experimental evidence challenge this assumption. We measured DPOAE and stimulus-frequency otoacoustic emissions (SFOAE) in three species of African mole-rats (Ansell's mole-rat - Fukomys anselli; Mashona mole-rat - Fukomys darlingi; naked mole-rat - Heterocephalus glaber) and found unexceptional otoacoustic emission values. Measurements were complicated by the remarkably long, narrow and curved external ear canals of these animals, for which we provide a morphological description. Both DPOAE and SFOAE displayed the highest amplitudes near 1 kHz, which corresponds to the region of best hearing in all tested species, as well as to the frequency region of the low-frequency acoustic fovea previously described in Ansell's mole-rat. Thus, the cochlea in African mole-rats shares the ability to generate evoked otoacoustic emission with other mammals.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Department of Neuroscience, Faculty of Medicine, and Cluster of Excellence "Hearing for All", University of Oldenburg, 26129 Oldenburg, Germany.
| | - Bert Maat
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands
| | - Sabine Begall
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
| | - Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Kai R Caspar
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany; Institute for Cell Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Leif Moritz
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Pim van Dijk
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands
| |
Collapse
|
2
|
Manley GA. Otoacoustic Emissions in Non-Mammals. Audiol Res 2022; 12:260-272. [PMID: 35645197 PMCID: PMC9149831 DOI: 10.3390/audiolres12030027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Otoacoustic emissions (OAE) that were sound-induced, current-induced, or spontaneous have been measured in non-mammalian land vertebrates, including in amphibians, reptiles, and birds. There are no forms of emissions known from mammals that have not also been observed in non-mammals. In each group and species, the emission frequencies clearly lie in the range known to be processed by the hair cells of the respective hearing organs. With some notable exceptions, the patterns underlying the measured spectra, input-output functions, suppression threshold curves, etc., show strong similarities to OAE measured in mammals. These profound similarities are presumably traceable to the fact that emissions are produced by active hair-cell mechanisms that are themselves dependent upon comparable nonlinear cellular processes. The differences observed—for example, in the width of spontaneous emission peaks and delay times in interactions between peaks—should provide insights into how hair-cell activity is coupled within the organ and thus partially routed out into the middle ear.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Department of Neuroscience, Faculty of Medicine, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Influence of ketamine-xylazine anaesthesia on cubic and quadratic high-frequency distortion-product otoacoustic emissions. J Assoc Res Otolaryngol 2014; 15:695-705. [PMID: 25070925 DOI: 10.1007/s10162-014-0470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/28/2014] [Indexed: 01/13/2023] Open
Abstract
Ketamine is a dissociative anaesthetic, analgesic drug as well as an N-methyl-D-aspartate receptor antagonist and has been reported to influence otoacoustic emission amplitudes. In the present study, we assess the effect of ketamine-xylazine on high-frequency distortion-product otoacoustic emissions (DPOAE) in the bat species Carollia perspicillata, which serves as model for sensitive high-frequency hearing. Cubic DPOAE provide information about the nonlinear gain of the cochlear amplifier, whereas quadratic DPOAE are used to assess the symmetry of cochlear amplification and potential efferent influence on the operating state of the cochlear amplifier. During anaesthesia, maximum cubic DPOAE levels can increase by up to 35 dB within a medium stimulus level range from 35 to 60 dB SPL. Close to the -10 dB SPL threshold, at stimulus levels below about 20-30 dB SPL, anaesthesia reduces cubic DPOAE amplitudes and raises cubic DPOAE thresholds. This makes DPOAE growth functions steeper. Additionally, ketamine increases the optimum stimulus frequency ratio which is indicative of a reduction of cochlear tuning sharpness. The effect of ketamine on cubic DPOAE thresholds becomes stronger at higher stimulus frequencies and is highly significant for f2 frequencies above 40 kHz. Quadratic DPOAE levels are increased by up to 25 dB by ketamine at medium stimulus levels. In contrast to cubic DPOAEs, quadratic DPOAE threshold changes are variable and there is no significant loss of sensitivity during anaesthesia. We discuss that ketamine effects could be caused by modulation of middle ear function or a release from ipsilateral efferent modulation that mainly affects the gain of cochlear amplification.
Collapse
|
4
|
Charaziak KK, Souza P, Siegel JH. Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning. J Assoc Res Otolaryngol 2013; 14:843-62. [PMID: 24013802 DOI: 10.1007/s10162-013-0412-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/11/2013] [Indexed: 11/30/2022] Open
Abstract
As shown by the work of Kemp and Chum in 1980, stimulus-frequency otoacoustic emission suppression tuning curves (SFOAE STCs) have potential to objectively estimate behaviorally measured tuning curves. To date, this potential has not been tested. This study aims to do so by comparing SFOAE STCs and behavioral measures of tuning (simultaneous masking psychophysical tuning curves, PTCs) in 10 normal-hearing listeners for frequency ranges centered around 1,000 and 4,000 Hz at low probe levels. Additionally, SFOAE STCs were collected for varying conditions (probe level and suppression criterion) to identify the optimal parameters for comparison with behavioral data and to evaluate how these conditions affect the features of SFOAE STCs. SFOAE STCs qualitatively resembled PTCs: they demonstrated band-pass characteristics and asymmetric shapes with steeper high-frequency sides than low, but unlike PTCs they were consistently tuned to frequencies just above the probe frequency. When averaged across subjects the shapes of SFOAE STCs and PTCs showed agreement for most recording conditions, suggesting that PTCs are predominantly shaped by the frequency-selective filtering and suppressive effects of the cochlea. Individual SFOAE STCs often demonstrated irregular shapes (e.g., "double-tips"), particularly for the 1,000-Hz probe, which were not observed for the same subject's PTC. These results show the limited utility of SFOAE STCs to assess tuning in an individual. The irregularly shaped SFOAE STCs may be attributed to contributions from SFOAE sources distributed over a region of the basilar membrane extending beyond the probe characteristic place, as suggested by a repeatable pattern of SFOAE residual phase shifts observed in individual data.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Department of Communication Sciences and Disorders, Northwestern University, School of Communication, 2240 Campus Drive, Evanston, IL, 602080-2952, USA,
| | | | | |
Collapse
|
5
|
Distortion-product otoacoustic emissions in the common marmoset (Callithrix jacchus): parameter optimization. Hear Res 2008; 243:57-68. [PMID: 18586424 DOI: 10.1016/j.heares.2008.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/14/2008] [Accepted: 05/14/2008] [Indexed: 11/22/2022]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) were measured in a New World primate, the common marmoset (Callithrix jacchus). We determined the optimal primary-tone frequency ratio (f(2)/f(1)) to generate DPOAEs of maximal amplitude between 3 and 24 kHz. The optimal f(2)/f(1), determined by varying f(2)/f(1) from 1.02 to 1.40 using equilevel primary tones, decreased with increasing f(2) frequency between 3 and 17 kHz, and increased at 24 kHz. The optimal f(2)/f(1) ratio increased with increasing primary-tone levels from 50 to 74 dB SPL. When all stimulus parameters were considered, the mean optimal f(2)/f(1) was 1.224-1.226. Additionally, we determined the effect of reducing L(2) below L(1). Decreasing L(2) below L(1) by 0, 5, and 10 dB (f(2)/f(1)=1.21) minimally affected DPOAE strength. DPOAE levels were stronger in females than males and stronger in the right ear than the left, just as in humans. This study is the first to measure OAEs in the marmoset, and the results indicate that the effect of varying the frequency ratio and primary-tone level difference on marmoset DPOAEs is similar to the reported effects in humans and Old World primates.
Collapse
|
6
|
Abstract
In response to a sound stimulus, the inner ear emits sounds called otoacoustic emissions. While the exact mechanism for the production of otoacoustic emissions is not known, active motion of individual hair cells is thought to play a role. Two possible sources for otoacoustic emissions, both localized within individual hair cells, include somatic motility and hair bundle motility. Because physiological models of each of these systems are thought to be poised near a Hopf bifurcation, the dynamics of each can be described by the normal form for a system near a Hopf bifurcation. Here we demonstrate that experimental results from three-frequency suppression experiments can be predicted based on the response of an array of noninteracting Hopf oscillators tuned at different frequencies. This supports the idea that active motion of individual hair cells contributes to active processing of sounds in the ear. Interestingly, the model suggests an explanation for differing results recorded in mammals and nonmammals.
Collapse
|
7
|
Meenderink SWF, Narins PM. Suppression of distortion product otoacoustic emissions in the anuran ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:344-51. [PMID: 17297789 DOI: 10.1121/1.2382458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
When a two-tone stimulus is presented to the ear, so-called distortion product otoacoustic emissions (DPOAEs) are evoked. Adding an interference tone (IT) to these two DPOAE-evoking primaries affects normal DPOAE generation. The "effectiveness" of interference depends on the frequency of the IT in relation to the primary frequencies and this provides clues about the locus of emission generation within the inner ear. Here results are presented on the effects of ITs on DPOAEs thought to originate from the basilar papilla (BP) of a frog species. It is found that the IT always resulted in a reduction of the recorded DPOAE amplitude: DPOAE enhancement was not observed. Furthermore, iso-suppression curves (ISCs) exhibited two relative minima suggesting that the DPOAEs arise at different loci in the inner ear. These minima occurred at fixed frequencies, which coincided with those primary frequencies that resulted in maxima in DPOAE audiograms. The occurrence of two minima suggests that DPOAEs, which are presumed to originate exclusively from the BP, partially arise from the amphibian papilla as well. Finally, the finding that the minima in the ISCs are independent of the primary or DPOAE frequencies provides support for the notion that the BP functions as a single auditory filter.
Collapse
Affiliation(s)
- Sebastiaan W F Meenderink
- Department of Physiological Science, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California 90095-1606, USA
| | | |
Collapse
|
8
|
Meenderink SWF, van Dijk P. Characteristics of distortion product otoacoustic emissions in the frog from L1,L2 maps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:279-86. [PMID: 16119349 DOI: 10.1121/1.1925887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
For a given set of stimulus frequencies (f1 ,f2), the level of distortion product otoacoustic emissions (DPOAEs) varies with the levels of the stimulus tones. By variation of the stimulus levels, L1,L2-maps for DPOAEs can be constructed. Here, we report on L1 ,L2-maps for DPOAEs from the frog ear. In general, these maps were similar to those obtained from the mammalian cochlea. We found a conspicuous difference between the equal-level contour lines for low-level and high-level DPOAEs, which could be modeled by a saturating and an expansive nonlinearity, respectively. The transition from the high-level to the low-level response was accompanied by a DPOAE phase-change, which increased from 0 to pi rad with increasing frequency. These results suggest that in the frog low-level and high-level DPOAEs are generated by separate nonlinear mechanisms. Also, there was a conspicuous difference in the growth of the low-level emissions from the two anuran auditory papillae. In the basilar papilla, this growth was expansive for the lowest stimulus levels and saturated for intermediate levels. This is consistent with the behavior of a Boltzman nonlinearity. In the amphibian papilla this growth was compressive, suggesting the additional effect of a compressive amplification mechanism on the generation of DPOAEs.
Collapse
Affiliation(s)
- Sebastiaan W F Meenderink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Hospital Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | | |
Collapse
|
9
|
Johnson TA, Neely ST, Dierking DM, Hoover BM, Gorga MP. An alternate approach to constructing distortion product otoacoustic emission (DPOAE) suppression tuning curves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:3263-6. [PMID: 15658675 PMCID: PMC2561281 DOI: 10.1121/1.1815134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DPOAE suppression tuning curves (STCs) typically are constructed using suppression criteria of 3 or 6 dB. This paper describes a technique for generating DPOAE STCs using criteria ranging from 3 dB to complete suppression. The criterion effect was examined at various primary levels (f2 = 4 kHz) in normal-hearing ears. As expected, QERB and tip-to-tail differences decreased as probe level (L2) increased. QERB values were not systematically dependent on criterion. For low L2’s, tip-to-tail differences decreased as criterion increased. Given similarities in methodology, DPOAE STCs constructed from completely suppressed responses might be most appropriate for comparison to psychophysical tuning curves.
Collapse
|
10
|
Meenderink SWF, van Dijk P. Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens. Hear Res 2004; 192:107-18. [PMID: 15157969 DOI: 10.1016/j.heares.2004.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 01/01/2004] [Indexed: 11/30/2022]
Abstract
The inner ear of frogs holds two papillae specialized in detecting airborne sound, the amphibian papilla (AP) and the basilar papilla (BP). We measured input-output (I/O) curves of distortion product otoacoustic emissions (DPOAEs) from both papillae, and compared their properties. As in other vertebrates, DPOAE I/O curves showed two distinct segments, separated by a notch or kneepoint. The slope of the low-level segment was conspicuously different between the AP and the BP. For DPOAE I/O curves from the AP, slopes were < or = 1 dB/dB, similar to what is found in mammals, birds and some lizards. For DPOAE I/O curves from the BP these slopes were much steeper (approximately 2 dB/dB). Slopes found at high stimulus levels were similar in the AP and the BP (approximately 2 dB/dB). This quantitative difference between the low-level slopes for DPOAEs from the AP and the BP may signify the involvement of different mechanisms in low-level DPOAE generation for the two papillae, respectively.
Collapse
|
11
|
Zettner EM, Folsom RC. Transient emission suppression tuning curve attributes in relation to psychoacoustic threshold. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 113:2031-2041. [PMID: 12703714 DOI: 10.1121/1.1560191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ipsilateral suppression characteristics of transiently evoked otoacoustic emissions (TEOAEs) are described in relation to psychoacoustic threshold at 4000 Hz and the presence or absence of spontaneous otoacoustic emissions in 41 adults with normal hearing. TEOAE amplitudes were measured in response to 4000-Hz tonebursts presented in linear blocks at 40 and 50 dB SPL while puretone suppressors were introduced at a variety of frequencies and levels ipsilateral to and simultaneously with the tonebursts. Suppressors close to the toneburst frequency were most effective in decreasing the amplitude of the TEOAEs, while those more remote in frequency required significantly greater intensity for a similar amount of suppression. Consequently, characteristic tuning curve shapes were obtained. Tuning-curve tip levels were closely associated with the level of the toneburst and tip frequencies occurred at or above the toneburst frequency. Tuning-curve widths (Q10), however, varied significantly across subjects with similar psychoacoustic thresholds in quiet determined by a two-alternative forced-choice method. The results suggest that a portion of that variability may be explained by the presence or absence of spontaneous otoacoustic emissions in an individual ear.
Collapse
Affiliation(s)
- Erika M Zettner
- Department of Speech and Hearing Sciences, University of Washington, JG-15, Seattle, Washington 98195, USA.
| | | |
Collapse
|
12
|
Martin GK, Villasuso EI, Stagner BB, Lonsbury-Martin BL. Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). II. Findings in humans. Hear Res 2003; 177:111-22. [PMID: 12618323 DOI: 10.1016/s0378-5955(03)00028-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Distortion-product otoacoustic emission (DPOAE) suppression tuning curves (STCs) can be obtained in a variety of laboratory animals and humans by sweeping the frequencies and levels of a third tone (f(3)) around a set of f(1) and f(2) primaries. In small laboratory animals, it was previously observed that, when the suppressor tone (f(3)) is above f(2), substantial suppression and or enhancement (suppression/enhancement) could be obtained. In the present study, it was of interest to determine if similar suppression/enhancement phenomena could be observed in humans and to what extent this might influence the interpretation of STC results reported in the literature. To this end, STCs were measured for DPOAEs at 2f(1)-f(2) and 2f(2)-f(1) in human subjects at geometric-mean frequencies (GM) of 1, 2, 3, and 4 kHz, and primary-tone equilevels of 80/80 and 75/75 dB SPL and unequal levels of 65/55 dB SPL. Overall, STC parameters were found to be comparable to those reported in the literature. For the 2f(1)-f(2) DPOAE, STC tip frequencies tuned to the region of the primaries, and tip frequencies were slightly influenced by primary-tone level. STC tip thresholds were typically within 10 dB of the level of L(2), and Q(10dB) values ranged from 1.0 to 2.5, which was consistent with the higher-level primaries employed. The 2f(1)-f(2) DPOAE showed consistent regions of suppression that were approximately an octave above the GM for the 1-kHz, 65/55-dB SPL condition. The 2f(2)-f(1) DPOAE tuned to its characteristic place above f(2) and showed reliable enhancement above the STC tip region for the 1-kHz, 75/75-dB SPL primaries. Overall, the results clearly revealed that human ears also display suppression/enhancement phenomena when f(3) reaches frequencies considerably above f(2). If suppression/enhancement phenomena reflect secondary DPOAE sources, then these sources are present in the ear-canal signal from humans as well as small laboratory animals.
Collapse
Affiliation(s)
- Glen K Martin
- Department of Otolaryngology, University of Colorado Health Sciences Center, 4200 East Ninth Ave, Denver, CO 80262-0001, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
The frog inner ear contains two hearing organs: the amphibian and the basilar papilla. The amphibian papilla is sensitive to low- and mid-frequency stimuli (0.1--0.5 and 0.5--1.3 kHz, respectively, in Hyla cinerea), while the basilar papilla is sensitive to high-frequency stimuli (2.8--3.9 kHz in H. cinerea). Distortion product otoacoustic emissions (DPOAE) were recorded from the ear of the tree frog H. cinerea. In each of six ears investigated, a cubic distortion product (DP) at 2f(1)--f(2) was present when the primary frequencies f(1) and f(2) and the DP frequency were close to either the mid- or the high-frequency range. At frequencies between the sensitive ranges of both papillae, no emissions were observed. For the basilar papilla, the dependence of DP level on the primary tone frequency ratio f(2)/f(1) showed a pattern characteristic of the response of a single nonlinear resonator. Thus, in agreement with neural data, DPOAE from the basilar papilla reflect the contribution of a single auditory filter to emission generation.
Collapse
Affiliation(s)
- P van Dijk
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Maastricht, The Netherlands.
| | | |
Collapse
|
14
|
|
15
|
Manley GA, Taschenberger G, Oeckinghaus H. Influence of contralateral acoustic stimulation on distortion-product and spontaneous otoacoustic emissions in the barn owl. Hear Res 1999; 138:1-12. [PMID: 10575110 DOI: 10.1016/s0378-5955(99)00126-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The avian auditory papilla provides an interesting object on which to study efferent influences, because whereas a significant population of hair cells in birds is not afferently innervated, all hair cells are efferently innervated (Fischer, 1992, 1994a, b). Previous studies in mammals using contralateral sound to stimulate the efferent system demonstrated a general suppressive effect on spontaneous and click-evoked, as well as on distortion-product otoacoustic emissions (DPOAE). As little is known about the effects of contralateral stimulation on hearing in birds, we studied the effect of such stimuli (broadband noise, pure tones) on the amplitude of the DPOAE 2f(1)-f(2) and on spontaneous otoacoustic emissions (SOAE) in the barn owl, Tyto alba. For the DPOAE measurements, fixed primary-tone pairs [f(1)=8.875 kHz (ratio=1.2), f(1)=8.353 kHz (ratio=1.15) and f(1)=7.889 kHz (ratio=1.1)] were presented and the DPOAE measured in the presence and absence of continuous contralateral stimulation. The DPOAE often declined in amplitude but in some cases we observed DPOAE enhancement. The changes in amplitude were as large as 9 dB. The influence of the contralateral noise changed over time, however, and the effects of contralateral tones were frequency-dependent. SOAE were suppressed in amplitude and shifted in frequency by contralateral broadband noise. Control measurements in animals after middle-ear muscle resection showed that these phenomena were not attributable to the acoustic middle-ear reflex. The finding of DPOAE enhancement is interesting, because a type of efferent fiber that suppressed its discharge rate during stimulation has been described in birds (Kaiser and Manley, 1994).
Collapse
Affiliation(s)
- G A Manley
- Institut für Zoologie der Technischen Universität München, Lichtenbergstr. 4, 85747, Garching, Germany.
| | | | | |
Collapse
|
16
|
Martin GK, Stagner BB, Jassir D, Telischi FF, Lonsbury-Martin BL. Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). I. Basic findings in rabbits. Hear Res 1999; 136:105-23. [PMID: 10511630 DOI: 10.1016/s0378-5955(99)00119-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study measured interference-response areas (IRAs) for distortion-product otoacoustic emissions (DPOAEs) at 2f(1)-f(2), 3f(1)-2f(2), and 2f(2)-f(1). The IRAs were obtained in either awake or anesthetized rabbits, or in anesthetized guinea pigs and mice, by sweeping the frequencies and levels of an interference tone (IT) around a set of f(1) and f(2) primary tones, at several fixed frequencies and levels, while plotting the effects of the IT on DPOAE level. An unexpected outcome was the occurrence of regions of suppression and/or enhancement of DPOAE level when the IT was at a frequency slightly less than to more than an octave above f(2). The IRA of the 2f(1)-f(2) DPOAE typically displayed a high-frequency (HF) lobe of suppression, while the 2f(2)-f(1) emission often exhibited considerable amounts of enhancement. Moreover, for the 2f(2)-f(1) DPOAE, when enhancement was absent, its IRA usually tuned to a region above f(2). Whether or not suppression/enhancement was observed depended upon primary-tone level and frequency separation, as well as on the relative levels of the two primaries. Various physiological manipulations involving anesthesia, eighth-nerve section, diuretic administration, or pure-tone overstimulation showed that these phenomena were of cochlear origin, and were not dependent upon the acoustic reflex or cochlear-efferent activity. The aftereffects of applying diuretics or over-exposures revealed that suppression/enhancement required the presence of sensitive, low-level DPOAE-generator sources. Additionally, suppression/enhancement were general effects in that, in addition to rabbits, they were also observed in mice and guinea pigs. Further, corresponding plots of DPOAE phase often revealed areas of differing phase change in the vicinity of the primary tones as compared to regions above f(2). These findings, along with the effects of tonal exposures designed to fatigue regions above f(2), and instances in which DPOAE level was dependent upon the amount of suppression/enhancement, suggested that the interactions of two DPOAE-generator sources contributed, in some manner, to these phenomena.
Collapse
Affiliation(s)
- G K Martin
- Department of Otolaryngology (M805), University of Miami School of Medicine, P.O. Box 016960, Miami, FL 33101-6960, USA.
| | | | | | | | | |
Collapse
|