1
|
Harris S, Afram R, Shimano T, Fyk-Kolodziej B, Walker PD, Braun RD, Holt AG. Dopamine in Auditory Nuclei and Lemniscal Projections is Poised to Influence Acoustic Integration in the Inferior Colliculus. Front Neural Circuits 2021; 15:624563. [PMID: 33746717 PMCID: PMC7973212 DOI: 10.3389/fncir.2021.624563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) modulates the activity of nuclei within the ascending and descending auditory pathway. Previous studies have identified neurons and fibers in the inferior colliculus (IC) which are positively labeled for tyrosine hydroxylase (TH), a key enzyme in the synthesis of dopamine. However, the origins of the tyrosine hydroxylase positive projections to the inferior colliculus have not been fully explored. The lateral lemniscus (LL) provides a robust inhibitory projection to the inferior colliculus and plays a role in the temporal processing of sound. In the present study, immunoreactivity for tyrosine hydroxylase was examined in animals with and without 6-hydroxydopamine (6-OHDA) lesions. Lesioning, with 6-OHDA placed in the inferior colliculus, led to a significant reduction in tyrosine hydroxylase immuno-positive labeling in the lateral lemniscus and inferior colliculus. Immunolabeling for dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT), enzymes responsible for the synthesis of norepinephrine (NE) and epinephrine (E), respectively, were evaluated. Very little immunoreactivity for DBH and no immunoreactivity for PNMT was found within the cell bodies of the dorsal, intermediate, or ventral nucleus of the lateral lemniscus. The results indicate that catecholaminergic neurons of the lateral lemniscus are likely dopaminergic and not noradrenergic or adrenergic. Next, high-pressure liquid chromatography (HPLC) analysis was used to confirm that dopamine is present in the inferior colliculus and nuclei that send projections to the inferior colliculus, including the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus, and auditory cortex (AC). Finally, fluorogold, a retrograde tracer, was injected into the inferior colliculus of adult rats. Each subdivision of the lateral lemniscus contained fluorogold within the somata, with the dorsal nucleus of the lateral lemniscus showing the most robust projections to the inferior colliculus. Fluorogold-tyrosine hydroxylase colocalization within the lateral lemniscus was assessed. The dorsal and intermediate nuclei neurons exhibiting similar degrees of colocalization, while neurons of the ventral nucleus had significantly fewer colocalized fluorogold-tyrosine hydroxylase labeled neurons. These results suggest that several auditory nuclei that project to the inferior colliculus contain dopamine, dopaminergic neurons in the lateral lemniscus project to the inferior colliculus and that dopaminergic neurotransmission is poised to play a pivotal role in the function of the inferior colliculus.
Collapse
Affiliation(s)
- Sharonda Harris
- Department of Pharmacology and Therapeutics, University of Florida School of Medicine, Gainesville, FL, United States
| | - Renee Afram
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Bozena Fyk-Kolodziej
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Paul D. Walker
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Rod D. Braun
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Avril Genene Holt
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Luo L, Xu N, Wang Q, Li L. Disparity in interaural time difference improves the accuracy of neural representations of individual concurrent narrowband sounds in rat inferior colliculus and auditory cortex. J Neurophysiol 2020; 123:695-706. [PMID: 31891521 DOI: 10.1152/jn.00284.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central mechanisms underlying binaural unmasking for spectrally overlapping concurrent sounds, which are unresolved in the peripheral auditory system, remain largely unknown. In this study, frequency-following responses (FFRs) to two binaurally presented independent narrowband noises (NBNs) with overlapping spectra were recorded simultaneously in the inferior colliculus (IC) and auditory cortex (AC) in anesthetized rats. The results showed that for both IC FFRs and AC FFRs, introducing an interaural time difference (ITD) disparity between the two concurrent NBNs enhanced the representation fidelity, reflected by the increased coherence between the responses evoked by double-NBN stimulation and the responses evoked by single NBNs. The ITD disparity effect varied across frequency bands, being more marked for higher frequency bands in the IC and lower frequency bands in the AC. Moreover, the coherence between IC responses and AC responses was also enhanced by the ITD disparity, and the enhancement was most prominent for low-frequency bands and the IC and the AC on the same side. These results suggest a critical role of the ITD cue in the neural segregation of spectrotemporally overlapping sounds.NEW & NOTEWORTHY When two spectrally overlapped narrowband noises are presented at the same time with the same sound-pressure level, they mask each other. Introducing a disparity in interaural time difference between these two narrowband noises improves the accuracy of the neural representation of individual sounds in both the inferior colliculus and the auditory cortex. The lower frequency signal transformation from the inferior colliculus to the auditory cortex on the same side is also enhanced, showing the effect of binaural unmasking.
Collapse
Affiliation(s)
- Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Na Xu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Epilepsy Center, Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
3
|
Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location. J Neurosci 2017; 36:9908-21. [PMID: 27656028 DOI: 10.1523/jneurosci.1421-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. SIGNIFICANCE STATEMENT In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli.
Collapse
|
4
|
Burke AJ, Hatano M, Kelly JB. Behavioral consequences of unilateral inferior colliculus lesions in the rat. Hear Res 2012; 294:10-20. [PMID: 23010333 DOI: 10.1016/j.heares.2012.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 08/03/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
This study was carried out to determine the behavioral sensitivity to sound of rats with unilateral lesions of inferior colliculus (IC) located ipsilateral or contralateral to the projection pathway from one ear. Absolute thresholds for the detection of a broad-band noise burst were compared for rats with a profound conductive hearing loss in one ear and a lesion placed either ipsilateral or contralateral to the normally functioning ear. The rats were trained to make withdrawal responses to avoid a shock when they detected the presence of a noise burst. Sound pressure level was systematically lowered to obtain psychophysical curves from which absolute thresholds could be determined. Complete lesions of the contralateral IC resulted in substantial elevations in absolute threshold relative to normal whereas equivalent lesions of the ipsilateral IC produced relatively little elevation. In neither case did unilateral destruction of the IC produce a total inability to respond to sound. Contralateral IC lesions that included the dorsal nucleus of the lateral lemniscus (DNLL) produced a significantly greater elevation in behavioral thresholds than complete lesions limited to the IC. The results indicate a predominance of the contralateral over the ipsilateral pathway to IC for maintaining normal thresholds. They also indicate that other pathways that bypass the IC are likely involved in detecting the presence of a sound.
Collapse
Affiliation(s)
- Aaron J Burke
- Laboratory of Sensory Neuroscience, Department of Psychology, Carleton University, Ottawa, Canada
| | | | | |
Collapse
|
5
|
Phillips DP, Quinlan CK, Dingle RN. Stability of central binaural sound localization mechanisms in mammals, and the Heffner hypothesis. Neurosci Biobehav Rev 2011; 36:889-900. [PMID: 22101111 DOI: 10.1016/j.neubiorev.2011.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/16/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
Heffner (2004) provided an overview of data on the evolutionary pressures on sound localization acuity in mammals. Her most important finding was that sound localization acuity was most strongly correlated with width of field of best vision. This correlation leaves unexplained the mechanism through which evolutionary pressures affect localization acuity in different mammals. A review of the neurophysiology of binaural sound localization cue coding, and the behavioural performance it supports, led us to two hypotheses. First, there is little or no evidence that the neural mechanisms for coding binaural sound location cues, or the dynamic range of the code, vary across mammals. Rather, the neural coding mechanism is remarkably constant both across species, and within species across frequency. Second, there is no need to postulate that evolutionary pressures are exerted on the cue coding mechanism itself. We hypothesize instead that the evolutionary pressure may be on the organism's ability to exploit a 'lower envelope principle' (after Barlow, 1972).
Collapse
Affiliation(s)
- Dennis P Phillips
- Department of Psychology, Dalhousie University, Halifax, 1355 Oxford Street, Nova Scotia, Canada
| | | | | |
Collapse
|
6
|
Du Y, Kong L, Wang Q, Wu X, Li L. Auditory frequency-following response: a neurophysiological measure for studying the "cocktail-party problem". Neurosci Biobehav Rev 2011; 35:2046-57. [PMID: 21645541 DOI: 10.1016/j.neubiorev.2011.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 05/12/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
Abstract
How do we recognize what one person is saying when others are speaking at the same time? The "cocktail-party problem" proposed by Cherry (1953) has puzzled scientific societies for half a century. This puzzle will not be solved without using appropriate neurophysiological investigation that should satisfy the following four essential requirements: (1) certain critical speech characteristics related to speech intelligibility are recorded; (2) neural responses to different speech sources are differentiated; (3) neural correlates of bottom-up binaural unmasking of responses to target speech are measurable; (4) neural correlates of attentional top-down unmasking of target speech are measurable. Before speech signals reach the cerebral cortex, some critical acoustic features are represented in subcortical structures by the frequency-following responses (FFRs), which are sustained evoked potentials based on precisely phase-locked responses of neuron populations to low-to-middle-frequency periodical acoustical stimuli. This review summarizes previous studies on FFRs associated with each of the four requirements and suggests that FFRs are useful for studying the "cocktail-party problem".
Collapse
Affiliation(s)
- Yi Du
- Department of Psychology, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
7
|
Charitidi K, Canlon B. Estrogen receptors in the central auditory system of male and female mice. Neuroscience 2009; 165:923-33. [PMID: 19925852 DOI: 10.1016/j.neuroscience.2009.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 11/17/2022]
Abstract
The estrogen receptors in the central auditory system of male and female mice were characterized using immunocytochemical methods. Estrogen receptors alpha and beta (ERalpha, ERbeta) were localized predominantly in the ventral cochlear nucleus, nucleus of the trapezoid body, the lateral- and medio-ventral periolivary nuclei, the dorsal lateral lemniscus, and the inferior colliculus. The medial geniculate nucleus was negative for both ERalpha and ERbeta whereas the auditory cortex was positive for ERalpha. The lateral superior olive, the ventral lateral lemniscus and the central nucleus of the inferior colliculus expressed only ERbeta. The differential localization of ERalpha and ERbeta may indicate distinct roles for these two receptors in auditory processing. No major differences in the pattern, number or intensity of receptor expression was found between male and female animals. The comprehensive anatomic map that is constructed for ERalpha and ERbeta in the central auditory pathway will be a useful foundation to elucidate the complexity of estrogen actions in the auditory system.
Collapse
Affiliation(s)
- K Charitidi
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm 171 77, Sweden
| | | |
Collapse
|
8
|
Du Y, Ma T, Wang Q, Wu X, Li L. Two crossed axonal projections contribute to binaural unmasking of frequency-following responses in rat inferior colliculus. Eur J Neurosci 2009; 30:1779-89. [DOI: 10.1111/j.1460-9568.2009.06947.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Kelly JB, van Adel BA, Ito M. Anatomical projections of the nuclei of the lateral lemniscus in the albino rat (rattus norvegicus). J Comp Neurol 2009; 512:573-93. [DOI: 10.1002/cne.21929] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
FRANKLIN SR, BRUNSO-BECHTOLD JK, HENKEL CK. Unilateral cochlear ablation before hearing onset disrupts the maintenance of dorsal nucleus of the lateral lemniscus projection patterns in the rat inferior colliculus. Neuroscience 2006; 143:105-15. [PMID: 16971048 PMCID: PMC2048763 DOI: 10.1016/j.neuroscience.2006.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/26/2022]
Abstract
During postnatal development, ascending and descending auditory inputs converge to form fibrodendritic layers within the central nucleus of the inferior colliculus (IC). Before the onset of hearing, specific combinations of inputs segregate into bands separated by interband spaces. These bands may define functional zones within the IC. Previous studies in our laboratory have shown that unilateral or bilateral cochlear ablation at postnatal day 2 (P2) disrupts the development of afferent bands from the dorsal nucleus of the lateral lemniscus (DNLL) to the IC. These results suggest that spontaneous activity propagated from the cochlea is required for the segregation of afferent bands within the developing IC. To test if spontaneous activity from the cochlea also may be required to maintain segregated bands of DNLL input, we performed cochlear ablations in rat pups at P9, after DNLL bands already are established. All animals were killed at P12 and glass pins coated with carbocyanine dye, DiI (1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), subsequently were placed in the commissure of Probst to label the crossed projections from both DNLLs. When compared with surgical controls, experimental results showed a similar pattern of DNLL bands in the IC contralateral to the ablated cochlea, but a disruption of DNLL bands in the IC ipsilateral to the cochlear ablation. The present results suggest that cochlear ablation after DNLL bands have formed may affect the maintenance of banded DNLL projections within the central nucleus of the IC.
Collapse
Affiliation(s)
| | | | - C. K. HENKEL
- *Corresponding author. Tel: +1-919-716-4379; fax: +1-919-716-4534. E-mail address: (C. K. Henkel)
| |
Collapse
|
11
|
Tollin DJ, Populin LC, Yin TCT. Neural Correlates of the Precedence Effect in the Inferior Colliculus of Behaving Cats. J Neurophysiol 2004; 92:3286-97. [PMID: 15295015 DOI: 10.1152/jn.00606.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several auditory spatial illusions, collectively called the precedence effect (PE), occur when transient sounds are presented from two different spatial locations but separated in time by an interstimulus delay (ISD). For ISDs in the range of localization dominance (<10 ms), a single fused sound is typically located near the leading source location only, as if the location of the lagging source were suppressed. For longer ISDs, both the leading and lagging sources can be heard and localized, and the shortest ISD where this occurs is called the echo threshold. Previous physiological studies of the extracellular responses of single neurons in the inferior colliculus (IC) of anesthetized cats and unanesthetized rabbits with sounds known to elicit the PE have shown correlates of these phenomena though there were differences in the physiologically measured echo thresholds. Here we recorded in the IC of awake, behaving cats using stimuli that we have shown to evoke behavioral responses that are consistent with the precedence effect. For small ISDs, responses to the lag were reduced or eliminated consistent with psychophysical data showing that sound localization is based on the leading source. At longer ISDs, the responses to the lagging source recovered at ISDs comparable to psychophysically measured echo thresholds. Thus it appears that anesthesia, and not species differences, accounts for the discrepancies in the earlier studies.
Collapse
Affiliation(s)
- Daniel J Tollin
- Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
12
|
Riedel H, Kollmeier B. Dipole source analysis of auditory brain stem responses evoked by lateralized clicks. Z Med Phys 2003; 13:75-83. [PMID: 12868332 DOI: 10.1078/0939-3889-00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this paper was to elucidate the relation between psychophysical lateralization and the neural generators of the corresponding auditory evoked potentials. Auditory brain stem responses to binaural click stimuli with different interaural time- and level differences were obtained in 12 subjects by means of multi-channel EEG recording. Data were modeled by equivalent current dipoles representing the generating sources in the brain. A generalized maximum-likelihood method was used to solve the inverse problem, taking into account the noise covariance matrix of the data. The quality of the fit was assessed by computing the goodness-of-fit as the outcome of a chi 2-test. This measure was advantageous compared to the conventionally employed residual variance. At the latency of Jewett wave V, there was a systematic variation of the moment of a rotating dipole with the lateralization of the stimulus. Dipole moment trajectories of stimuli with similar lateralization were similar. A sign reversal of the interaural differences resulted in a mirrored trajectory. Centrally-perceived stimuli corresponded to dipoles with the largest vertical components. With increasing lateralization, the vertical component of the moment decreased, while the horizontal components increased. The similarity of trajectories inducted by the same lateralization show that interaural time- and level differences are not processed independently. The present data support the notion that directional information is already extracted and represented at the level of the brain stem.
Collapse
|
13
|
Malmierca MS. THE STRUCTURE AND PHYSIOLOGY OF THE RAT AUDITORY SYSTEM: AN OVERVIEW. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 56:147-211. [PMID: 14696313 DOI: 10.1016/s0074-7742(03)56005-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Manuel S Malmierca
- Laboratory for the Neurobiology of Hearing, Department of Cellular Biology and Pathology, Faculty of Medicine, University of Salamanca, Institute for Neuroscience of Castilla y Léon, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Affiliation(s)
- George D Pollak
- Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
15
|
Riedel H, Kollmeier B. Auditory brain stem responses evoked by lateralized clicks: is lateralization extracted in the human brain stem? Hear Res 2002; 163:12-26. [PMID: 11788195 DOI: 10.1016/s0378-5955(01)00362-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dependence of binaurally evoked auditory brain stem responses and the binaural difference potential on simultaneously presented interaural time and level differences is investigated in order to assess the representation of stimulus lateralization in the brain stem. Auditory brain stem responses to binaural click stimuli with all combinations of three interaural time and three interaural level differences were recorded from 12 subjects and 4 channels. The latency of Jewett wave V is shortest for zero interaural time difference and longest for the trading stimuli. The amplitude of wave V is largest for centrally perceived stimuli, i.e., the diotic and trading stimuli, and smallest for the most laterally perceived stimuli. The latency of the most prominent peak of the binaural difference potential DN1 mainly depends on the interaural time difference. The amplitude of the components of the binaural difference potential, DP1-DN1, depends similarly on stimulus conditions as wave V amplitude in the case of the binaural stimuli: smallest amplitudes are found for the most lateral stimuli and largest amplitudes for central stimuli. The results demonstrate that interaural level and time differences are not processed independently. This supports the hypothesis that directional information in humans is already extracted and represented at the level of the brain stem.
Collapse
Affiliation(s)
- Helmut Riedel
- AG Medizinische Physik, Universität Oldenburg, D-26111, Oldenburg, Germany
| | | |
Collapse
|
16
|
Reversible inactivation of the dorsal nucleus of the lateral lemniscus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats. J Neurosci 2001. [PMID: 11425910 DOI: 10.1523/jneurosci.21-13-04830.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the inferior colliculus (IC) that are excited by one ear and inhibited by the other [excitatory-inhibitory (EI) neurons] can code interaural intensity disparities (IIDs), the cues animals use to localize high frequencies. Although EI properties are first formed in a lower nucleus and imposed on some IC cells via an excitatory projection, many other EI neurons are formed de novo in the IC. By reversibly inactivating the dorsal nucleus of the lateral lemniscus (DNLL) in Mexican free-tailed bats with kynurenic acid, we show that the EI properties of many IC cells are formed de novo via an inhibitory projection from the DNLL on the opposite side. We also show that signals excitatory to the IC evoke an inhibition in the opposite DNLL that persists for tens of milliseconds after the signal has ended. During that period, strongly suppressed EI cells in the IC are deprived of inhibition from the DNLL and respond to binaural signals as weakly inhibited or monaural cells. By relieving inhibition at the IC, we show that an initial binaural signal essentially reconfigures the circuit and thereby allows IC cells to respond to trailing binaural signals that were inhibitory when presented alone. Thus, DNLL innervation creates a property in the IC that is not possessed by lower neurons or by collicular EI neurons that are not innervated by the DNLL. That property is a change in responsiveness to binaural signals, a change dependent on the reception of an earlier sound. These features suggest that the circuitry linking the DNLL with the opposite central nucleus of the IC is important for the processing of IIDs that change over time, such as the IIDs generated by moving stimuli or by multiple sound sources that emanate from different regions of space.
Collapse
|
17
|
Abstract
To better understand the development of the dorsal nucleus of the lateral lemniscus (DNLL), intrinsic membrane properties and synaptic responses of DNLL neurons in brain slice preparations were examined. Intracellular recordings were taken from DNLL neurons of rat pups at postnatal days 4-8 (early group), 10-12 (intermediate group) and 16-18 (late group). In response to positive current injection, neurons in the early group displayed firing with lower frequency and a longer action potential duration in comparison to the intermediate and late groups. The action potential amplitude of DNLL neurons increased during development. Postsynaptic potentials (PSPs), with excitatory predominance, were elicited by electrical stimulation of the lateral lemniscus and commissure of Probst throughout the three age groups. Neurons showed a longer latency and rise time of the PSPs in the early group in comparison with those in the intermediate and late groups. These results suggest that the early DNLL neurons display physiological characteristics associated with immature neurons, while the other two groups tend to illustrate mature-like neuronal properties. Furthermore, it seems that the neurons at day 10-12 are in a transitional period of development, which coincides with the onset of hearing.
Collapse
Affiliation(s)
- T K Ahuja
- Laboratory of Sensory Neuroscience, Institute of Neuroscience, Carleton University, K1S 5B6, Ottawa, Ont., Canada
| | | |
Collapse
|
18
|
Blum JJ, Reed MC. Model calculations of time dependent responses to binaural stimuli in the dorsal nucleus of the lateral lemniscus. Hear Res 2000; 149:77-90. [PMID: 11033248 DOI: 10.1016/s0378-5955(00)00169-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a previous paper (Reed and Blum, 1999), we examined the connectional hypotheses put forward by Markovitz and Pollak (1994) to explain the steady-state behavior of cells in the dorsal nucleus of the lateral lemniscus (DNLL). We found that the steady-state outputs of the four major binaural types of cells found in the DNLL (EI, EI/F, EE/I, and EE/FI) could be accounted for by known connectional patterns using only one or two cells per nucleus and quite simple hypotheses on cell behavior. In this study, we examine the time course of DNLL outputs in response to constant, ongoing, monaural or binaural sounds of various intensities. The model auditory nerve fibers ramp up linearly (usually in 2 ms) to full firing and the anteroventral cochlear nucleus cells have primary-like discharge patterns. Fixed time delays of 1 ms at each synapse are included; other time delays are employed when necessary to understand and reproduce specific features of the experimental data. We find that the connectional patterns utilized in our previous study can account for the rich variety of temporal response patterns found experimentally in the DNLL. Our main findings are: (1) all of the four major binaural types of cells can arise from modifications of the basic connectional pattern that produces EI cells; (2) both excitation and inhibition from the ipsilateral lateral superior olive (LSO) are required to understand DNLL responses; (3) pauser behavior can arise either from time delayed inhibition from a DNLL interneuron or by projection from the LSO; (4) two different mechanisms can account for the ipsilaterally evoked onset response; (5) to explain completely the temporal discharge pattern and binaural interactions of EE/FI cells, a projection from the contralateral DNLL via the commissure of Probst is necessary.
Collapse
Affiliation(s)
- J J Blum
- Division of Physiology, Department of Cell Biology, Duke University Medical Center, Durham, NC 27708-0320, USA.
| | | |
Collapse
|
19
|
Plasticity in the development of afferent patterns in the inferior colliculus of the rat after unilateral cochlear ablation. J Neurosci 2000. [PMID: 10995838 DOI: 10.1523/jneurosci.20-18-06939.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The central nucleus of the inferior colliculus (IC) is the site of convergence for nearly all ascending monaural and binaural projections. Several of these inputs, including inhibitory connections from the dorsal nucleus of the lateral lemniscus (DNLL), are highly ordered and organized into series of afferent bands or patches. Although inputs to the IC from the contralateral DNLL are present in the rat by birth [postnatal day 0 (P0)], the earliest indications of band formation are not evident until P4. Subsequently, the initially diffuse projection segregates into a pattern of bands and interband spaces, and by P12 adult-like, afferent-dense patches are established (Gabriele et al., 2000). To determine the role of the auditory periphery in the development of bands and patches before the onset of hearing (P12/P13), unilateral cochlear ablations were performed at P2 (before any evidence of banding). Rat pups were reared to P12, at which time glass pins coated with 1, 1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate were placed in fixed tissue in the commissure of Probst where DNLL fibers cross the midline. The results indicate that a unilateral cochlear ablation disrupts the normal development of afferent patches in the IC. Although the crossed DNLL projections labeled via commissural dye placement always mirrored each other in P12 controls, ablation cases exhibited a consistent, bilateral asymmetry in pattern formation and relative density of the labeled projections. Possible developmental mechanisms likely to be involved in the establishment of afferent bands and patches before the onset of hearing are discussed.
Collapse
|
20
|
Abstract
Although the rat is often used to determine behavioural sound-localization capabilities or neuronal computation of binaural information, the representation of auditory space in the rat brain has not been investigated so far. We obtained extracellular recordings from auditory neurons in the superior colliculus of anaesthetized rats and examined them for spatial tuning characteristics and topographical order. Many neurons (73%) showed significant tuning, with a single peak in the azimuth response profiles based on spike rates and response latencies. Best azimuth values from neurons in one SC were generally tuned to contralateral and rarely to frontal or ipsilateral directions. Tuning width was mostly broad; at supra-threshold sound pressure levels (35 dB SPL), 55% of the units had a tuning width of > 120 degrees in contralateral space. Additionally, tuning width increased with stimulation intensity. A significant but considerably scattered topographical order of best azimuth directions was observed in the deep layers of the superior colliculus with frontal directions being represented closer to the rostral pole. Tuned auditory units in the intermediate layers of the superior colliculus, however, showed no systematic spatial arrangement. This pattern was confirmed by analysing best azimuth directions from simultaneously recorded units. Our results indicate that the rat superior colliculus contains a representation of auditory space which is similar to that described for other small mammals.
Collapse
Affiliation(s)
- B H Gaese
- Inst. f. Biologie II (Zoologie/Tierphysiologie), RWTH Aachen, Kopernikusstr. 16, D-52074 Aachen, Germany.
| | | |
Collapse
|
21
|
Kelly JB, Kidd SA. NMDA and AMPA receptors in the dorsal nucleus of the lateral lemniscus shape binaural responses in rat inferior colliculus. J Neurophysiol 2000; 83:1403-14. [PMID: 10712467 DOI: 10.1152/jn.2000.83.3.1403] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binaural responses of single neurons in the rat's central nucleus of the inferior colliculus (ICC) were recorded before and after local injection of excitatory amino acid receptor antagonists (either 1,2, 3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium [NBQX], (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid [CPP], 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX], or (+/-)-2amino-5-phosphonovaleric acid [APV]) into the dorsal nucleus of the lateral lemniscus (DNLL). Responses were evoked by clicks delivered separately to the two ears at interaural time delays between -1.0 and +30 ms (positive values referring to ipsilateral leading contralateral click pairs). The neurons in our sample were excited by contralateral stimulation and inhibited by ipsilateral stimulation, and the probability of action potentials was reduced as the ipsilateral stimulus was advanced. Binaural inhibition resulted in response suppression that lasted up to 30 ms. Injection of excitatory amino acid antagonists into the DNLL contralateral to the recording site reduced the strength of binaural inhibition in the ICC. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist NBQX preferentially affected responses at small interaural time intervals (0-1.0 ms), whereas the N-methyl-D-aspartate (NMDA) antagonist CPP preferentially affected responses at longer intervals (1-30 ms). Both CNQX and APV produced a release from binaural inhibition, but neither drug was selective for specific intervals. The data support the idea that binaural inhibition in the rat ICC is influenced by both AMPA and NMDA receptor-mediated excitatory events in the contralateral DNLL. The results suggest that the AMPA receptors contribute selectively to the initial component of binaural inhibition and the NMDA receptors to a longer lasting component.
Collapse
Affiliation(s)
- J B Kelly
- Laboratory of Sensory Neuroscience, Institute of Neuroscience and Department of Psychology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | | |
Collapse
|
22
|
Gabriele ML, Brunso-Bechtold JK, Henkel CK. Development of afferent patterns in the inferior colliculus of the rat: projection from the dorsal nucleus of the lateral lemniscus. J Comp Neurol 2000; 416:368-82. [PMID: 10602095 DOI: 10.1002/(sici)1096-9861(20000117)416:3<368::aid-cne8>3.0.co;2-c] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inferior colliculus (IC) receives a variety of layered afferent projections. The purpose of the present study was to determine the development of the projection from the dorsal nucleus of the lateral lemniscus (DNLL) to the IC in rat prior to the onset of hearing (postnatal day 12/13). Lipophilic carbocyanine dye, DiI (1, 1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), was used to trace the crossed inhibitory projection of DNLL in a developmental series of rat embryos and pups between ages embryonic day 15 (E15) and postnatal day 12 (P12). Dye-coated pins were positioned in paraformaldehyde-fixed brains either unilaterally in DNLL (embryonic cases), or in the commissure of Probst where DNLL fibers cross the midline (postnatal cases). By E15, pioneer fibers have left DNLL and crossed the midline. A few fibers have nearly reached the contralateral IC by E19. At birth (E22 = P0), the projection has invaded ventromedial, high-frequency layers of the IC. The vast majority of DNLL axons parallel the presumptive IC layers by P4, and by P8 the projection has segregated into a pattern of bands (afferent dense) and interband (afferent sparse) spaces that encompasses the entire frequency axis of the IC. Adult-like patches, regions along afferent bands that exhibit the heaviest labeling, develop by P12. These results indicate that some mature projection patterns are in place prior to the onset of hearing. Such findings suggest that evoked activity may not be required for the initial organization of patterned projections in the ascending auditory pathway.
Collapse
Affiliation(s)
- M L Gabriele
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | |
Collapse
|
23
|
Abstract
Whole-cell patch-clamp recordings were made from neurons in the rat's dorsal nucleus of the lateral lemniscus (DNLL) in a brain slice preparation. Planes of section were chosen to preserve the integrity of fibers in the commissure of Probst (CP) and postsynaptic responses were evoked by electrical stimulation along its length. Results showed that the crossed projection to the DNLL through the CP is mainly, if not exclusively, inhibitory in the rat. Inhibitory postsynaptic responses (IPSPs) evoked by stimulation of the CP were blocked by the gamma-aminobutyric acid (GABA)(A) receptor antagonist bicuculline, but were unaffected by the glycine receptor antagonist strychnine, supporting the conclusion that the crossed inhibitory projection to DNLL from the contralateral DNLL is GABAergic. Stimulation of the CP close to the DNLL frequently evoked excitatory postsynaptic responses as well as IPSPs, but stimulation near the midline evoked IPSPs only. Thus, the excitatory responses probably originated from a pathway other than the projection to the DNLL from the contralateral DNLL through the CP.
Collapse
Affiliation(s)
- L Chen
- Laboratory of Sensory Neuroscience, Institute of Neuroscience, Life Science Research Center, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada
| | | | | |
Collapse
|