1
|
Liu Y, Long Z, Qiu J, Chen Q, Yang A, Xiao M, Dang S, Zhu Y, Liu Q, Lv Y, Li S, Qin J, Tan Z, Wang D, Chen W, Wei Q, Deng Q, Xing X, Xiao Y. Combined effects of benzene, toluene, xylene, ethylbenzene, and styrene exposure on hearing loss mediated by oxidative stress at realistic low levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125149. [PMID: 39427956 DOI: 10.1016/j.envpol.2024.125149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The link between benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) exposure and hearing loss (HL) is not well-established. This study investigated 1694 petrochemical workers in southern China to examine the effects of BTEXS urinary metabolites on auditory function, considering oxidative stress (OS) as a potential cause. Using generalized linear models, elastic net regression, and quantile g-computation, we evaluated the single and combined effects of BTEXS, OS indicators, and HL. Subgroup analysis explored interactions between BTEXS and cumulative noise exposure (CNE), while mediation analysis assessed OS's role in BTEXS-related HL. Positive associations were found between hippuric acid (HA) and HL (OR = 1.20, P < 0.05) and high-frequency hearing loss (HFHL) (OR = 1.22, P < 0.05). The ENET model linked 3&4-methylhippuric acid (3&4-MHA) with increased HFHL risk. The qgcomp model showed a 23% increased HL risk and a 20% increased HFHL risk per quartile increase in BTEXS exposure. Toluene metabolites (SBMA and HA) were significant contributors to HL, HFHL, and speech-frequency hearing loss (SFHL). Higher BTEXS SBMA, MA and HA levels exacerbated HL risk in workers exposed to CNE. Interaction analysis revealed synergistic effects between tt-MA and other metabolites on HFHL risk. Total SOD (TSOD) significantly mediated the BTEXS-HL relationship. These findings highlight a dose-effect association between BTEXS exposure and HL due to oxidative damage, with toluene metabolites being critical pollutants. BTEXS exposure also synergistically increased HL risk with noise.
Collapse
Affiliation(s)
- Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Jingjing Qiu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, No. 68 Haikang Street, Guangzhou, 510300, Guangdong, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Aichu Yang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, No. 68 Haikang Street, Guangzhou, 510300, Guangdong, China
| | - Minghui Xiao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, No. 68 Haikang Street, Guangzhou, 510300, Guangdong, China
| | - Shanfeng Dang
- Occupational Disease Prevention and Treatment Institute of Sinopec Maoming Petrochemical Company, No. 9 Shuangshan Road 4, Maoming, 525000, Guangdong, China
| | - Yanqun Zhu
- Occupational Disease Prevention and Treatment Institute of Sinopec Maoming Petrochemical Company, No. 9 Shuangshan Road 4, Maoming, 525000, Guangdong, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Zhaoqing Tan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Dongsheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Wen Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Qing Wei
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Qifei Deng
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China.
| |
Collapse
|
2
|
Durna YM, Yigit O, Edizer DT, Durna Daştan S, Gul M, Ovali E. Hypoxia and Normoxia Preconditioned Olfactory Stem Cells Against Noise-Induced Hearing Loss. J Craniofac Surg 2024:00001665-990000000-01998. [PMID: 39356227 DOI: 10.1097/scs.0000000000010660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE Noise-induced hearing loss is one of the leading causes of permanent hearing loss in the adult population. In this experimental study, the authors aimed to investigate the effectiveness of hypoxia and normoxia preconditioned olfactory stem cells against noise trauma. METHODS Twenty-seven female guinea pigs were enrolled. Two guinea pigs were sacrificed for harvesting olfactory tissue and 1 for examining the architecture of the normal cochlea. The remaining 24 guinea pigs were exposed to noise trauma for 1 day and then randomly divided into 3 groups: intracochlear injection of (i) normoxic olfactory stem cells, (ii) hypoxic olfactory stem cells, and (iii) physiological serum. Auditory brainstem response (ABR) measurement was performed before and 2 weeks after noise trauma and weekly for 3 weeks following intracochlear injection. Both click and 16 kHz tone-burst stimuli were used for detection of ABR. RESULTS No significant difference was noted between the groups before and 2 weeks after noise trauma. ABR thresholds detected after intracochlear injections were significantly higher in the control group compared with stem cell groups. However, no significant difference was detected between the stem cell groups. Fluourescence microscopy revealed better engraftment for hypoxic stem cells. Light and electron microscopy examinations were consistent with predominant degenerative findings in the control group, whereas normoxic group had more similar findings with normal cochlea compared with hypoxic group. CONCLUSION Olfactory stem cells were demonstrated to have the potential to have beneficial effects on noise trauma.
Collapse
Affiliation(s)
| | - Ozgur Yigit
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital
| | - Deniz T Edizer
- Department of Otorhinolaryngology, School of Medicine, Acibadem University, Istanbul
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas
| | - Mehmet Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya
| | - Ercument Ovali
- Acibadem Labcell Stem Cell Laboratory and Cord Blood Bank, Istanbul, Türkiye
| |
Collapse
|
3
|
Goodarzi Z, Khavanin A, Karami E, Rashidy-Pour A, Belji Kangarlou M, Kiani M, Razmjouei J. Otoprotective Effects of Quercetin Against Oxidative Damage in the Rat's Cochlea Induced by Noise and Silver Nanoparticles. Neuroscience 2023; 531:99-116. [PMID: 37714258 DOI: 10.1016/j.neuroscience.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The aim of this study was to investigate the otoprotective effects of Quercetin (Que) against both noise-induced hearing loss (NIHL) and the ototoxicity of silver nanoparticles (SNPs) in rats. Forty-two male Wistar rats were divided into seven groups (n = 6): control, SNPs, Que (100 mg/kg) plus SNPs (100 mg/kg), noise (104 dB), Que plus noise, noise plus SNPs, and noise plus Que plus SNPs. In the weight change results, there was no significant difference between the groups exposed to noise plus SNPs and SNPs compared to the control group. However, animals had significant changes in DPOAE amplitude at 1 and 3 days post-exposure when compared to baseline. Additionally, the DPOAE value of rats administered with Que plus SNPs was higher than in all other groups. Que also decreased the levels of TACT, MDA, IL-6, TNF-α, and NOX3 in the groups exposed to noise and SNPs and increased the SOD level and expression of myosin heavy chain VII (MYH7) and β-tubulin III (TUBB3) proteins. Furthermore, Que decreased structural changes in the animals' cochlea. Our findings indicate that pretreatment with Que efficiently counteracted the adverse effects of noise and SNPs on inner hair cell, outer hair cell, and nerve cells, which are responsible for high-frequency perception.
Collapse
Affiliation(s)
- Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Marzieh Belji Kangarlou
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Jaleh Razmjouei
- Masters of Health, Safety & Environment (HSE), Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran.
| |
Collapse
|
4
|
Zhang Y, Liu Y, Li Z, Liu X, Chen Q, Qin J, Liao Q, Du R, Deng Q, Xiao Y, Xing X. Effects of coexposure to noise and mixture of toluene, ethylbenzene, xylene, and styrene (TEXS) on hearing loss in petrochemical workers of southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31620-31630. [PMID: 36449247 DOI: 10.1007/s11356-022-24414-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Many harmful factors existing simultaneously with noise are reported to induce hearing impairment, such as organic solvents. However, the existing hearing safety limits and current risk assessment for hearing loss rely on single noise exposure. It is urgent to clarify the combined effect of noise and other harmful factors on hearing loss. Petrochemical workers are always exposed to noise and organic solvents, mainly benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS), while the combined effect of their coexposure on hearing remains unclear. Herein we conducted a cross-sectional survey, measuring pure-tone audiometry of 1496 petrochemical workers in southern China. Participants exposed to BTEXS were 569, 524, 156, 452, and 177 respectively. Individual cumulative noise exposure (CNE) levels and BTEXS exposure were assessed. The average CNE was 93.27 ± 4.92 dB(A)·years, and the concentrations of BTEXS were far below the occupational exposure limits of China. Logistic regression analyses showed that CNE was consistently positively associated with hearing loss (HL) and high-frequency hearing loss (HFHL) but not related to speech-frequency hearing loss (SFHL). Compared with participants in the lowest quartile of CNE, those in the highest quartile showed an OR of 5.229 (95% CI: 3.179, 8.598) for HFHL. Two-pollutant model analysis indicated that TEXS exposure was positively associated with HL (OR 1.679, 95%CI 1.086, 2.597), SFHL (OR 2.440, 95%CI 1.255, 4.744), and HFHL (OR 1.475, 95%CI 1.077, 2.020). However, no interactions were observed between CNE and TEXS coexposure on hearing loss. In our study, covariates including smoking and drinking status, body mass index (BMI), ear protection and personal protective equipment, and use of earphone/headphone were adjusted. In conclusion, coexposure to noise and low-level TEXS could induce more severe damage on hearing function than exposure to each alone, especially SFHL. Therefore, petrochemical workers simultaneously exposed to noise and TEXS, even at low-level, should be included in hearing protection programs.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Zongxin Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xin Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Rui Du
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Qifei Deng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China.
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Zahra G, Esmaeil K, Mohammad F, Rashidy-Pour A, Mahdi M, Mahdi A, Ali K. Combined effects of the exposure to silver nanoparticles and noise on hearing function and cochlea structure of the male rats. Life Sci 2022; 304:120724. [PMID: 35718234 DOI: 10.1016/j.lfs.2022.120724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
AIMS This study intended to investigate whether exposure to the combination of noise and Ag-NPs in rats induces cochlear damage and hearing dysfunction. MAIN METHODS A total of 24Wistar rats were divided into four treatment groups and received/exposed to saline (IP), Ag-NPs (100 mg/kg, 5d/w for 4 weeks), 8 kHz narrowband noise (104 dB SPL, 6 h/day, 5d/w for 4 weeks) and Ag-NPs plus noise. The DPOAE, serum levels of MDA and SOD and changes in body weight were assessed. The rat cochlea was further stained for investigating the mRNA expression (TL-6, NOX3, and TNF-), IHC (TUJ-1 and MHC7), and histological alterations. The Ag-NPs characteristics were also analysed by SEM and XRD. KEY FINDINGS DPOAE values were remarkably reduced (p < 0.05) among the exposed groups. Furthermore, exposure to noise and Ag-NPs significantly increased MDA levels and decreased the SOD activity in the serum. In comparison to the control group, the expression of IL-6, TNF-, and NOX3 was shown to be elevated in the Ag-NPs plus noise group. The body weight also increased significantly in all groups with the exception of the Ag-NPs plus noise group. IHC tests showed remarkable down-regulation of TUJ1 and MYO7A. Morphological changes confirmed our findings as well. SEM and XRD data validated the production of Ag-NPs. SIGNIFICANCE According to the findings of this study, sub-acute exposure to noise and Ag-NPs causes permanent damage to the hair cells that are in charge of high-frequency perception.
Collapse
Affiliation(s)
- Goodarzi Zahra
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Karami Esmaeil
- Department of Occupational Health Engineering, School of Health, Tehran University of medical sciences, Tehran, Iran
| | - Faridan Mohammad
- Environmental Health Research Center, Department of Occupational Health and Safety at Work Engineering, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammadi Mahdi
- Health Promotion Research Center, Zahedan University of Medical Science, Zahedan, Iran
| | - Akbari Mahdi
- Audiology Department Rehabilitation Faculty, Iran University of Medical Science, Tehran, Iran
| | - Khavanin Ali
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Pirami H, Khavanin A, Nadri F, Tajpoor A, Mehrifar Y, Tirani ZM. The combined effects of noise and vibration stress on sex hormone levels, fertility capacity, and the protective role of cinnamon extract in rats: an experimental study. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2022; 77:764-773. [PMID: 34985406 DOI: 10.1080/19338244.2021.2011085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the high prevalence of noise and vibration exposure in most industries, this study aimed to investigate the effects of simultaneous exposure to noise and vibration on sex hormone levels and fertility capacity in rats, as well as the protective effects of the hydroalcoholic extract of cinnamon. In this experimental study, 64 adult male rats were randomly divided into 8 groups, control, noise (N), cinnamon (C), noise + cinnamon (NC), vibration (V), vibration + cinnamon (VC), noise + vibration (NV) and groups Noise + Vibration + Cinnamon (NVC). Groups C, NC, VC and NVC received a 75 mg/kg dose of cinnamon extract by gavage. The rats of groups N and NC, V and VC and NV and NVC were each exposed to noise at 100 dB (700-5700 Hz), vibration acceleration of 1 m/s2 rms (frequency range of 4-8 Hz), and simultaneously exposed to vibration and noise for 8 hours continuously every night (23:00-7:00) for 50 consecutive nights. Next, a blood sample was taken from the lateral tail vein and the levels of LH, FSH and testosterone were measured with ELISA kits. Each male rat was caged with 3 female rats for one week. The pregnant rats were kept until all of the rat pups were born. Then the fertility capacity, the total number of births, the live births and the birth weight of the rat pups were analyzed with the software SPSS. In the N and NV groups, compared to the control group, a significant decrease in LH and testosterone levels, the number of births and the birth weight was observed (p < 0.05). A significant decrease in testosterone levels, number of births and birth weight was observed in Group V compared to the control group (p < 0.05). In addition, significant increases in LH, FSH and testosterone levels and in birth weight were observed in group C compared to the control group (p < 0.05). Significant increases in FSH and testosterone levels, birth weight, and the number of births were noted in the NVC group compared to the NV group (p < 0.05). Based on the results of this study, cinnamon extract could alleviate the destructive effects of noise and vibration (both individually and in combination) on levels of sex hormones (LH, FSH, and testosterone), the number of births, and birth weight.
Collapse
Affiliation(s)
- Hamideh Pirami
- Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khavanin
- Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farshad Nadri
- Occupational Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Tajpoor
- Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Younes Mehrifar
- Department of Occupational Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
8
|
Sisto R, Cerini L, Sanjust F, Carbonari D, Gherardi M, Gordiani A, L'Episcopo N, Paci E, Pigini D, Tranfo G, Moleti A. Distortion product otoacoustic emission sensitivity to different solvents in a population of industrial painters. Int J Audiol 2020; 59:443-454. [PMID: 31910691 DOI: 10.1080/14992027.2019.1710776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Objective: To evaluate the ototoxic effect of the exposure to different organic solvents and noise using distortion product otoacoustic emissions (DPOAEs).Design: The exposure to different solvents was evaluated by measuring, before and at the end of the work-shift, the urinary concentrations of solvent metabolites used as dose biomarkers. The urinary concentrations of DNA and RNA oxidation products were also measured as biomarkers of oxidative damage. The simultaneous exposure to noise was also evaluated. DPOAEs and pure tone audiometry (PTA) were used as outcome variables, and were correlated to the exposure variables using mixed effect linear regression models.Study sample: Seventeen industrial painters exposed to a solvent mixture in a naval industry. A sample size of 15 was estimated from previous studies as sufficient for discriminating small hearing level and DPOAE level differences (5 dB and 2 dB, respectively) at a 95% confidence level.Results: Statistically significant associations were found between the DPOAE level and the urinary dose biomarkers and the oxidative damage biomarkers. DPOAE level and the logarithm of the metabolite concentration showed a significant negative correlation.Conclusions: DPOAE are sensitive biomarkers of exposure to ototoxic substances and can be effectively used for the early detection of hearing dysfunction.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Luigi Cerini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Filippo Sanjust
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Damiano Carbonari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Nunziata L'Episcopo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Arturo Moleti
- Department of Physics, University of Roma 'Tor Vergata', Rome, Italy
| |
Collapse
|
9
|
Haghighat M, Allameh A, Fereidan M, Khavanin A, Ghasemi Z. Effects of concomitant exposure to styrene and intense noise on rats' whole lung tissues. Biochemical and histopathological studies. Drug Chem Toxicol 2019; 45:120-126. [PMID: 31576762 DOI: 10.1080/01480545.2019.1662033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Concurrent exposure to styrene (ST) and noise is common especially in industrial environments. The present study aims to determine the related oxidant-induced changes as the result of combined exposure to ST and noise. For this purpose, 24 male Wistar rats were used in four experimental groups (n = 6/groups): (1) control group, (2) the group exposed to an octave band of noise centered at 8 kHz (100 dB SPL) (6 h/day), (3) the group inhalationally exposed to ST (750 ppm) (6 h/day), (4) the group exposed to noise and ST simultaneously. The DNA damage was measured by assessing the concentration of 8-hydroxyl-2-deoxyguanosine (8-OHdG) using ELISA kit. Levels of lipid peroxidation (MDA), GSH and antioxidative activity of SOD and CAT were also determined in whole lung tissues. The results relatively indicated that sub-acute exposure to both noise and ST can lead to pathological damage in rat lung tissues. Furthermore, enhanced levels of 8-OHdG and MDA production were observed in lung tissues. In contrast, GSH, CAT and SOD were markedly reduced in co-exposed group. The results of the study verified additive interaction between noise and ST on accumulation of DNA oxidation products, progressive morphological damages as well as undermining the antioxidative defense system in the rat lung tissues.
Collapse
Affiliation(s)
- Mojtaba Haghighat
- Department of occupational health engineering, Behbahan faculty of medical sciences , Behbahan , Iran
| | - Abdolamir Allameh
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mohammad Fereidan
- Department of occupational health engineering, School of health and nutrition, Lorestan university of medical sciences , Khoramabad , Iran
| | - Ali Khavanin
- Department of occupational health engineering, Faculty of medical sciences, Tarbiat Modares University , Tehran , Iran
| | - Zahrasadat Ghasemi
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR , Tehran , Iran
| |
Collapse
|
10
|
The Effects of Simultaneous Exposure to Styrene and Noise on Working Memory, Anxiety and Locomotor Activity in Rats. HEALTH SCOPE 2019. [DOI: 10.5812/jhealthscope.79211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Banton MI, Bus JS, Collins JJ, Delzell E, Gelbke HP, Kester JE, Moore MM, Waites R, Sarang SS. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:1-130. [PMID: 31284836 DOI: 10.1080/10937404.2019.1633718] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.
Collapse
Affiliation(s)
- M I Banton
- a Gorge View Consulting LLC , Hood River , OR , USA
| | - J S Bus
- b Health Sciences , Exponent , Midland , MI , USA
| | - J J Collins
- c Health Sciences , Saginaw Valley State University , Saginaw , MI , USA
| | - E Delzell
- d Private consultant , Birmingham , AL , USA
| | | | - J E Kester
- f Kester Consulting LLC , Wentzville , MO , USA
| | | | - R Waites
- h Sabic , Innovative Plastics US LLC , Mount Vernon , IN , USA
| | - S S Sarang
- i Shell Health , Shell International , Houston , TX , USA
| |
Collapse
|
12
|
Habybabady RH, Mohammadi M, Mortazavi SB, Khavanin A, Mirzaei R, Malvajerdi MS. The effect of simultaneous exposure to cigarette smoke and noise on distortion product otoacoustic emissions in rats. Toxicol Ind Health 2019; 35:349-357. [PMID: 30971172 DOI: 10.1177/0748233719839865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cigarette smoking is a possible risk factor for hearing loss. However, the impact of simultaneous exposure to noise and smoke on hearing has remained controversial. This study investigated the combined effect of exposure to cigarette smoking and noise on hearing loss. Three groups of male Wistar rats (275 ± 25 g) were subjected to white noise (102 ± 0.5 dB), cigarette smoking (20 cigarettes), and both cigarette smoking and noise for 8 h and 10 days inside the exposure chamber. The control group was exposed to neither noise nor smoke. Distortion product otoacoustic emissions (DPOAE) were measured before any intervention, and it was repeated 1, 7, and 21 days after the last exposure. One-day postexposure to noise, cigarette smoking, and both cigarette smoking and noise, the mean of DPOAE amplitudes decreased significantly ( p < 0.05) between, respectively, 5.7-30.7, 1.5-7.5, and 5.2-32.6 dB within the frequency range of 4620-9960. Temporal DPOAE change in rats exposed to noise or both cigarette smoking and noise was not significantly different ( p > 0.05). DPOAE amplitudes returned to the baseline values in the group subjected to smoking 21 days postexposure. The most permanent change was observed in rats exposed to both cigarette smoking and noise. Accordingly, simultaneous subacute exposure to noise and cigarette smoking increases the effect of noise on permanent hearing loss. Therefore, smoking workers exposed to noise might be at a greater risk of developing hearing loss, and it is recommended that authorities in charge take note of this evidence.
Collapse
Affiliation(s)
- Raheleh Hashemi Habybabady
- 1 Department of Occupational Health Engineering, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdi Mohammadi
- 2 Department of Biostatistics and Epidemiology, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Bagher Mortazavi
- 3 Department of Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khavanin
- 3 Department of Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ramazan Mirzaei
- 4 Department of Environmental and Occupational Health Engineering, School of Health, Social determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Sadeghi Malvajerdi
- 1 Department of Occupational Health Engineering, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
13
|
Faridan M, Khavanin A, Mirzaei R. Preconditioning by the inhalation of pure oxygen protects rat’s cochlear function against noise-induced hearing loss. ACTA ACUST UNITED AC 2017. [DOI: 10.29252/johe.6.4.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Pleban FT, Oketope O, Shrestha L. Occupational Styrene Exposure on Auditory Function Among Adults: A Systematic Review of Selected Workers. Saf Health Work 2017; 8:329-336. [PMID: 29276630 PMCID: PMC5715476 DOI: 10.1016/j.shaw.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/30/2016] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
Abstract
A review study was conducted to examine the adverse effects of styrene, styrene mixtures, or styrene and/or styrene mixtures and noise on the auditory system in humans employed in occupational settings. The search included peer-reviewed articles published in English language involving human volunteers spanning a 25-year period (1990–2015). Studies included peer review journals, case–control studies, and case reports. Animal studies were excluded. An initial search identified 40 studies. After screening for inclusion, 13 studies were retrieved for full journal detail examination and review. As a whole, the results range from no to mild associations between styrene exposure and auditory dysfunction, noting relatively small sample sizes. However, four studies investigating styrene with other organic solvent mixtures and noise suggested combined exposures to both styrene organic solvent mixtures may be more ototoxic than exposure to noise alone. There is little literature examining the effect of styrene on auditory functioning in humans. Nonetheless, findings suggest public health professionals and policy makers should be made aware of the future research needs pertaining to hearing impairment and ototoxicity from styrene. It is recommended that chronic styrene-exposed individuals be routinely evaluated with a comprehensive audiological test battery to detect early signs of auditory dysfunction.
Collapse
Affiliation(s)
- Francis T Pleban
- Department of Public Health, Health Administration, and Health Sciences, Tennessee State University, Avon Williams Campus, Nashville, TN, USA
| | - Olutosin Oketope
- Department of Public Health, Health Administration, and Health Sciences, Tennessee State University, Avon Williams Campus, Nashville, TN, USA
| | - Laxmi Shrestha
- Department of Public Health, Health Administration, and Health Sciences, Tennessee State University, Avon Williams Campus, Nashville, TN, USA
| |
Collapse
|
15
|
Effects of Exposure to Cigarette Smoke on Distortion-Product Otoacoustic Emissions in Rats. HEALTH SCOPE 2016. [DOI: 10.5812/jhealthscope.15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Sisto R, Botti T, Cerini L, Sanjust F, Tranfo G, Bonanni RC, Paci E, Pigini D, Moleti A. Oxidative stress biomarkers and otoacoustic emissions in humans exposed to styrene and noise. Int J Audiol 2016; 55:523-31. [PMID: 27146376 DOI: 10.1080/14992027.2016.1177215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Evaluating the correlation between otoacoustic emission levels, styrene exposure, and oxidative stress biomarkers concentration in styrene-exposed subjects, to investigate the role of oxidative stress in outer hair cell damage. DESIGN Distortion product otoacoustic emissions were measured in the exposed workers and in a control group. Separation between the distortion and reflection otoacoustic components was performed by time-frequency-domain filtering. The urinary concentration of the DNA and RNA oxidation products, namely 8-oxo-7,8-dihydroguanine (oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxodGuo), and 8-oxo-7,8-dihydroguanosine (oxoGuo), were evaluated. STUDY SAMPLE Nine subjects exposed to styrene in a fiberglass factory, eight control subjects. The two groups were statistically equivalent in mean age. RESULTS Statistically significant differences were found in the distortion component levels between the exposed and the control group. High levels of the oxidative damage biomarkers were found in the workers exposed to high levels of styrene. Significant negative correlation was found between the otoacoustic emission distortion component levels and the concentration of the oxoGuo biomarker. CONCLUSIONS Exposure-induced damage of the cochlear amplifier is shown in the mid-frequency range, confirming animal experiments, in which hair cells in the cochlear middle turn were damaged. Hearing damage is consistent with the outer hair cell apoptosis pathway associated with oxidative stress.
Collapse
Affiliation(s)
- R Sisto
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - T Botti
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - L Cerini
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - F Sanjust
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - G Tranfo
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - R C Bonanni
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - E Paci
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - D Pigini
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - A Moleti
- b Physics Department, University of Roma Tor Vergata , Roma (Italy)
| |
Collapse
|
17
|
Venet T, Campo P, Thomas A, Cour C, Rieger B, Cosnier F. The tonotopicity of styrene-induced hearing loss depends on the associated noise spectrum. Neurotoxicol Teratol 2015; 48:56-63. [DOI: 10.1016/j.ntt.2015.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 11/25/2022]
|
18
|
Abstract
The main hazard for hearing in the workplace is noise. Organic solvents and heavy metals may increase the danger of developing occupational hearing loss, particularly in the case of co-exposure with noise. While noise produces damage predominantly to the cochlea, chemicals may be responsible for pathologic changes in both peripheral and central parts of the auditory pathway. Noise-induced hearing loss develops slowly over the years, although its progression is most dynamic during the first 10-15 years of exposure. Pure-tone audiometry indicates a bilateral sensorineural hearing loss, affecting predominantly high frequencies, with typical notch at 3-6 kHz in the early stages of the disease. Where there is co-exposure to noise and chemicals, the noise effect on hearing threshold shifts is dominant; however chemicals seem to increase the vulnerability of the cochlea to the damage by noise, particularly at its low and moderate levels. According to European Directive 2003/10/EC, the employer is obliged to implement hearing prevention programs when the A-weighted equivalent 8-hour level of noise (LAEX8 hr) exceeds 80 dB. Since chemicals may impair intelligibility of speech despite a lack of audiometric hearing threshold shift, implementation of speech audiometry, particularly speech in noise tests, is recommended in prevention programs.
Collapse
|
19
|
Cannizzaro E, Cannizzaro C, Plescia F, Martines F, Soleo L, Pira E, Lo Coco D. Exposure to ototoxic agents and hearing loss: A review of current knowledge. HEARING BALANCE AND COMMUNICATION 2014. [DOI: 10.3109/21695717.2014.964939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Yu J, Wang Y, Liu P, Li Q, Sun Y, Kong W. Mitochondrial DNA common deletion increases susceptibility to noise-induced hearing loss in a mimetic aging rat model. Biochem Biophys Res Commun 2014; 453:515-20. [PMID: 25285633 DOI: 10.1016/j.bbrc.2014.09.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022]
Abstract
Noise-induced hearing loss (NIHL) is an important occupational health hazard. However, susceptibility to NIHL remains poorly understood. The present study was designed to investigate whether mitochondrial DNA common deletion (CD) increases the susceptibility of individuals to NIHL. A mimetic aging rat model harboring increased CD in the inner ear was established by chronic d-galactose administration, and the synergic effect of CD and noise on hearing sensitivity was assessed. We determined that although developed the same magnitude of temporary threshold shifts and hair cell loss, the d-galactose treated rats with increased CD in the inner ear exhibited a longer hearing recovery process and experienced higher permanent hearing threshold shifts at high frequencies than the saline-treated control rats. Greater supporting cell damage and stria vascularis ultrastructural changes were observed in d-galactose treated rats three weeks after recovery. The results suggested that the elevated CD in the inner ear could increase an individual's susceptibility to NIHL, which likely through a reduction in the self-repairing capability within the cochlea after acoustic injury.
Collapse
Affiliation(s)
- Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yanjun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingyu Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Campo P, Venet T, Thomas A, Cour C, Brochard C, Cosnier F. Neuropharmacological and cochleotoxic effects of styrene. Consequences on noise exposures. Neurotoxicol Teratol 2014; 44:113-20. [DOI: 10.1016/j.ntt.2014.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
22
|
Sisto R, Cerini L, Gatto MP, Gherardi M, Gordiani A, Sanjust F, Paci E, Tranfo G, Moleti A. Otoacoustic emission sensitivity to exposure to styrene and noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:3739-3748. [PMID: 24180784 DOI: 10.1121/1.4824618] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ototoxic effect of the exposure to styrene is evaluated, also in the presence of simultaneous exposure to noise, using otoacoustic emissions as biomarkers of mild cochlear damage. Transient-evoked and distortion product otoacoustic emissions were recorded and analyzed in a sample of workers (15 subjects) exposed to styrene and noise in a fiberglass manufacturing facility and in a control group of 13 non-exposed subjects. Individual exposure monitoring of the airborne styrene concentrations was performed, as well as biological monitoring, based on the urinary concentration of two styrene metabolites, the Mandelic and Phenylglyoxylic acids. Noise exposure was evaluated using wearable phonometers, and hearing loss with pure tone audiometry. Due to their different job tasks, one group of workers was exposed to high noise and low styrene levels, another group to higher styrene levels, close to the limit of 20 ppm, and to low noise levels. A significant negative correlation was found between the otoacoustic emission levels and the concentration of the styrene urinary metabolites. Otoacoustic emissions, and particularly distortion products, were able to discriminate the exposed workers from the controls, providing also a rough estimate of the slope of the dose-response relation between otoacoustic levels and styrene exposure.
Collapse
Affiliation(s)
- R Sisto
- Occupational Hygiene Department, INAIL Research, Monteporzio Catone (Roma), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Combined effects of noise, vibration, and low temperature on the physiological parameters of labor employees. Kaohsiung J Med Sci 2013; 29:560-7. [PMID: 24099111 DOI: 10.1016/j.kjms.2013.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/27/2012] [Indexed: 11/21/2022] Open
Abstract
Noise, vibration, and low temperature render specific occupational hazards to labor employees. The purpose of this research was to investigate the combined effects of these three physical hazards on employees' physiological parameters. The Taguchi experimental method was used to simulate different exposure conditions caused by noise, vibration, and low temperature, and their effects on the physiological parameters of the test takers were measured. The data were then analyzed using statistical methods to evaluate the combined effects of these three factors on human health. Results showed that the factor that influenced the finger skin temperature, manual dexterity, and mean artery pressure (MAP) most was air temperature, and exposure time was the second most influential factor. Noise was found to be the major factor responsible for hearing loss; in this case, hand-arm vibration and temperature had no effect at all. During the study, the temperature was confined in the 5-25°C range (which was not sufficient to study the effects at extremely high- and low-temperature working conditions) because the combined effects of even two factors were very complicated. For example, the combined effects of hand-arm vibration and low temperature might lead to occupational hazards such as vibration-induced white finger syndrome in working labors. Further studies concerning the occupational damage caused by the combined effects of hazardous factors need to be conducted in the future.
Collapse
|
24
|
|
25
|
Vyskocil A, Truchon G, Leroux T, Lemay F, Gendron M, Gagnon F, Majidi NE, Boudjerida A, Lim S, Emond C, Viau C. A weight of evidence approach for the assessment of the ototoxic potential of industrial chemicals. Toxicol Ind Health 2011; 28:796-819. [PMID: 22064681 DOI: 10.1177/0748233711425067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is accumulating epidemiological evidence that exposure to some solvents, metals, asphyxiants and other substances in humans is associated with an increased risk of acquiring hearing loss. Furthermore, simultaneous and successive exposure to certain chemicals along with noise can increase the susceptibility to noise-induced hearing loss. There are no regulations that require hearing monitoring of workers who are employed at locations in which occupational exposure to potentially ototoxic chemicals occurs in the absence of noise exposure. This project was undertaken to develop a toxicological database allowing the identification of possible ototoxic substances present in the work environment alone or in combination with noise exposure. Critical toxicological data were compiled for chemical substances included in the Quebec occupational health regulation. The data were evaluated only for noise exposure levels that can be encountered in the workplace and for realistic exposure concentrations up to the short-term exposure limit or ceiling value (CV) or 5 times the 8-h time-weighted average occupational exposure limit (TWA OEL) for human data and up to 100 times the 8-h TWA OEL or CV for animal studies. In total, 224 studies (in 150 articles of which 44 evaluated the combined exposure to noise and a chemical) covering 29 substances were evaluated using a weight of evidence approach. For the majority of cases where potential ototoxicity was previously proposed, there is a paucity of toxicological data in the primary literature. Human and animal studies indicate that lead, styrene, toluene and trichloroethylene are ototoxic and ethyl benzene, n-hexane and p-xylene are possibly ototoxic at concentrations that are relevant to the occupational setting. Carbon monoxide appears to exacerbate noise-induced hearing dysfunction. Toluene interacts with noise to induce more severe hearing losses than the noise alone.
Collapse
Affiliation(s)
- A Vyskocil
- Institut de recherche en santé publique de l'Université de Montréal, Département de santé environnementale et santé au travail, Université de Montréal, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fuente A, McPherson B, Hickson L. Central auditory dysfunction associated with exposure to a mixture of solvents. Int J Audiol 2011; 50:857-65. [DOI: 10.3109/14992027.2011.605805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
|
28
|
Gopal KV, Wu C, Moore EJ, Gross GW. Assessment of styrene oxide neurotoxicity using in vitro auditory cortex networks. ISRN OTOLARYNGOLOGY 2011; 2011:204804. [PMID: 23724250 PMCID: PMC3658808 DOI: 10.5402/2011/204804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/06/2011] [Indexed: 11/23/2022]
Abstract
Styrene oxide (SO) (C8H8O), the major metabolite of styrene (C6H5CH=CH2), is widely used in industrial applications. Styrene and SO are neurotoxic and cause damaging effects on the auditory system. However, little is known about their concentration-dependent electrophysiological and morphological effects. We used spontaneously active auditory cortex networks (ACNs) growing on microelectrode arrays (MEA) to characterize neurotoxic effects of SO. Acute application of 0.1 to 3.0 mM SO showed concentration-dependent inhibition of spike activity with no noticeable morphological changes. The spike rate IC50 (concentration inducing 50% inhibition) was 511 ± 60 μM (n = 10). Subchronic (5 hr) single applications of 0.5 mM SO also showed 50% activity reduction with no overt changes in morphology. The results imply that electrophysiological toxicity precedes cytotoxicity. Five-hour exposures to 2 mM SO revealed neuronal death, irreversible activity loss, and pronounced glial swelling. Paradoxical "protection" by 40 μM bicuculline suggests binding of SO to GABA receptors.
Collapse
Affiliation(s)
- Kamakshi V Gopal
- Department of Speech and Hearing Sciences, University of North Texas, P.O. Box 305010, Denton, TX 76203-5010, USA ; Center for Network Neuroscience, University of North Texas, P.O. Box 305010, Denton, TX 76203-5010, USA
| | | | | | | |
Collapse
|
29
|
Morata TC, Sliwinska-Kowalska M, Johnson AC, Starck J, Pawlas K, Zamyslowska-Szmytke E, Nylen P, Toppila E, Krieg E, Pawlas N, Prasher D. A multicenter study on the audiometric findings of styrene-exposed workers. Int J Audiol 2011; 50:652-60. [DOI: 10.3109/14992027.2011.588965] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Campo P, Venet T, Rumeau C, Thomas A, Rieger B, Cour C, Cosnier F, Parietti-Winkler C. Impact of noise or styrene exposure on the kinetics of presbycusis. Hear Res 2011; 280:122-32. [PMID: 21616132 DOI: 10.1016/j.heares.2011.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Presbycusis, or age-related hearing loss is a growing problem as the general population ages. In this longitudinal study, the influence of noise or styrene exposure on presbycusis was investigated in Brown Norway rats. Animals were exposed at 6 months of age, either to a band noise centered at 8 kHz at a Lex,8h = 85 dB (86.2 dB SPL for 6 h), or to 300 ppm of styrene for 6 h per day, five days per week, for four weeks. Cubic distortion product otoacoustic emissions (2f1-f2 DPOAEs) were used to test the capacity of the auditory receptor over the lifespan of the animals. 2f1-f2DPOAE measurements are easy to implement and efficiently track the age-related deterioration of mid- and high-frequencies. They are good indicators of temporary auditory threshold shift, especially with a level of primaries close to 60 dB SPL. Post-exposure hearing defects are best identified using moderate, rather than high, levels of primaries. Like many aging humans, aging rats lose sensitivity to high-frequencies faster than to medium-frequencies. Although the results obtained with the styrene exposure were not entirely conclusive, histopathological data showed the presbycusis process to be enhanced. Noise-exposed rats exhibit a loss of spiral ganglion cells from 12 months and a 7 dB drop in 2f1-f2DPOAEs at 24 months, indicating that even moderate-intensity noise can accelerate the presbycusis process. Even though the results obtained with the styrene exposure are less conclusive, the histopathological data show an enhancement of the presbycusis process.
Collapse
Affiliation(s)
- Pierre Campo
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519 Vandœuvre Cédex, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rumeau C, Campo P, Venet T, Thomas A, Cour C, Parietti-Winkler C. Toluene effect on the olivocochlear reflex. Toxicol Sci 2011; 121:140-5. [PMID: 21292641 DOI: 10.1093/toxsci/kfr025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that toluene can cause hearing loss and can exacerbate the effects of noise by inhibiting the middle ear acoustic reflex. In this investigation, carried out in Long-Evans rats, the tensor tympani tendon was cutoff and the stapedius muscle was electrocoagulated in one or both middle ears. Rat hearing was evaluated by measuring cubic distortion otoacoustic emissions (2f1-f2; f1 = 8000 Hz; f2 = 9600 Hz; f1/f2 = 1.2) prior to, during, and after activation of the olivocochlear (OC) reflex. A band noise centered at 4 kHz was used as suppressor noise. It was delivered contralaterally to decrease 2f1-f2 amplitude. The strength of the inner ear acoustic reflex was tested by increasing contralateral noise intensity, and toluene injected into the carotid artery was used to study physiological efficacy. Results showed that the protective effect of the OC reflex is intensity dependent. In addition, the OC reflex was found to be less sensitive to toluene than the middle ear acoustic reflex. This may be because the efferent neurons involved in inner ear and middle ear reflexes are located differently. In conclusion, the synergistic effects on hearing of co-exposure to noise and aromatic solvents are because of solvents depressing the central nuclei, which mainly drive the middle ear acoustic reflex.
Collapse
Affiliation(s)
- Cécile Rumeau
- Polluants et Santé Department, Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519 Vandœuvre Cédex, France
| | | | | | | | | | | |
Collapse
|
32
|
Combined effects of ototoxic solvents and noise on hearing in automobile plant workers in Iran. Arh Hig Rada Toksikol 2011; 61:267-74. [PMID: 20860967 DOI: 10.2478/10004-1254-61-2010-2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure of workers to mixtures of organic solvents and to occupational noise is frequent in a number of industries. Recent studies suggest that exposure to both can cause a more severe hearing loss than exposure to noise alone. Our cross-sectional study included 411 workers of a large automobile plant divided in three groups. The first group included assembly workers exposed to noise alone; the second included workers in a new paint shop, who were exposed to a mixture of organic solvents at a permissible level; and the third group included paint shop workers exposed to both noise and higher than permissible levels of organic solvents in an old paint shop. These groups were compared in terms of low-frequency hearing loss (model 1; average hearing threshold >25 dB at 0.5 kHz, 1 kHz, and 2 kHz) and high-frequency hearing loss (model 2; average hearing threshold >25 dB at 3 kHz, 4 kHz, 6 kHz, and 8 kHz). High-frequency hearing loss was more common in workers exposed to a combination of noise and mixed organic solvents even at permissible levels than in workers exposed to noise alone even after correction for confounding variables. This study shows that combined exposure to mixed organic solvents and occupational noise can exacerbate hearing loss in workers. Therefore, an appropriate hearing protection programme is recommended, that would include short-interval audiometric examinations and efficient hearing protectors.
Collapse
|
33
|
Venet T, Rumeau C, Campo P, Rieger B, Thomas A, Cour C. Neuronal circuits involved in the middle-ear acoustic reflex. Toxicol Sci 2010; 119:146-55. [PMID: 20937727 DOI: 10.1093/toxsci/kfq312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human and animal studies have shown that certain aromatic solvents such as toluene can cause hearing loss and can exacerbate the effects of noise. The latter effects might be due to a modification of responses of motoneurons controlling the middle-ear acoustic reflex. In the present investigation, the audition of Long-Evans rats was evaluated by measuring cubic (2f1 - f2) distortion otoacoustic emissions (f1 = 8000 Hz; f2 = 9600 Hz; f1/f2 = 1.2) prior to, during, and after activation of the middle-ear acoustic reflex. A noise suppressor was used to modify the amplitude of the 2f1 - f2 distortion otoacoustic emissions. It was delivered either contralaterally (band noise centered at 4 kHz), or ipsilaterally (3.5 kHz sine wave) to test the role played by the central auditory nuclei. This audiometric approach was used to study the physiological efficiency of the middle-ear acoustic reflex during an injection of a bolus of Intralipid (as a vehicle) containing 58.4, 87.4, or 116.2mM toluene via the carotid artery. The results showed that toluene could either increase or decrease middle-ear acoustic reflex efficiency, depending on the toluene concentration and the ear receiving noise suppressor. A new neuronal circuit of the middle-ear acoustic reflex has been proposed to explain findings obtained in this investigation. Finally, the depressing action of toluene on the central auditory nuclei driving the middle-ear acoustic reflex might explain the synergistic effects of a co-exposure to noise and aromatic solvents.
Collapse
Affiliation(s)
- Thomas Venet
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519 Vandœuvre Cédex, France
| | | | | | | | | | | |
Collapse
|
34
|
Peripheral and Central Auditory Dysfunction Induced by Occupational Exposure to Organic Solvents. J Occup Environ Med 2009; 51:1202-11. [DOI: 10.1097/jom.0b013e3181bae17c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Chen GD, Henderson D. Cochlear injuries induced by the combined exposure to noise and styrene. Hear Res 2009; 254:25-33. [DOI: 10.1016/j.heares.2009.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/15/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
|
36
|
Abstract
Organic solvents have been reported to adversely affect human health, including hearing health. Animal models have demonstrated that solvents may induce auditory damage, especially to the outer hair cells. Research on workers exposed to solvents has suggested that these chemicals may also induce auditory damage through effects on the central auditory pathways. Studies conducted with both animals and humans demonstrate that the hearing frequencies affected by solvent exposure are different to those affected by noise, and that solvents may interact synergistically with noise. The present article aims to review the contemporary literature of solvent-induced hearing loss, and consider the implications of solvent-induced auditory damage for clinical audiologists. Possible audiological tests that may be used when auditory damage due to solvent exposure is suspected are discussed.
Collapse
Affiliation(s)
- Adrian Fuente
- Centre for Communication Disorders, The University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
37
|
Vyskocil A, Leroux T, Truchon G, Lemay F, Gendron M, Gagnon F, El Majidi N, Viau C. Ethyl benzene should be considered ototoxic at occupationally relevant exposure concentrations. Toxicol Ind Health 2009; 24:241-6. [PMID: 19022877 DOI: 10.1177/0748233708094097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organic solvents can produce ototoxic effects in both man and experimental animals. The objective of this study was to review the literature on the effects of low-level exposure to ethyl benzene on the auditory system and consider its relevance for the occupational settings. Both human and animal investigations were evaluated only for realistic exposure concentrations based on the permissible exposure limits. In Quebec, the Time-Weighed Average Exposure Value for 8A h (TWAEV) is 100A ppm (434A mg/m(3)) and the Short-Term Exposure Value for 15A min (STEV) is 125A ppm (543A mg/m(3)). In humans, the upper limit for considering ototoxicity data relevant to the occupational exposure situation was set at STEV. Animal data were evaluated only for exposure concentrations up to 100 times the TWAEV. In workers, there is no evidence of either ethyl benzene-induced hearing losses or ototoxic interaction after combined exposure to ethyl benzene and noise. In rats, ethyl benzene affects the auditory function mainly in the cochlear mid-frequency range and ototoxic interaction was observed after combined exposure to noise and ethyl benzene. Further studies with sufficient data on the ethyl benzene exposure of workers are necessary to make a definitive conclusion. Given the current evidence from animal studies, we recommend considering ethyl benzene as an ototoxic agent.
Collapse
Affiliation(s)
- A Vyskocil
- Département de santé environnementale et santé au travail, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Botelho CT, Paz APML, Gonçalves AM, Frota S. Comparative study of audiometrics tests on metallurgical workers exposed to noise only as well as noise associated to the handling of chemical products. Braz J Otorhinolaryngol 2009; 75:51-7. [PMID: 19488560 PMCID: PMC9442217 DOI: 10.1016/s1808-8694(15)30831-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 11/02/2007] [Indexed: 11/30/2022] Open
Abstract
Exposure to ototoxic chemical products in the presence or absence of noise can cause irreversible injury to the hearing of workers for a significantly short period of exposure period. Aim: to perform a comparative study, through audiometric tests, in workers exposed to noise only and noise associated with chemical products. Materials and Methods:155 steel workers (18 - 50 years) exposed to noise (group I), and exposed to noise and chemical products (group II) for a period that varies from 3 to 20 years. Results: significant difference in the rate of occupational hearing loss in the right ear between groups I (3.6%) and II (15.5%). A significantly higher rate of occupational hearing loss in group II (18.3%) and I (6%). With respect to the average time of exposure to aggressive agents, group I was exposed by a significantly higher time. Retrospective study. Discussion: The fact that the right ear was more affected in group II is controversial and should be better investigated in the future, since some studies show that the left ear would be more prone to noise-induced hearing loss. Conclusion: group II had proportionally a higher rate of hearing loss when compared with group I, even after having been exposed to aggressive agents for a lower average time.
Collapse
|
39
|
Genetic effects and biotoxicity monitoring of occupational styrene exposure. Clin Chim Acta 2009; 399:8-23. [PMID: 18845133 DOI: 10.1016/j.cca.2008.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 11/22/2022]
|
40
|
Maguin K, Campo P, Parietti-Winkler C. Toluene Can Perturb the Neuronal Voltage-Dependent Ca2+ Channels Involved in the Middle-Ear Reflex. Toxicol Sci 2008; 107:473-81. [DOI: 10.1093/toxsci/kfn242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Hoet P, Lison D. Ototoxicity of Toluene and Styrene: State of Current Knowledge. Crit Rev Toxicol 2008; 38:127-70. [DOI: 10.1080/10408440701845443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Zuo H, Cui B, She X, Wu M. Changes in Guinea pig cochlear hair cells after sound conditioning and noise exposure. J Occup Health 2008; 50:373-9. [PMID: 18654041 DOI: 10.1539/joh.l8032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sound conditioning has reduced noise-induced hearing loss in experimental mammalian animals and in clinical observation. Forty guinea pigs were grouped as: A, control; B, conditioning noise exposure group; C, high level noise exposure group; and D, conditioning noise exposure followed by a high level noise exposure group. Auditory brainstem response thresholds were measured. The cochlear sensory epithelia surface was observed microscopically. Calmodulin, F-actin and heat shock protein 70 (HSP70) in hair cells were immunohistochemistrically stained. The intracellular free calcium was stained for confocal microscopy. The ABR threshold shift after noise exposure was higher in group C than D, and showed a quicker and better recovery in group D than C. Stereocilia loss and the disarrangement of outer hair cells were observed, with the greatest changes seen in group C, followed by groups D and B. The most intensive immunohistochemical intracellular expressions of calmodulin, F-actin, and HSP70 were found in group D, followed by groups C, B and A. The highest intensity of the fluorescent intracellular free Ca2+ staining in the isolated outer hair cells was observed in group C. The ABR and morphological studies confirmed the protective effect from noise trauma of sound conditioning. The protective mechanism of hair cells during sound conditioning was enforced through the increase of cellular cytoskeleton proteins and through the relieving of intracellular calcium overloading caused by the traumatic noise.
Collapse
Affiliation(s)
- Hongyan Zuo
- Department of Occupational Hygiene, Institute of Health and Environmental Medicine of Tianjin, PR China
| | | | | | | |
Collapse
|
43
|
Chen GD, Tanaka C, Henderson D. Relation between outer hair cell loss and hearing loss in rats exposed to styrene. Hear Res 2008; 243:28-34. [PMID: 18586423 DOI: 10.1016/j.heares.2008.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/24/2008] [Accepted: 05/08/2008] [Indexed: 11/19/2022]
Abstract
The relationship between outer hair cell (OHC) loss and cochlear sensitivity is still unclear, because in many animal models there exist surviving but dysfunctional OHCs and also injured/dead inner hair cells (IHC). Styrene is an ototoxic agent, which targets and destroys OHCs starting from the third row to the second and first rows depending on the exposure level. The remaining cells may be less affected. In this experiment, rats were exposed to styrene by gavage at different doses (200-800 mg/kg/day) for varying periods (5 days/week for 3-12 weeks). An interesting finding was that the cochlear sensitivity was not affected in a few rats with all OHCs in the third row being destroyed by styrene. A further loss of OHCs was usually accompanied with a linear input/output (I/O) function of cochlear compound action potentials (CAP), indicating the loss of cochlear amplification. However, normal CAP amplitudes at the highest stimulation level of 90 dB SPL were often observed when all OHCs were destroyed, indicating normal function of the remaining IHCs. The OHC-loss/hearing-loss relation appeared to be a sigmoid-type function. Initially, styrene-induced OHC losses (<33%) did not result in a significant threshold shift. Then CAP threshold shift increased dramatically with OHC loss from 33% to 66%. Then, CAP threshold changed less with OHC loss. The data suggest a tri-modal relationship between OHC loss and cochlear amplification. That is, under the condition that all surviving OHCs are ideally functioning, the cochlear amplifier is not affected until 33% of OHCs are absent, then the gain of the amplifier decreases proportionally with the OHC loss, and at last the amplifier may fail completely when more than 67% of OHCs are lost.
Collapse
Affiliation(s)
- Guang-Di Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
44
|
Cakir BO, Ercan I, Civelek S, Körpinar S, Toklu AS, Gedik O, Işik G, Sayin I, Turgut S. Negative effect of immediate hyperbaric oxygen therapy in acute acoustic trauma. Otol Neurotol 2008; 27:478-83. [PMID: 16791038 DOI: 10.1097/01.mao.0000224080.77849.3d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The functional evaluation of the effect of the hyperbaric oxygen therapy (HBOT) onset time on cochlea by using distortion product otoacoustic emission. STUDY DESIGN Animal study. METHODS Twenty-four Wistar albino rats were divided into six groups and their right ears were directly exposed to a 110-dB sound pressure level (1-12 kHz) white noise for 25 minutes. The first group was considered the control group. HBOT was started at 1 hour postexposure for the second group, at 2 hours postexposure for the third group, at 6 hours postexposure for the fourth group, at 24 hours postexposure for the fifth group, and at 48 hours postexposure for the sixth group. Signal-to-noise ratios (SNRs) were recorded before the noise exposure; immediately after the noise exposure; and on the 3rd, 7th, and 10th day of postexposure. RESULTS SNRs at 6 to 8 kHz were significantly decreased after the acoustic trauma. The evaluation on the third day of postexposure showed that recovery begun in all groups except the group in which the HBOT was started at 1 hour postexposure. SNRs in the control group and HBOT groups were back to the preexposure levels at 10 days postexposure, except the 1- and 2-hour postexposure groups. However, in the group in which the HBOT was started at 1 hour postexposure, distortion product otoacoustic emissions were lost except at 4 kHz. The recovery of the SNRs in hyperbaric oxygen administration at 2 hours postexposure almost completed on the 10th day after noise exposure. CONCLUSION Immediate HBOT in acoustic trauma treatment is not necessary; on the contrary, it has an adverse effect.
Collapse
Affiliation(s)
- Burak Omür Cakir
- 1st Department of Otorhinolaryngology-Head and Neck Surgery, Sişli Etfal Research and Training Hospital, and Department of Underwater and Hyperbaric Medicine, Istanbul Faculty of Medicine, Boğaziçi University, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hazards to Hearing from Combined Exposure to Toluene and Noise in Rats. Int J Occup Med Environ Health 2008; 21:47-57. [DOI: 10.2478/v10001-008-0008-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Sliwinska-Kowalska M, Prasher D, Rodrigues CA, Zamysłowska-Szmytke E, Campo P, Henderson D, Lund SP, Johnson AC, Schäper M, Odkvist L, Starck J, Toppila E, Schneider E, Möller C, Fuente A, Gopal KV. Ototoxicity of organic solvents - from scientific evidence to health policy. Int J Occup Med Environ Health 2007; 20:215-22. [PMID: 17638686 DOI: 10.2478/v10001-007-0021-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The scientific workshop, organized under the 6th European Framework Programme, the Marie Curie Host Fellowship for the Transfer of Knowledge "NoiseHear" Project, by the Nofer Institute of Occupational Medicine (Łódź, Poland, 15-16 November 2006), gathered world specialists in noise, chemicals, and ototoxicity, including hearing researchers, toxicologists, otolaryngologists, audiologists and occupational health physicians.The workshop examined the evidence and the links between isolated exposure to organic solvents, combined exposure to noise and solvents, and effects on the auditory system. Its main purpose was to review the key scientific evidence to gather the necessary knowledge for developing adequate occupational health policies. This paper summarizes the workshop sessions and subsequent discussions.
Collapse
Affiliation(s)
- Mariola Sliwinska-Kowalska
- Department of Physical Hazards and Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Łódź, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Campo P, Maguin K, Lataye R. Effects of Aromatic Solvents on Acoustic Reflexes Mediated by Central Auditory Pathways. Toxicol Sci 2007; 99:582-90. [PMID: 17630415 DOI: 10.1093/toxsci/kfm180] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
From previous in vivo investigations, it has been shown that toluene can mimic the effects of cholinergic receptor antagonists and may thereby modify the response of protective acoustic reflexes. The current study aimed to define the relative effects of aromatic solvents on the middle ear and inner ear acoustic reflexes. Toward this end, the cochlear microphonic (CMP) elicited with a band noise centered at 4 kHz, and the compound action potential (CAP) elicited with 4-kHz tone pips was measured in rats. Both potentials were recorded before, during, and after triggering the protective reflexes by a 110-dB SPL contralateral octave band noise centered at 12.5 kHz (12.5 kHz-OBN). In several rats, the middle ear muscles were severed to identify the relative effects of toluene on the two reflexes. While the reflex elicitor was capable of decreasing both the CMP and CAP amplitudes, an injection of 116.2 mM toluene cancelled this suppressor effect induced by the contralateral sound. In the rats with nonfunctional middle ear muscles, a solvent injection did not modify the electrophysiological responses of the cochlea. Different solvents were tested to study the relationship of the chemical structure of the solvents on the acoustic reflexes. The present study showed that aromatic solvents can inhibit the action of the middle ear reflex by their anticholinergic effect on the efferent motoneurons. An aromatic nucleus and the presence of one side chain of no more than 3 C seem to be required in the solvent structure to inhibit the efferent motoneurons.
Collapse
Affiliation(s)
- Pierre Campo
- Laboratoire de Neurotoxicité, Institut National de Recherche et de Sécurité, Avenue de Bourgogne, BP 27 Vandoeuvre, 54501 cedex, France.
| | | | | |
Collapse
|
48
|
Talaei-Khozani T, Monsefi M, Vojdani Z, Dehghani F. Histochemical Study of the Effects of Noise on the Cell Surface and Extracellular Matrix Glycoconjugates of the Developing Mouse Cochlea. JOURNAL OF APPLIED ANIMAL RESEARCH 2007. [DOI: 10.1080/09712119.2007.9706666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
49
|
Lataye R, Maguin K, Campo P. Increase in cochlear microphonic potential after toluene administration. Hear Res 2007; 230:34-42. [PMID: 17555896 DOI: 10.1016/j.heares.2007.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/15/2007] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
Human and animal studies have shown that toluene can cause hearing loss. In the rat, the outer hair cells are first disrupted by the ototoxicant. Because of their particular sensitivity to toluene, the cochlear microphonic potential (CMP) was used for monitoring the cochlea activity of anesthetized rats exposed to both noise (band noise centered at 4 kHz) and toluene. In the present experiment, the conditions were specifically designed to study the toluene effects on CMP and not those of its metabolites. To this end, 100-microL injections of a vehicle containing different concentrations of solvent were made into the carotid artery connected to the tested cochlea. Interestingly, an injection of 116.2-mM toluene dramatically increased in the CMP amplitude (approximately 4 dB) in response to an 85-dB SPL noise. Moreover, the rise in CMP magnitude was intensity dependent at this concentration suggesting that toluene could inhibit the auditory efferent system involved in the inner-ear or/and middle-ear acoustic reflexes. Because acetylcholine is the neurotransmitter mediated by the auditory efferent bundles, injections of antagonists of cholinergic receptors (AchRs) such as atropine, 4-diphenylacetoxy-N-methylpiperidine-methiodide (mAchR antagonist) and dihydro-beta-erythroidine (nAchR antagonist) were also tested in this investigation. They all provoked rises in CMP having amplitudes as large as those obtained with toluene. The results showed for the first time in an in vivo study that toluene mimics the effects of AchR antagonists. It is likely that toluene might modify the response of protective acoustic reflexes.
Collapse
Affiliation(s)
- Robert Lataye
- Laboratoire de Neurotoxicité, Institut National de Recherche et de Sécurité, Avenue de Bourgogne, BP 27 Vandoeuvre, 54501 Cedex, France
| | | | | |
Collapse
|
50
|
Relationship Between Styrene Exposure and Hearing Loss: Review of Human Studies. Int J Occup Med Environ Health 2007; 20:315-25. [DOI: 10.2478/v10001-007-0040-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|