1
|
Simão AY, Oliveira P, Rosendo LM, Rosado T, Andraus M, Barroso M, Gallardo E. Microextraction by Packed Sorbent as a Clean-up Approach for the Determination of Ketamine and Norketamine in Hair by Gas Chromatography--Tandem Mass Spectrometry. J Anal Toxicol 2023; 47:227-235. [PMID: 36124733 DOI: 10.1093/jat/bkac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
The use of new psychoactive substances has been increasing and constitutes a social and public health problem, and hence, toxicological analysis has become of utmost importance for the detection of such substances. In this article, we present the development and full validation of a simple, user and environmentally friendly, cheap and suitable method for the determination of ketamine and its main metabolite norketamine in hair samples. The procedure included using a miniaturized procedure-microextraction by packed sorbent with mixed-mode sorbent-for sample clean-up. Organic solvents use was minimal, and it was possible to obtain a linear method (0.05-10 ng/mg for both analytes). The extraction efficiency ranged from 32 to 61%, which did not impair sensitivity. The method proved to be selective, precise, accurate and suitable for routine analysis for the determination of said compounds in 50-mg hair samples.
Collapse
Affiliation(s)
- A Y Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Covilhã 6200-506, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, Covilhã 6200-000, Portugal
| | - P Oliveira
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Covilhã 6200-506, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, Covilhã 6200-000, Portugal
| | - L M Rosendo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Covilhã 6200-506, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, Covilhã 6200-000, Portugal
| | - T Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Covilhã 6200-506, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, Covilhã 6200-000, Portugal
| | - M Andraus
- Chromatox/Dasa Laboratory Ltda, Sumaré, São Paulo-SP 01259-000, Brazil
| | - M Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Sul, Lisboa 1169-201, Portugal
| | - E Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Covilhã 6200-506, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, Covilhã 6200-000, Portugal
| |
Collapse
|
2
|
Meng L, Dai Y, Chen C, Zhang J. Determination of amphetamines, ketamine and their metabolites in hair with high-speed grinding and solid-phase microextraction followed by LC-MS. Forensic Sci Res 2021; 6:273-280. [PMID: 34868720 PMCID: PMC8635643 DOI: 10.1080/20961790.2020.1838403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A novel hair sample pre-treatment method based on high-speed grinding and solid-phase microextraction (SPME) had been applied for the determination of amphetamines, ketamine and their metabolites in hair samples by liquid chromatography-mass spectrometry (LC-MS). A 20 mg sample of hair was ground with 2 mL of saturated sodium carbonate solution using a high-efficiency hair grinder with 70 Hz oscillation for 2 min at 4 °C. After centrifuging, 1.5 mL of the supernatant was transferred and treated with SPME by direct immersion (DI-SPME). The target analytes extracted by fibre were desorbed and analysed using LC-MS. Under the optimum conditions, a recovery of 90.2%–95.8% was obtained for all analytes. The analytical method was linear for all analytes in the range from 0.2 to 10 ng/mg with the correlation coefficient ranging from 0.9985 to 0.9993. The detection limits for all analytes were estimated to be 0.067 ng/mg. The accuracy (mean relative error) was within ±6.9% and the precision (relative standard error) was less than 6.8%. The combination of high-speed grinding of hair and SPME had the advantages of being easy to perform, environment-friendly and high in detection sensitivity. The proposed method offered an alternative analytical approach for the sensitive detection of drugs in hair samples for forensic purposes.Key Points The SPME was involved for the determination of drugs in hair with LC-MS. The hair high-speed grinding combined with SPME was firstly developed. Good linearity, sensitivity, recovery and precision were achieved.
Collapse
Affiliation(s)
- Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou, China.,Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Yong Dai
- Department of Forensic Science, Sichuan Police College, Luzhou, China
| | - Chen Chen
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhang
- Department of Forensic Science, Fujian Police College, Fuzhou, China
| |
Collapse
|
3
|
Rosado T, Barroso M, Vieira DN, Gallardo E. Trends in microextraction approaches for handling human hair extracts - A review. Anal Chim Acta 2021; 1185:338792. [PMID: 34711317 DOI: 10.1016/j.aca.2021.338792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
The complementary role of hair in testing scenarios has expanded across the spectrum of toxicological and clinical monitoring investigations and, over the last 20 years, hair analysis has gained increasing attention and recognition. Moreover, a great deal of attention has been paid to the miniaturisation of extraction procedures, minimising/eliminating toxic organic solvents consumption, making them user-friendly and rapid, in addition to maximising extraction efficiency. The aim of this work is to provide a critical review of the advances observed over the last 5 years in the use of miniaturised approaches for sample clean-up and drug pre-concentration in hair analysis. There have been major improvements in some well-established microextraction approaches, such as liquid phase microextraction, mainly through the use of supramolecular and ionic liquids. In addition, new developments have also been reported in solid phase microextraction, driven by d-SPE applications. In the last 5 years, a total of 69 articles have been published using some type of microextraction technique for hair specimens, thus justifying the relevance of a critical review of innovations, improvements and trends related to these miniaturised approaches for sample preparation.
Collapse
Affiliation(s)
- Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Covilhã, Portugal; C4 - Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, Lisboa, Portugal
| | | | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
4
|
Rhee J, Lee J, Kim J, Jang M, Shin I, Lee S. Determination of Ketamine and Norketamine in Hair and Evaluation of Polydrug Use in Ketamine Abusers Using Hair Analysis in Korea. J Anal Toxicol 2021; 45:993-1005. [PMID: 33196839 DOI: 10.1093/jat/bkaa166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/04/2020] [Accepted: 11/14/2020] [Indexed: 12/31/2022] Open
Abstract
This study evaluated hair samples from 28 subjects who tested positive for ketamine at Seoul Institute National Forensic Service in Korea between 2016 and 2017. Ketamine in the hair was extracted using a solution of 1% hydrochloric acid in methanol for 16 h. Extracts were analyzed using gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS-MS). The LC-MS-MS method was validated by determining the limit of detection (LOD), limit of quantification (LOQ), linearity, intra- and inter-accuracy, precision and matrix effect. In 59 ketamine-positive hair or hair segments from 28 ketamine abusers, the ketamine concentration was found to be in the range of 0.011-335.8 ng/mg (mean, 13.6; median, 1.8), and the norketamine concentration was found to be in the range of 0.001-35.7 ng/mg (mean, 7.5; median, 0.44). The ratio of norketamine to ketamine concentrations in hair was in the range of 0.01-1.46 (mean, 0.34; median, 0.26). The distribution of ketamine concentration in hair samples was as follows: 0.01-0.1 ng/mg in 11 samples (18.6%), 0.1-5 ng/mg in 33 samples (55.9%), 5-10 ng/mg in 4 samples (6.8%), 10-15 ng/mg in 2 samples (3.4%), 15-20 ng/mg in 4 samples (6.8%), 40-45 ng/mg in 2 samples (3.4%), 45-50 ng/mg in 1 sample (1.7%) and >100 ng/mg in only 2 samples (3.4%). In the hair of ketamine abusers, 26 of 28 subjects were detected simultaneously ketamine with other drugs, including methylenedioxymethamphetamine (MDMA; n = 9), methamphetamine (MA; n = 3), MDMA/MA (n = 3), MDMA/para-methoxyamphetamine (PMA; n = 3), MDMA/PMA/MA (n = 2), cocaine (n = 1) and other drugs (n = 5, propofol, zolpidem or benzodiazepines). Along with ketamine, other controlled drugs were detected in most of the hair samples: MDMA (60.7%), MA (28.6%), PMA (17.9%), zolpidem (17.9%) and propofol (14.3%) in the frequency of abuse. In conclusion, most of the ketamine abusers (92.9%) were polydrug abusers, who were concomitantly abusing other controlled substances.
Collapse
Affiliation(s)
- Jongsook Rhee
- Forensic Toxicology Division, Busan institute National Forensic Service, 50 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Juseon Lee
- Forensic Toxicology Division, Busan institute National Forensic Service, 50 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Jihyun Kim
- Forensic Toxicology Division, Seoul institute National Forensic Service, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Moonhee Jang
- Forensic Toxicology Division, Seoul institute National Forensic Service, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Ilchung Shin
- Forensic Toxicology Division, Seoul institute National Forensic Service, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Sangki Lee
- Forensic Toxicology Division, Seoul institute National Forensic Service, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| |
Collapse
|
5
|
Yang H, Wang X, Liu M, Deng H, Yu M, Xiang P. Detection of amfepramone and its metabolite cathinone in human hair: Application to a uthentic cases of amfepramone use. Drug Test Anal 2021; 14:101-109. [PMID: 34405558 DOI: 10.1002/dta.3149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
In recent years, overseas anti-obesity drugs including amfepramone have flowed into China through the internet or personal import by travelers. Amfepramone is controlled in China and is not available as a pharmaceutical product. It is obtainable either through the internet or imported by individuals across the border. The abuse of amfepramone is causing serious health problems. A method for the detection and quantification of amfepramone and its metabolite cathinone in human hair was developed and fully validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Approximately 10 mg of hair was weighed and pulverized with extraction solvent (a mixture of methanol: acetonitrile: 2 mM ammonium formate [pH 5.3] [25:29:46, v/v/v]). The limit of detection (LOD) and the limit of quantitation (LOQ) were 5 and 10 pg/mg, respectively. The method was linear over a concentration range from 10 to 10,000 pg/mg. The accuracy varied from -9.3% to 2.3%, with acceptable intra- and inter-day precision. The validated method was successfully applied to 17 authentic cases. The amfepramone concentrations ranged from 11.7 to 209 pg/mg, with a median of 30.2 pg/mg, and the hair cathinone concentrations ranged from 11.9 to 507 pg/mg, with a median of 54.0 pg/mg. This is the first report of amfepramone concentrations in human hair from amfepramone users. Cathinone can be incorporated into hair after amfepramone use.
Collapse
Affiliation(s)
- Huan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.,Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
| | - Xin Wang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
| | - Mengxi Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.,Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
| | - Hongxiao Deng
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
| | - Miao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
| |
Collapse
|
6
|
Ahmad SM, Gonçalves OC, Oliveira MN, Neng NR, Nogueira JMF. Application of Microextraction-Based Techniques for Screening-Controlled Drugs in Forensic Context-A Review. Molecules 2021; 26:2168. [PMID: 33918766 PMCID: PMC8070059 DOI: 10.3390/molecules26082168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
The analysis of controlled drugs in forensic matrices, i.e., urine, blood, plasma, saliva, and hair, is one of the current hot topics in the clinical and toxicological context. The use of microextraction-based approaches has gained considerable notoriety, mainly due to the great simplicity, cost-benefit, and environmental sustainability. For this reason, the application of these innovative techniques has become more relevant than ever in programs for monitoring priority substances such as the main illicit drugs, e.g., opioids, stimulants, cannabinoids, hallucinogens, dissociative drugs, and related compounds. The present contribution aims to make a comprehensive review on the state-of-the art advantages and future trends on the application of microextraction-based techniques for screening-controlled drugs in the forensic context.
Collapse
Affiliation(s)
- Samir M. Ahmad
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
- Molecular Pathology and Forensic Biochemistry Laboratory, CiiEM, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Forensic and Psychological Sciences Laboratory Egas Moniz, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Oriana C. Gonçalves
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
| | - Mariana N. Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
| | - Nuno R. Neng
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - José M. F. Nogueira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
8
|
Abstract
Abstract
Purpose
This paper examines the scope of anorectics in counterfeit weight-reducing formulations and provides insight into the present state of research in determining such adulterants. Analytical techniques utilised in profiling adulterants found in slimming products, including limitations and mitigation steps of these conventional methods are also discussed. The current legal status of the anorectics and analogues routinely encountered in non-prescription slimming formulations is also explored.
Methods
All reviewed literature was extracted from Scopus, Web of Science, PubMed, and Google Scholar databases using relevant search terms, such as, ‘counterfeit drugs’, ‘weight loss drugs’, ‘weight-reducing drugs’, ‘slimming drugs’, ‘anorectic agents’, and ‘counterfeit anorexics’. Legislation related to anorectics was obtained from the portals of various government and international agencies.
Results
Anorectics frequently profiled in counterfeit slimming formulations are mostly amphetamine derivatives or its analogues. Five routinely reported pharmacological classes of adulterants, namely anxiolytics, diuretics, antidepressants, laxatives, and stimulants, are mainly utilised as coadjuvants in fake weigh-reducing formulations to increase bioavailability or to minimise anticipated side effects. Liquid and gas chromatography coupled with mass spectrometric detectors are predominantly used techniques for anorectic analysis due to the possibility of obtaining detailed information of adulterants. However, interference from the complex sample matrices of these fake products limits the accuracy of these methods and requires robust sample preparation methods for enhanced sensitivity and selectivity. The most common anorectics found in counterfeit slimming medicines are either completely banned or available by prescription only, in many countries.
Conclusions
Slimming formulations doped with anorectic cocktails to boost their weight-reducing efficacy are not uncommon. Liquid chromatography combined with mass spectrometry remains the gold standard for counterfeit drug analysis, and requires improved preconcentration methods for rapid and quantitative identification of specific chemical constituents. Extensive method development and validation, targeted at refining existing techniques while developing new ones, is expected to improve the analytical profiling of counterfeit anorectics significantly.
Collapse
|
9
|
Xiao Y, Chen S, Zhang G, Li Z, Xiao H, Chen C, He C, Zhang R, Yang X. Simple and rapid nicotine analysis using a disposable silica nanochannel-assisted electrochemiluminescence sensor. Analyst 2020; 145:4806-4814. [PMID: 32588848 DOI: 10.1039/d0an00588f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nicotine analysis is essential to medicine, toxicology and the tobacco industry. However, no simple, portable and disposable method was developed to meet their demands. Here, we report a simple, rapid and disposable silica nanochannel (SAN)-based electrochemiluminescence (ECL) sensor for nicotine analysis by simply assembling a SAN electrode with a paper cover. The sensing principle of the disposable sensor is based on the size exclusion effect and charge selectivity, which obviously prolong the sensor service time. We find that the sensor exhibits good specificity to nicotine, and most of the complex matrices are unlikely to impact the detection. The performance of the disposable sensor in cigarettes, e-cigarettes, nicotine gums, and lozenges is fully validated, showing satisfactory linearity, sensitivity (a limit of detection of 27.82 nM), and accuracy (a recovery between 96.00% and 106.51%). The disposable sensor can be potentially applied for on-site nicotine analysis.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China. and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, China
| | - Suhua Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China. and Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Guocan Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Zhimao Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Han Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Chunlian He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Ran Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| |
Collapse
|
10
|
De Giovanni N, Marchetti D. A Systematic Review of Solid-Phase Microextraction Applications in the Forensic Context. J Anal Toxicol 2020; 44:268-297. [PMID: 31788690 DOI: 10.1093/jat/bkz077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/09/2019] [Accepted: 07/28/2019] [Indexed: 12/13/2022] Open
Abstract
Since the introduction in 1990, the solid-phase microextraction (SPME) technology has brought significant progress in many fields of forensic sciences due to the versatility of this fast and solventless alternative to conventional extraction techniques. A systematic review about SPME applications in forensic context from January 1995 to June 2018 was carried out according to systematic review guidelines. The majority of the reviewed articles (40/133) aimed to identify drugs (cannabinoids, cocaine, opiates, amphetamines, simultaneous detection of different drugs of abuse, prescribed drugs); 29 of the 133 articles focused on the investigation of fatalities; 28 of the 133 papers used headspace SPME technique for the identification of markers of chronic alcohol abuse. Sixteen papers involved this technique for the isolation of volatile organic compounds for the human odor profile and 20 concerned forensic applications regarding living people. Solid-phase microextraction was preferably employed in the headspace mode and many kinds of fibers were employed, although polydimethylsiloxane was the most adaptable to many forensic realities. Gas chromatography/mass spectrometry was more frequently used, probably for the well-established coupling with SPME. Most of the papers validated their method to harmonize the scientific approaches of procedures development. Good outcomes are reported on biological material collected from living people as well as on cadaveric samples. The results obtained by most of the studies about alcohol biomarkers on scalp hair have been adopted by the "Society of Hair Testing" to demonstrate abstinence over a pre-defined time period and to assess chronic excessive alcohol consumption.
Collapse
Affiliation(s)
- Nadia De Giovanni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Daniela Marchetti
- Fondazione Policlinico A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| |
Collapse
|
11
|
Lee JB, Jeong YA, Ahn DJ, Bang IS. SPME-GC/MS Analysis of Methanol in Biospecimen by Derivatization with Pyran Compound. Molecules 2019; 25:E41. [PMID: 31877660 PMCID: PMC6983268 DOI: 10.3390/molecules25010041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022] Open
Abstract
Methanol is metabolized in the body to highly toxic formaldehyde and formate when consumed accidentally. Methanol has been typically analyzed with gas chromatography-flame ionization detector (GC-FID). However, its retention time may overlap with other volatile compounds and lead to confusion. Alternative analysis of methanol using gas chromatography/mass spectrometry (GC/MS) also has limitations due to its similar molecular weight with oxygen and low boiling point. In this study, methanol and internal standard of deuterium-substituted ethanol were derivatized with 3,4-dihydro-2H-pyran under acid catalysis using concentrated hydrochloric acid. The reaction products including 2-methoxytetrahydropyran were extracted with solid-phase microextraction followed by GC/MS analysis. This method was successfully applied to measure the lethal concentration of methanol in the blood of a victim with a standard addition method to overcome the complex matrix effect of the biospecimen. Identification of the metabolite formate by ion chromatography confirmed the death cause to be methanol poisoning. This new method was a much more convenient and reliable process to measure methanol in complex matrix samples by reducing sample pretreatment effort and cost.
Collapse
Affiliation(s)
- Joon-Bae Lee
- Daejeon Institute, National Forensic Service, Daejeon 34054, Korea;
| | - Yong Ae Jeong
- Daejeon Institute, National Forensic Service, Daejeon 34054, Korea;
| | - Dae Jun Ahn
- Gwangju Institute, National Forensic Service, Jeonnam 57248, Korea;
| | - Iel Soo Bang
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju 61452, Korea
| |
Collapse
|
12
|
Rosado T, Barroso M, Vieira DN, Gallardo E. Determination of Selected Opiates in Hair Samples Using Microextraction by Packed Sorbent: A New Approach for Sample Clean-up. J Anal Toxicol 2019; 43:465-476. [DOI: 10.1093/jat/bkz029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
In this article the development and validation of an analytical method using microextraction by packed sorbent (MEPS) to determine tramadol (TRM), codeine (COD), morphine (MOR), 6-acetylcodeine (6-AC), 6-monoacetylmorphine (6-MAM) and fentanyl (FNT) in hair samples by gas chromatography coupled to tandem mass spectrometry (GC–MS-MS) is presented. The MEPS used a mixed mode sorbent, and the steps for sample cleanup were conditioning (three cycles of 250 μL of methanol and three cycles of 250 μL formic acid 2%); sample load (15 cycles of 150 μL); wash (150 μL of 3.36% formic acid); and elution (eight cycles of 100 μL of ammonium hydroxide 2.36% (in methanol)). Linearity was obtained from the lower limit of quantitation (LLOQ) up to 5 ng/mg, with all target compounds revealing determination coefficients >0.99. The LLOQs achieved were 0.01 ng/mg for TRM, COD and 6-AC, and 0.025 ng/mg for MOR, 6-MAM and FNT. The recoveries ranged from 74 to 90% (TRM), 51 to 59% (COD), 22 to 36% (MOR), 69 to 99% (6-AC), 53 to 61% (6-MAM) and 75 to 86% (FNT). Precision and accuracy revealed coefficients of variation typically below 15% and relative errors within a ±15% interval, respectively. This new approach has proven to be an excellent alternative to classic procedures, reducing the volumes of organic solvents required.
Collapse
Affiliation(s)
- Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-556 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, EM506, 6201-556 Covilhã, Portugal
| | - Mário Barroso
- Instituto Nacional de Medicina Legal e Ciências Forenses—Delegação do Sul, Rua Manuel Bento de Sousa, 3, 1169-201 Lisboa, Portugal
| | - Duarte Nuno Vieira
- Faculdade de Medicina, Universidade de Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-556 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, EM506, 6201-556 Covilhã, Portugal
| |
Collapse
|
13
|
Vineis C, Varesano A, Varchi G, Aluigi A. Extraction and Characterization of Keratin from Different Biomasses. KERATIN AS A PROTEIN BIOPOLYMER 2019. [DOI: 10.1007/978-3-030-02901-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Hair analysis in toxicological investigation of drug-facilitated crimes in Denmark over a 8-year period. Forensic Sci Int 2018; 285:e1-e12. [PMID: 29449106 DOI: 10.1016/j.forsciint.2018.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 01/27/2018] [Indexed: 01/25/2023]
Abstract
Hair can serve as a specimen for identifying past drug exposure. Segmental hair analysis may differentiate a single exposure from chronic use. Consequently, segmental hair analysis is useful for disclosing a single drug ingestion, as well as for determining repeated exposures in drug-facilitated crimes (DFCs). This paper presents an overview of toxicological investigations that have used hair analysis in DFC cases from 2009 to 2016 in Denmark. Hair concentrations were determined for 24 DFC-related drugs and metabolites, including benzodiazepines and other hypnotics, antihistamines, opioid analgesics, antipsychotics, barbiturates, and illicit drugs from DFC cases. Drug detection in hair in DFC cases following a single or few intakes of chlorprothixene, codeine, diphenhydramine, oxazepam, oxycodone, promethazine, and phenobarbital is reported for the first time in forensic toxicology. A literature review on concentrations in the published DFC-related hair cases and on concentrations in hair of these substances after single and multiple doses is included. These cases demonstrate the value of segmental hair analysis in DFCs and facilitate future interpretations of results.
Collapse
|
15
|
Chiral separation and determination of ketamine and norketamine in hair by capillary electrophoresis. Forensic Sci Int 2016; 266:304-310. [DOI: 10.1016/j.forsciint.2016.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 11/15/2022]
|
16
|
Occupational exposure to ketamine detected by hair analysis: a retrospective and prospective toxicological study. Forensic Sci Int 2016; 265:193-9. [DOI: 10.1016/j.forsciint.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 12/28/2022]
|
17
|
Katselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S. Bioanalysis of antihistamines for clinical or forensic purposes. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Katselou
- Department of Forensic Medicine and Toxicology, Faculty of Medicine; National and Kapodistrian University of Athens
| | - Ioannis Papoutsis
- Department of Forensic Medicine and Toxicology, Faculty of Medicine; National and Kapodistrian University of Athens
| | - Panagiota Nikolaou
- Department of Forensic Medicine and Toxicology, Faculty of Medicine; National and Kapodistrian University of Athens
| | - Chara Spiliopoulou
- Department of Forensic Medicine and Toxicology, Faculty of Medicine; National and Kapodistrian University of Athens
| | - Sotiris Athanaselis
- Department of Forensic Medicine and Toxicology, Faculty of Medicine; National and Kapodistrian University of Athens
| |
Collapse
|
18
|
Madrakian T, Fazl F, Ahmadi M, Afkhami A. Efficient solid phase extraction of codeine from human urine samples using a novel magnetic molecularly imprinted nanoadsorbent and its spectrofluorometric determination. NEW J CHEM 2016. [DOI: 10.1039/c5nj01588j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a medical or clinical point of view, to assess toxicity, adverse effects, interactions and therapeutic efficiency, monitoring drug levels in body fluids, such as urine and plasma, has become increasingly necessary.
Collapse
Affiliation(s)
| | - Fariba Fazl
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan
- Iran
| | | | - Abbas Afkhami
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan
- Iran
| |
Collapse
|
19
|
Attia MS, Yakout AA. Novel method for tyrosine assessment in vitro using luminescence quenching of the nano optical sensor Eu–ciprofloxacin doped in a sol–gel matrix. RSC Adv 2016. [DOI: 10.1039/c5ra25301b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A low cost and very sensitive method for the assessment of tyrosine in blood serum, urine and hair samples was developed. The method was based upon the luminescence intensity of a Eu–ciprofloxacin complex nano optical sensor.
Collapse
Affiliation(s)
- M. S. Attia
- Chemistry Department
- Faculty of Science
- University of Jeddah
- Jeddah
- Saudi Arabia
| | - Amr A. Yakout
- Chemistry Department
- Faculty of Science
- University of Jeddah
- Jeddah
- Saudi Arabia
| |
Collapse
|
20
|
Brechbühl J, Moine F, Tosato MN, Sporkert F, Broillet MC. Identification of pyridine analogs as new predator-derived kairomones. Front Neurosci 2015; 9:253. [PMID: 26283896 PMCID: PMC4517376 DOI: 10.3389/fnins.2015.00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/09/2015] [Indexed: 12/29/2022] Open
Abstract
In the wild, animals have developed survival strategies relying on their senses. The individual ability to identify threatening situations is crucial and leads to increase in the overall fitness of the species. Rodents, for example have developed in their nasal cavities specialized olfactory neurons implicated in the detection of volatile cues encoding for impending danger such as predator scents or alarm pheromones. In particular, the neurons of the Grueneberg ganglion (GG), an olfactory subsystem, are implicated in the detection of danger cues sharing a similar chemical signature, a heterocyclic sulfur- or nitrogen-containing motif. Here we used a “from the wild to the lab” approach to identify new molecules that are involuntarily emitted by predators and that initiate fear-related responses in the recipient animal, the putative prey. We collected urines from carnivores as sources of predator scents and first verified their impact on the blood pressure of the mice. With this approach, the urine of the mountain lion emerged as the most potent source of chemical stress. We then identified in this biological fluid, new volatile cues with characteristic GG-related fingerprints, in particular the methylated pyridine structures, 2,4-lutidine and its analogs. We finally verified their encoded danger quality and demonstrated their ability to mimic the effects of the predator urine on GG neurons, on mice blood pressure and in behavioral experiments. In summary, we were able to identify here, with the use of an integrative approach, new relevant molecules, the pyridine analogs, implicated in interspecies danger communication.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Fabian Moine
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Monique Nenniger Tosato
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Frank Sporkert
- University Center of Legal Medicine, Lausanne-Geneva Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
21
|
A label-free immunosensor for ultrasensitive detection of ketamine based on quartz crystal microbalance. SENSORS 2015; 15:8540-9. [PMID: 25871722 PMCID: PMC4431222 DOI: 10.3390/s150408540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022]
Abstract
In this study, we have developed a label-free immunosensor with the variation of resonance frequency (Δf) of a quartz crystal microbalance (QCM) as readout signal for ultrasensitive detection of Ketamine (KT). An optimized strategy for immobilization of KT antibody on the surface of the QCM chip was implemented via the self-assembly modification of 3-mercaptopropionic acid, and then activated with 1-ethyl-3-(3-dimethylaminoprophl) carbodiimide and n-hydroxysuccinimide. The specific affinity between the antibody and the antigen ensured a selective response toward KT. The Δf linearly related to the concentration of KT in the range of 1 to 40 pg/mL, with a detection limit of 0.86 pg/mL (S/N = 3). The obtained immunosensor was applied to detect the KT in spiked human urine without any pretreatment but dilution with recoveries from 91.8% to 108%. The developed sensor is promising to perform the portable or on-spot KT detection in clinic or forensic cases.
Collapse
|
22
|
Vogliardi S, Tucci M, Stocchero G, Ferrara SD, Favretto D. Sample preparation methods for determination of drugs of abuse in hair samples: A review. Anal Chim Acta 2015; 857:1-27. [DOI: 10.1016/j.aca.2014.06.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 10/24/2022]
|
23
|
Míguez-Framil M, Cocho JÁ, Tabernero MJ, Bermejo AM, Moreda-Piñeiro A, Bermejo-Barrera P. An improved method for the determination of ∆9-tetrahydrocannabinol, cannabinol and cannabidiol in hair by liquid chromatography–tandem mass spectrometry. Microchem J 2014. [DOI: 10.1016/j.microc.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Rainey CL, Bors DE, Goodpaster JV. Design and Optimization of a Total Vaporization Technique Coupled to Solid-Phase Microextraction. Anal Chem 2014; 86:11319-25. [DOI: 10.1021/ac5030528] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christina L. Rainey
- Department of
Chemistry and Chemical Biology, and Forensic and Investigative Sciences Program, Indiana University Purdue University Indianapolis (IUPUI), 402 North Blackford Street LD326, Indianapolis, Indiana 46202, United States
| | - Dana E. Bors
- Department of
Chemistry and Chemical Biology, and Forensic and Investigative Sciences Program, Indiana University Purdue University Indianapolis (IUPUI), 402 North Blackford Street LD326, Indianapolis, Indiana 46202, United States
| | - John V. Goodpaster
- Department of
Chemistry and Chemical Biology, and Forensic and Investigative Sciences Program, Indiana University Purdue University Indianapolis (IUPUI), 402 North Blackford Street LD326, Indianapolis, Indiana 46202, United States
| |
Collapse
|
25
|
Mariotti KDC, Schuh RS, Ferranti P, Ortiz RS, Souza DZ, Pechansky F, Froehlich PE, Limberger RP. Simultaneous analysis of amphetamine-type stimulants in plasma by solid-phase microextraction and gas chromatography-mass spectrometry. J Anal Toxicol 2014; 38:432-7. [PMID: 25038769 DOI: 10.1093/jat/bku063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brazil is considered one of the countries with the highest number of amphetamine-type stimulant (ATS) users worldwide, mainly diethylpropion (DIE) and fenproporex (FEN). The use of ATS is mostly linked to diverted prescription stimulants and this misuse is widely associated with (ab)use by drivers. A validated method was developed for the simultaneous analysis of amphetamine (AMP), DIE and FEN in plasma samples employing direct immersion-solid-phase microextraction, and gas chromatographic/mass spectrometric analysis. Trichloroacetic acid 10% was used for plasma deproteinization. In situ derivatization with propylchloroformate was employed. The linear range of the method covered from 5.0 to 100 ng/mL. The detection limits were 1.0 (AMP), 1.5 (DIE) and 2.0 ng/mL (FEN). The accuracy assessment of the control samples was within 85.58-108.33% of the target plasma concentrations. Recoveries ranged from 46.35 to 84.46% and precision was <15% of the value of relative standard deviation. This method is appropriate for screening and confirmation in plasma forensic toxicology analyses of these basic drugs.
Collapse
Affiliation(s)
- Kristiane de Cássia Mariotti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Laboratório de Análises e Pesquisas Toxicológicas, Universidade Federal do Rio Grande do Sul, 2752 Ipiranga Avenue, Santana, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Roselena S Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Laboratório de Análises e Pesquisas Toxicológicas, Universidade Federal do Rio Grande do Sul, 2752 Ipiranga Avenue, Santana, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Priscila Ferranti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Laboratório de Análises e Pesquisas Toxicológicas, Universidade Federal do Rio Grande do Sul, 2752 Ipiranga Avenue, Santana, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Rafael S Ortiz
- Setor Técnico-Científico, Superintendência Regional do Departamento de Polícia Federal no Rio Grande do Sul, 1365 Ipiranga Avenue, Azenha, Porto Alegre, Rio Grande do Sul 90160-093, Brazil
| | - Daniele Z Souza
- Setor Técnico-Científico, Superintendência Regional do Departamento de Polícia Federal no Rio Grande do Sul, 1365 Ipiranga Avenue, Azenha, Porto Alegre, Rio Grande do Sul 90160-093, Brazil
| | - Flavio Pechansky
- Centro de Pesquisa em Álcool e Drogas (CPAD), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 2350, Ramiro Barcelos Street, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Pedro E Froehlich
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Laboratório de Análises e Pesquisas Toxicológicas, Universidade Federal do Rio Grande do Sul, 2752 Ipiranga Avenue, Santana, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Renata P Limberger
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Laboratório de Análises e Pesquisas Toxicológicas, Universidade Federal do Rio Grande do Sul, 2752 Ipiranga Avenue, Santana, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
26
|
Rutkowska M, Dubalska K, Konieczka P, Namieśnik J. Microextraction techniques used in the procedures for determining organomercury and organotin compounds in environmental samples. Molecules 2014; 19:7581-609. [PMID: 24914902 PMCID: PMC6270719 DOI: 10.3390/molecules19067581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022] Open
Abstract
Due to human activities, the concentrations of organometallic compounds in all parts of the environment have increased in recent decades. The toxicity and some biochemical properties of mercury and tin present in the environment depend on the concentration and chemical form of these two elements. The ever-increasing demand for determining compounds at very low concentration levels in samples with complex matrices requires the elimination of interfering substances, the reduction of the final extract volume, and analyte enrichment in order to employ a detection technique, which is characterised by high sensitivity at low limits of quantification. On the other hand, in accordance with current trends, the analytical procedures should aim at the miniaturisation and simplification of the sample preparation step. In the near future, more importance will be given to the fulfilment of the requirements of Green Chemistry and Green Analytical Chemistry in order to reduce the intensity of anthropogenic activities related to analytical laboratories. In this case, one can consider the use of solvent-free/solvent-less techniques for sample preparation and microextraction techniques, because the use of the latter leads to lowering the quantity of reagents used (including solvents) due to the reduction of the scale of analysis. This paper presents an overview of microextraction techniques (SPME and LPME) used in the procedures for determining different chemical forms of mercury and tin.
Collapse
Affiliation(s)
- Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/13 Street, 80-233 Gdańsk, Poland.
| | - Kinga Dubalska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/13 Street, 80-233 Gdańsk, Poland.
| | - Piotr Konieczka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/13 Street, 80-233 Gdańsk, Poland.
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/13 Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
27
|
Banitaba MH, Davarani SSH, Ahmar H, Movahed SK. Application of a new fiber coating based on electrochemically reduced graphene oxide for the cold-fiber headspace solid-phase microextraction of tricyclic antidepressants. J Sep Sci 2014; 37:1162-9. [DOI: 10.1002/jssc.201301369] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Hamid Ahmar
- Faculty of Chemistry; Shahid Beheshti University; Tehran Islamic Republic of Iran
| | | |
Collapse
|
28
|
Determination of ketamine and norketamine in hair by micropulverized extraction and liquid chromatography–high resolution mass spectrometry. Forensic Sci Int 2013; 226:88-93. [DOI: 10.1016/j.forsciint.2012.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022]
|
29
|
Tsuji M, Mori Y, Kanda H, Ito T, Hidaka T, Kakamu T, Kumagai T, Hayakawa T, Osaki Y, Fukushima T. Development of simple HPLC/UV with a column-switching method for the determination of nicotine and cotinine in hair samples. Health (London) 2013. [DOI: 10.4236/health.2013.54091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Kang W, Li Y, Xu Y, Jiang W, Tao Y. Characterization of Aroma Compounds in Chinese Bayberry (Myrica rubraSieb. et Zucc.) by Gas Chromatography Mass Spectrometry (GC-MS) and Olfactometry (GC-O). J Food Sci 2012; 77:C1030-5. [DOI: 10.1111/j.1750-3841.2012.02747.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Li Y, Zhang H, Hu J, Xue F, Li Y, Sun C. A GC–EI-MS-MS Method for Simultaneous Determination of Seven Adulterants in Slimming Functional Foods. J Chromatogr Sci 2012; 50:928-33. [DOI: 10.1093/chromsci/bms092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Baumgartner MR, Guglielmello R, Fanger M, Kraemer T. Analysis of drugs of abuse in hair: Evaluation of the immunochemical method VMA-T vs. LC–MS/MS or GC–MS. Forensic Sci Int 2012; 215:56-9. [DOI: 10.1016/j.forsciint.2011.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 10/16/2022]
|
33
|
Favretto D, Vogliardi S, Stocchero G, Nalesso A, Tucci M, Ferrara SD. High performance liquid chromatography–high resolution mass spectrometry and micropulverized extraction for the quantification of amphetamines, cocaine, opioids, benzodiazepines, antidepressants and hallucinogens in 2.5mg hair samples. J Chromatogr A 2011; 1218:6583-95. [DOI: 10.1016/j.chroma.2011.07.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/28/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
|
34
|
Brčić Karačonji I, Zimić L, Brajenović N, Skender L. Optimisation of a solid-phase microextraction method for the analysis of nicotine in hair. J Sep Sci 2011; 34:2726-31. [DOI: 10.1002/jssc.201100109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/17/2011] [Accepted: 06/25/2011] [Indexed: 11/09/2022]
|
35
|
Kataoka H, Saito K. Recent advances in SPME techniques in biomedical analysis. J Pharm Biomed Anal 2011; 54:926-50. [DOI: 10.1016/j.jpba.2010.12.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
36
|
Sheibani A, Tabrizchi M, Ghaziaskar HS. Determination of Methadone in Human Hair by Headspace Extraction and Ion Mobility Spectrometry. ANAL LETT 2011. [DOI: 10.1080/00032711003783069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ali Sheibani
- a Department of Chemistry , Islamic Azad University, Yazd Branch , Iran
- b Department of Chemistry , Isfahan University of Technology , Isfahan , Iran
| | - Mahmoud Tabrizchi
- b Department of Chemistry , Isfahan University of Technology , Isfahan , Iran
| | | |
Collapse
|
37
|
Sarafraz Yazdi A, Razavi N. Separation and Determination of Amitriptyline and Nortriptyline in Biological Samples Using Single-Drop Microextraction with GC. Chromatographia 2011. [DOI: 10.1007/s10337-010-1900-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Bio-sample preparation and analytical methods for the determination of tricyclic antidepressants. Bioanalysis 2011; 3:97-118. [DOI: 10.4155/bio.10.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An extended and comprehensive review is presented herein, focusing on sample preparation (pretreatment and extraction) and different analytical methods applied for the quantification of tricyclic antidepressants. These procedures are relevant tools in clinical and forensic toxicology. It is revealed that SPE, for sample preparation, and HPLC, using reversed-phase alkyl (C18) or cyanopropyl-bonded silica columns for the analytes separation, are effective and versatile methods for assay of tricyclic antidepressants. These methods enable achievable detection limits using UV/diode array detection, readily available in most laboratories, down to 1–8 ng ml-1, and using electron capture detection better than 1 ng ml-1, which is lower than that for nitrogen–phosphorus detector. MS interfaced with electrospray ionization offered similar sensitivity, whilst sonic spray ionization provided detection down to 0.03 ng ml-1. A brief discussion on chemical structures, metabolism and mechanism of action of this group of drugs is also presented.
Collapse
|
39
|
Wietecha-Posłuszny R, Garbacik A, Woźniakiewicz M, Kościelniak P. Microwave-assisted hydrolysis and extraction of tricyclic antidepressants from human hair. Anal Bioanal Chem 2010; 399:3233-40. [PMID: 21127844 PMCID: PMC3044221 DOI: 10.1007/s00216-010-4440-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/09/2010] [Accepted: 11/12/2010] [Indexed: 11/29/2022]
Abstract
The objective of this research was to develop, optimize, and validate a modern, rapid method of preparation of human hair samples, using microwave irradiation, for analysis of eight tricyclic antidepressants (TCADs): nordoxepin, nortriptyline, imipramine, amitriptyline, doxepin, desipramine, clomipramine, and norclomipramine. It was based on simultaneous alkaline hair microwave-assisted hydrolysis and microwave-assisted extraction (MAH–MAE). Extracts were analyzed by high-performance liquid chromatography with diode-array detection (HPLC–DAD). A mixture of n-hexane and isoamyl alcohol (99:1, v/v) was used as extraction solvent and the process was performed at 60°C. Application of 1.0 mol L−1 NaOH and microwave irradiation for 40 min were found to be optimum for hair samples. Limits of detection ranged from 0.3 to 1.2 μg g−1 and LOQ from 0.9 to 4.0 μg g−1 for the different drugs. This enabled us to quantify them in hair samples within average therapeutic concentration ranges.
Collapse
Affiliation(s)
- Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Jagiellonian University, 3 Ingardena St, 30-060 Kraków, Poland.
| | | | | | | |
Collapse
|
40
|
Roehsig M, de Paula DML, Moura S, Diniz EMDA, Yonamine M. Determination of eight fatty acid ethyl esters in meconium samples by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J Sep Sci 2010; 33:2115-22. [PMID: 20549668 DOI: 10.1002/jssc.201000118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ-2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns (>600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Collapse
Affiliation(s)
- Marli Roehsig
- College of Pharmaceutical Sciences-University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
41
|
Determination of different recreational drugs in hair by HS-SPME and GC/MS. Anal Bioanal Chem 2010; 397:2987-95. [PMID: 20582406 DOI: 10.1007/s00216-010-3882-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
A simple procedure combining headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS) to detect and quantify amphetamines, ketamine, methadone, cocaine, cocaethylene and Delta(9)-tetrahydrocannabinol (THC) in hair is described. This procedure allows, in a single sample, even scant, analysis of drugs requiring different analytical conditions. A hair sample (10 mg) is washed and subjected to acidic hydrolysis. Then the HS-SPME is carried out (10 min at 90 degrees C) for amphetamines, ketamine, methadone, cocaine and cocaethylene. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing acetic anhydride. After a chromatographic run, an alkaline hydrolysis for THC analysis is carried out in the same vial containing the hair sample previously used. For adsorption, the solid-phase microextraction needle is inserted into the headspace of the vial and the fibre is exposed for 30 min at 150 degrees C. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing N-methyl-N-(trimethylsilyl)trifluoroacetamide. The GC/MS parameters were the same for both chromatographic runs. The linearity was proved to be between 0.01 and 10.00 ng/mg. The repeatability (intra- and interday precision) was below 10% as the coefficient of variation for all compounds. The accuracy, as the relative recovery, was 96.2-103.5% (spiked samples) and 88.6-101.7% (quality control sample). The limit of detection ranged from 0.01 to 0.12 ng/mg, and the limit of quantification ranged from 0.02 to 0.37 ng/mg. Application of the procedure to real hair samples is described. To the best of our knowledge, the proposed procedure combining HS-SPME and GC/MS is the first one be to successfully applied to the simultaneous determination of most of the common recreational drugs, including THC, in a single hair sample.
Collapse
|
42
|
Emídio ES, de Menezes Prata V, de Santana FJM, Dórea HS. Hollow fiber-based liquid phase microextraction with factorial design optimization and gas chromatography-tandem mass spectrometry for determination of cannabinoids in human hair. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2175-83. [PMID: 20655815 DOI: 10.1016/j.jchromb.2010.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
Abstract
A new method, based on hollow fiber liquid-phase microextraction (HF-LPME) and gas chromatography-tandem mass spectrometry (GC-MSMS), was developed for determination of Delta(9)-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in samples of human hair. Since hair is a solid matrix, the samples were subjected to alkaline digestion using NaOH. The aqueous solutions obtained were extracted using a 6cm polypropylene fiber (600microm i.d., 200microm wall thickness, 0.2microm pore size) for each extraction. A 2(5-1) fractional factorial design for screening, and a central composite design for optimization of significant variables, was applied during development of the extraction method. The variables evaluated were the type of extraction solvent, pH, stirring speed, extraction time, and acceptor phase volume. The optimized conditions for the proposed extraction procedure were 10mg of hair sample; 20microL of butyl acetate; aqueous (pH 14) donor phase containing 6.8% NaCl; 600rpm stirring speed; 20min extraction time. A linear response was obtained in the ranges 1-500pgmg(-1) (CBD and CBN) and 20-500pgmg(-1) (THC), with regression coefficients >0.99. Precision, determined as the relative standard deviation, was 3.3-8.9% (intra-day) and 4.4-13.7% (inter-day). Absolute recoveries varied in the ranges 4.4-4.8% (CBD), 7.6-8.9% (THC) and 7.7-8.2% (CBN). Limits of detection (LOD, S/N=3) and quantification (LOQ, S/N=10) were 0.5-15pgmg(-1) and 1-20pgmg(-1), respectively. The method was successfully used to determine CBD, THC and CBN in hair samples from patients in a drug dependency rehabilitation center. Concentrations varied in the ranges 1-18pgmg(-1) (CBD), 20-232pgmg(-1) (THC) and 9-107pgmg(-1) (CBN), confirming the suitability of the method for monitoring studies.
Collapse
Affiliation(s)
- Elissandro Soares Emídio
- Laboratório de Análise de Compostos Orgânicos Poluentes, Departamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n., Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | | | | | | |
Collapse
|
43
|
Emídio ES, Prata VDM, Dórea HS. Validation of an analytical method for analysis of cannabinoids in hair by headspace solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry. Anal Chim Acta 2010; 670:63-71. [PMID: 20685418 DOI: 10.1016/j.aca.2010.04.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/11/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
The development of an analytical method for the determination of Delta(9)-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in samples of human hair is described. Samples were subjected to a procedure based on the combination of headspace solid-phase microextraction (HS-SPME) with gas chromatography linked with mass spectrometry operating in tandem mode (GC-MS/MS). A 10 mg aliquot of sample was firstly decontaminated using petroleum ether, deionized water and dichloromethane (2 mL of each solvent), for 10 min under sonication, and then digested in alkaline solution (1 mol L(-1) NaOH). The method variables evaluated were pH, mass of hair, fiber type, extraction temperature, desorption time, ionic strength, pre-equilibrium time and extraction time. Parameters concerning operation of the tandem mode MS/MS were also assessed and optimized. Validation of the method demonstrated excellent linearity in the range 0.1-8.0 ng mg(-1), with regression coefficients better than 0.994. Precision was determined using two different concentrations (upper and lower limits of the linear range), and RSD values were between 6.6 and 16.4%. Absolute recoveries (measured in triplicate) were in the range 1.1-8.7%, and limits of detection and quantification were 0.007-0.031 ng mg(-1) and 0.012-0.062 ng mg(-1), respectively. The LOQ for THC (0.062 ng mg(-1)) was below the cut-off value (LOQ < or = 0.1 ng mg(-1)) established by the Society of Hair Testing (SOHT), the Society of Toxicological and Forensic Chemistry (STFCh) and the Société Française de Toxicologie Analytique (SFTA). The optimized SPME method was applied in analysis of hair samples from Cannabis drug users, showing that CBN and CBD were present in all samples analyzed.
Collapse
Affiliation(s)
- Elissandro Soares Emídio
- Laboratório de Análise de Compostos Orgânicos Poluentes, Departamento de Química, Universidade Federal de Sergipe, 49100-000, Av. Marechal Rondon, s/n. Jardim Rosa Elze, São Cristóvão, SE, Brazil
| | | | | |
Collapse
|
44
|
Barroso M, Dias M, Vieira DN, López-Rivadulla M, Queiroz JA. Mixed-mode solid-phase extraction for sample cleanup in hair analysis for methadone and its main metabolite. Biomed Chromatogr 2010; 24:1240-6. [DOI: 10.1002/bmc.1434] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Nielsen MKK, Johansen SS, Dalsgaard PW, Linnet K. Simultaneous screening and quantification of 52 common pharmaceuticals and drugs of abuse in hair using UPLC–TOF-MS. Forensic Sci Int 2010; 196:85-92. [DOI: 10.1016/j.forsciint.2009.12.027] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/10/2009] [Indexed: 11/30/2022]
|
46
|
|
47
|
Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 2009; 396:339-64. [DOI: 10.1007/s00216-009-3076-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/12/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
48
|
|
49
|
Hutson J, Aleksa K, Pragst F, Koren G. Detection and quantification of fatty acid ethyl esters in meconium by headspace-solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:8-12. [DOI: 10.1016/j.jchromb.2008.10.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/22/2008] [Accepted: 10/29/2008] [Indexed: 11/27/2022]
|
50
|
Determination of phenothiazine derivatives in human urine by using ionic liquid-based dynamic liquid-phase microextraction coupled with liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:37-42. [DOI: 10.1016/j.jchromb.2008.11.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/06/2008] [Accepted: 11/09/2008] [Indexed: 11/20/2022]
|