1
|
Frazier AN, Beck MR, Waldrip H, Koziel JA. Connecting the ruminant microbiome to climate change: insights from current ecological and evolutionary concepts. Front Microbiol 2024; 15:1503315. [PMID: 39687868 PMCID: PMC11646987 DOI: 10.3389/fmicb.2024.1503315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Ruminant livestock provide meat, milk, wool, and other products required for human subsistence. Within the digestive tract of ruminant animals, the rumen houses a complex and diverse microbial ecosystem. These microbes generate many of the nutrients that are needed by the host animal for maintenance and production. However, enteric methane (CH4) is also produced during the final stage of anaerobic digestion. Growing public concern for global climate change has driven the agriculture sector to enhance its investigation into CH4 mitigation. Many CH4 mitigation methods have been explored, with varying outcomes. With the advent of new sequencing technologies, the host-microbe interactions that mediate fermentation processes have been examined to enhance ruminant enteric CH4 mitigation strategies. In this review, we describe current knowledge of the factors driving ruminant microbial assembly, how this relates to functionality, and how CH4 mitigation approaches influence ecological and evolutionary gradients. Through the current literature, we elucidated that many ecological and evolutionary properties are working in tandem in the assembly of ruminant microbes and in the functionality of these microbes in methanogenesis. Additionally, we provide a conceptual framework for future research wherein ecological and evolutionary dynamics account for CH4 mitigation in ruminant microbial composition. Thus, preparation of future research should incorporate this framework to address the roles ecology and evolution have in anthropogenic climate change.
Collapse
Affiliation(s)
- A. Nathan Frazier
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| | - Matthew R. Beck
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Heidi Waldrip
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| | - Jacek A. Koziel
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| |
Collapse
|
2
|
Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction. Nat Microbiol 2021; 6:594-605. [PMID: 33903747 PMCID: PMC7611241 DOI: 10.1038/s41564-021-00894-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
In bacteria, the tubulin homologue FtsZ assembles a cytokinetic ring, termed the Z ring, and plays a key role in the machinery that constricts to divide the cells. Many archaea encode two FtsZ proteins from distinct families, FtsZ1 and FtsZ2, with previously unclear functions. Here, we show that Haloferax volcanii cannot divide properly without either or both FtsZ proteins, but DNA replication continues and cells proliferate in alternative ways, such as blebbing and fragmentation, via remarkable envelope plasticity. FtsZ1 and FtsZ2 colocalize to form the dynamic division ring. However, FtsZ1 can assemble rings independent of FtsZ2, and stabilizes FtsZ2 in the ring, whereas FtsZ2 functions primarily in the constriction mechanism. FtsZ1 also influenced cell shape, suggesting it forms a hub-like platform at midcell for the assembly of shape-related systems too. Both FtsZ1 and FtsZ2 are widespread in archaea with a single S-layer envelope, but archaea with a pseudomurein wall and division septum only have FtsZ1. FtsZ1 is therefore likely to provide a fundamental recruitment role in diverse archaea, and FtsZ2 is required for constriction of a flexible S-layer envelope, where an internal constriction force might dominate the division mechanism, in contrast with the single-FtsZ bacteria and archaea that divide primarily by wall ingrowth.
Collapse
|
3
|
Kaneta A, Fujishima K, Morikazu W, Hori H, Hirata A. The RNA-splicing endonuclease from the euryarchaeaon Methanopyrus kandleri is a heterotetramer with constrained substrate specificity. Nucleic Acids Res 2018; 46:1958-1972. [PMID: 29346615 PMCID: PMC5829648 DOI: 10.1093/nar/gky003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
Four different types (α4, α'2, (αβ)2 and ϵ2) of RNA-splicing endonucleases (EndAs) for RNA processing are known to exist in the Archaea. Only the (αβ)2 and ϵ2 types can cleave non-canonical introns in precursor (pre)-tRNA. Both enzyme types possess an insert associated with a specific loop, allowing broad substrate specificity in the catalytic α units. Here, the hyperthermophilic euryarchaeon Methanopyrus kandleri (MKA) was predicted to harbor an (αβ)2-type EndA lacking the specific loop. To characterize MKA EndA enzymatic activity, we constructed a fusion protein derived from MKA α and β subunits (fMKA EndA). In vitro assessment demonstrated complete removal of the canonical bulge-helix-bulge (BHB) intron structure from MKA pre-tRNAAsn. However, removal of the relaxed BHB structure in MKA pre-tRNAGlu was inefficient compared to crenarchaeal (αβ)2 EndA, and the ability to process the relaxed intron within mini-helix RNA was not detected. fMKA EndA X-ray structure revealed a shape similar to that of other EndA types, with no specific loop. Mapping of EndA types and their specific loops and the tRNA gene diversity among various Archaea suggest that MKA EndA is evolutionarily related to other (αβ)2-type EndAs found in the Thaumarchaeota, Crenarchaeota and Aigarchaeota but uniquely represents constrained substrate specificity.
Collapse
Affiliation(s)
- Ayano Kaneta
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Wataru Morikazu
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
4
|
Yu Z, Ma Y, Zhong W, Qiu J, Li J. Comparative Genomics of Methanopyrus sp. SNP6 and KOL6 Revealing Genomic Regions of Plasticity Implicated in Extremely Thermophilic Profiles. Front Microbiol 2017; 8:1278. [PMID: 28744269 PMCID: PMC5504354 DOI: 10.3389/fmicb.2017.01278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Methanopyrus spp. are usually isolated from harsh niches, such as high osmotic pressure and extreme temperature. However, the molecular mechanisms for their environmental adaption are poorly understood. Archaeal species is commonly considered as primitive organism. The evolutional placement of archaea is a fundamental and intriguing scientific question. We sequenced the genomes of Methanopyrus strains SNP6 and KOL6 isolated from the Atlantic and Iceland, respectively. Comparative genomic analysis revealed genetic diversity and instability implicated in niche adaption, including a number of transporter- and integrase/transposase-related genes. Pan-genome analysis also defined the gene pool of Methanopyrus spp., in addition of ~120-Kb genomic region of plasticity impacting cognate genomic architecture. We believe that Methanopyrus genomics could facilitate efficient investigation/recognition of archaeal phylogenetic diverse patterns, as well as improve understanding of biological roles and significance of these versatile microbes.
Collapse
Affiliation(s)
- Zhiliang Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China
| | - Yunting Ma
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China
| | - Weihong Zhong
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China
| | - Juanping Qiu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China
| | - Jun Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
5
|
Sato Y, Fujiwara T, Kimura H. Expression and Function of Different Guanine-Plus-Cytosine Content 16S rRNA Genes in Haloarcula hispanica at Different Temperatures. Front Microbiol 2017; 8:482. [PMID: 28400752 PMCID: PMC5368182 DOI: 10.3389/fmicb.2017.00482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
The halophilic archaeon Haloarcula hispanica harbors three ribosomal RNA (rRNA) operons (rrnA, rrnB, and rrnC) that contain the 16S rRNA genes rrsA, rrsB, and rrsC, respectively. Although rrsB and rrsC (rrsBC) have almost identical sequences, the rrsA and rrsBC sequences differ by 5.4%, and they differ by 2.5% with respect to guanine-plus-cytosine content (PGC). The strong correlation between the typical growth temperatures of archaea and PGC of their 16S rRNA genes suggests that H. hispanica may harbor different 16S rRNA genes having different PGC to maintain rapid growth in a wide range of temperatures. We therefore performed reverse transcription-coupled quantitative PCR to assess expression levels of rrsA (PGC, 58.9%) and rrsBC (PGC, 56.4-56.5%) at various temperatures. The expression ratio of rrsA to rrsBC increased with culture temperature. Mutants with complete deletions of one or two of the three rRNA operons were constructed and their growth rates at different temperatures compared to that of the wild-type. The growth characteristics of the rRNA operon single-mutant strains were indistinguishable from the wild-type. The rRNA operon double-mutant strains maintained the same temperature range as wild-type but displayed reduced growth rates. In particular, the double-mutant strains grew much slower than wild-type at low temperature related to minimum growth temperature of the wild-type. On the other hand, at physiologically high temperatures the wild-type and the double-mutant strain which harbors only rrnA with high-PGCrrsA grew significantly faster than the double-mutant strain which harbors only rrnC with low-PGCrrsC. These findings suggest the importance of 16S rRNAs transcribed from rrsA with high-PGC in maintaining rapid growth of this halophilic archaeon at raised growth temperatures.
Collapse
Affiliation(s)
- Yu Sato
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka UniversityShizuoka, Japan; Department of Biological Science, Faculty of Science, Shizuoka UniversityShizuoka, Japan
| | - Hiroyuki Kimura
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka UniversityShizuoka, Japan; Department of Geosciences, Faculty of Science, Shizuoka UniversityShizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka UniversityShizuoka, Japan
| |
Collapse
|
6
|
Li J, Wong CF, Wong MT, Huang H, Leung FC. Modularized evolution in archaeal methanogens phylogenetic forest. Genome Biol Evol 2014; 6:3344-59. [PMID: 25502908 PMCID: PMC4986457 DOI: 10.1093/gbe/evu259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2014] [Indexed: 11/13/2022] Open
Abstract
Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species.
Collapse
Affiliation(s)
- Jun Li
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, China
| | - Chi-Fat Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, China School of Biological Sciences, Faculty of Science, The University of Hong Kong, China
| | - Mabel Ting Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, China Present address: Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - He Huang
- Center for Marine Environmental Studies, Ehime University, Japan
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, China Bioinformatics Center, Nanjing Agricultural University, People's Republic of China
| |
Collapse
|
7
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Sevellec M, Pavey SA, Boutin S, Filteau M, Derome N, Bernatchez L. Microbiome investigation in the ecological speciation context of lake whitefish (Coregonus clupeaformis
) using next-generation sequencing. J Evol Biol 2014; 27:1029-46. [DOI: 10.1111/jeb.12374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/16/2014] [Indexed: 12/21/2022]
Affiliation(s)
- M. Sevellec
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - S. A. Pavey
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - S. Boutin
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - M. Filteau
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - N. Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - L. Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|
9
|
Su AAH, Tripp V, Randau L. RNA-Seq analyses reveal the order of tRNA processing events and the maturation of C/D box and CRISPR RNAs in the hyperthermophile Methanopyrus kandleri. Nucleic Acids Res 2013; 41:6250-8. [PMID: 23620296 PMCID: PMC3695527 DOI: 10.1093/nar/gkt317] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 11/29/2022] Open
Abstract
The methanogenic archaeon Methanopyrus kandleri grows near the upper temperature limit for life. Genome analyses revealed strategies to adapt to these harsh conditions and elucidated a unique transfer RNA (tRNA) C-to-U editing mechanism at base 8 for 30 different tRNA species. Here, RNA-Seq deep sequencing methodology was combined with computational analyses to characterize the small RNome of this hyperthermophilic organism and to obtain insights into the RNA metabolism at extreme temperatures. A large number of 132 small RNAs were identified that guide RNA modifications, which are expected to stabilize structured RNA molecules. The C/D box guide RNAs were shown to exist as circular RNA molecules. In addition, clustered regularly interspaced short palindromic repeats RNA processing and potential regulatory RNAs were identified. Finally, the identification of tRNA precursors before and after the unique C8-to-U8 editing activity enabled the determination of the order of tRNA processing events with termini truncation preceding intron removal. This order of tRNA maturation follows the compartmentalized tRNA processing order found in Eukaryotes and suggests its conservation during evolution.
Collapse
MESH Headings
- Euryarchaeota/genetics
- Euryarchaeota/metabolism
- High-Throughput Nucleotide Sequencing
- Hot Temperature
- Inverted Repeat Sequences
- RNA Editing
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/classification
- RNA, Archaeal/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/classification
- RNA, Small Untranslated/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Andreas A. H. Su
- Max-Planck-Institute for Terrestrial Microbiology, Max Planck Research Group: Prokaryotic Small RNA Biology, Karl-von-Frisch Strasse 10, 35037 Marburg, Germany and LOEWE Center for Synthetic Microbiology (Synmikro), 35037 Marburg, Germany
| | - Vanessa Tripp
- Max-Planck-Institute for Terrestrial Microbiology, Max Planck Research Group: Prokaryotic Small RNA Biology, Karl-von-Frisch Strasse 10, 35037 Marburg, Germany and LOEWE Center for Synthetic Microbiology (Synmikro), 35037 Marburg, Germany
| | - Lennart Randau
- Max-Planck-Institute for Terrestrial Microbiology, Max Planck Research Group: Prokaryotic Small RNA Biology, Karl-von-Frisch Strasse 10, 35037 Marburg, Germany and LOEWE Center for Synthetic Microbiology (Synmikro), 35037 Marburg, Germany
| |
Collapse
|
10
|
Abstract
The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.
Collapse
Affiliation(s)
- Alexander J. Probst
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Anna K. Auerbach
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
11
|
Bhandari V, Naushad HS, Gupta RS. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Front Cell Infect Microbiol 2012; 2:98. [PMID: 22919687 PMCID: PMC3417386 DOI: 10.3389/fcimb.2012.00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/27/2012] [Indexed: 11/20/2022] Open
Abstract
The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
12
|
Boutin S, Sevellec M, Pavey SA, Bernatchez L, Derome N. A fast, highly sensitive double-nested PCR-based method to screen fish immunobiomes. Mol Ecol Resour 2012; 12:1027-39. [PMID: 22805147 DOI: 10.1111/j.1755-0998.2012.03166.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Efficient methods for constructing 16S tag amplicon libraries for pyrosequencing are needed for the rapid and thorough screening of infectious bacterial diversity from host tissue samples. Here we have developed a double-nested PCR methodology that generates 16S tag amplicon libraries from very small amounts of bacteria/host samples. This methodology was tested for 133 kidney samples from the lake whitefish Coregonus clupeaformis (Salmonidae) sampled in five different lake populations. The double-nested PCR efficiency was compared with two other PCR strategies: single primer pair amplification and simple nested PCR. The double-nested PCR was the only amplification strategy to provide highly specific amplification of bacterial DNA. The resulting 16S amplicon libraries were synthesized and pyrosequenced using 454 FLX technology to analyse the variation of pathogenic bacteria abundance. The proportion of the community sequenced was very high (Good's coverage estimator; mean = 95.4%). Furthermore, there were no significant differences of sequence coverage among samples. Finally, the occurrence of chimeric amplicons was very low. Therefore, the double-nested PCR approach provides a rapid, informative and cost-effective method for screening fish immunobiomes and most likely applicable to other low-density microbiomes as well.
Collapse
Affiliation(s)
- Sébastien Boutin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
13
|
Roy Chowdhury A, Dutta C. A pursuit of lineage-specific and niche-specific proteome features in the world of archaea. BMC Genomics 2012; 13:236. [PMID: 22691113 PMCID: PMC3416665 DOI: 10.1186/1471-2164-13-236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022] Open
Abstract
Background Archaea evoke interest among researchers for two enigmatic characteristics –a combination of bacterial and eukaryotic components in their molecular architectures and an enormous diversity in their life-style and metabolic capabilities. Despite considerable research efforts, lineage- specific/niche-specific molecular features of the whole archaeal world are yet to be fully unveiled. The study offers the first large-scale in silico proteome analysis of all archaeal species of known genome sequences with a special emphasis on methanogenic and sulphur-metabolising archaea. Results Overall amino acid usage in archaea is dominated by GC-bias. But the environmental factors like oxygen requirement or thermal adaptation seem to play important roles in selection of residues with no GC-bias at the codon level. All methanogens, irrespective of their thermal/salt adaptation, show higher usage of Cys and have relatively acidic proteomes, while the proteomes of sulphur-metabolisers have higher aromaticity and more positive charges. Despite of exhibiting thermophilic life-style, korarchaeota possesses an acidic proteome. Among the distinct trends prevailing in COGs (Cluster of Orthologous Groups of proteins) distribution profiles, crenarchaeal organisms display higher intra-order variations in COGs repertoire, especially in the metabolic ones, as compared to euryarchaea. All methanogens are characterised by a presence of 22 exclusive COGs. Conclusions Divergences in amino acid usage, aromaticity/charge profiles and COG repertoire among methanogens and sulphur-metabolisers, aerobic and anaerobic archaea or korarchaeota and nanoarchaeota, as elucidated in the present study, point towards the presence of distinct molecular strategies for niche specialization in the archaeal world.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Structural Biology & Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
14
|
Unal B, Perry VR, Sheth M, Gomez-Alvarez V, Chin KJ, Nüsslein K. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Front Microbiol 2012; 3:175. [PMID: 22590465 PMCID: PMC3349271 DOI: 10.3389/fmicb.2012.00175] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/20/2012] [Indexed: 12/01/2022] Open
Abstract
Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community.
Collapse
Affiliation(s)
- Burcu Unal
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Su AAH, Randau L. A-to-I and C-to-U editing within transfer RNAs. BIOCHEMISTRY (MOSCOW) 2011; 76:932-7. [DOI: 10.1134/s0006297911080098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski DA. Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 2011; 13:2342-50. [PMID: 21605309 DOI: 10.1111/j.1462-2920.2011.02505.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large numbers of magnetotactic bacteria were discovered in mud and water samples collected from a number of highly alkaline aquatic environments with pH values of ≈ 9.5. These bacteria were helical in morphology and biomineralized chains of bullet-shaped crystals of magnetite and were present in all the highly alkaline sites sampled. Three strains from different sites were isolated and cultured and grew optimally at pH 9.0-9.5 but not at 8.0 and below, demonstrating that these organisms truly require highly alkaline conditions and are not simply surviving/growing in neutral pH micro-niches in their natural habitats. All strains grew anaerobically through the reduction of sulfate as a terminal electron acceptor and phylogenetic analysis, based on 16S rRNA gene sequences, as well as some physiological features, showed that they could represent strains of Desulfonatronum thiodismutans, a known alkaliphilic bacterium that does not biomineralize magnetosomes. Our results show that some magnetotactic bacteria can be considered extremophilic and greatly extend the known ecology of magnetotactic bacteria and the conditions under which they can biomineralize magnetite. Moreover, our results show that this type of magnetotactic bacterium is common in highly alkaline environments. Our findings also greatly influence the interpretation of the presence of nanometer-sized magnetite crystals, so-called magnetofossils, in highly alkaline environments.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | | | | | | |
Collapse
|
17
|
Yu Z, Xu S. Search for a Methanopyrus-proximal last universal common ancestor based on comparative-genomic analysis. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Gantner S, Andersson AF, Alonso-Sáez L, Bertilsson S. Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J Microbiol Methods 2010; 84:12-8. [PMID: 20940022 DOI: 10.1016/j.mimet.2010.10.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/30/2022]
Abstract
Next generation sequencing technologies for in depth analyses of complex microbial communities rely on rational primer design based on up-to-date reference databases. Most of the 16S rRNA-gene based analyses of environmental Archaea community composition use PCR primers developed from small data sets several years ago, making an update long overdue. Here we present a new set of archaeal primers targeting the 16S rRNA gene designed from 8500 aligned archaeal sequences in the SILVA database. The primers 340F-1000R showed a high archaeal specificity (<1% bacteria amplification) covering 93 and 97% of available sequences for Crenarchaeota and Euryarchaeota respectively. In silico tests of the primers revealed at least 38% higher coverage for Archaea compared to other commonly used primers. Empirical tests with clone libraries confirmed the high specificity of the primer pair to Archaea in three biomes: surface waters in the Arctic Ocean, the pelagic zone of a temperate lake and a methanogenic bioreactor. The clone libraries featured both Euryarchaeota and Crenarchaeota in variable proportions and revealed dramatic differences in the archaeal community composition and minimal phylogenetic overlap between samples.
Collapse
Affiliation(s)
- Stephan Gantner
- Department of Ecology & Genetics, Limnology, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | | | | | | |
Collapse
|
19
|
Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Appl Microbiol Biotechnol 2010; 87:1167-76. [PMID: 20405121 PMCID: PMC2886134 DOI: 10.1007/s00253-010-2595-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 11/16/2022]
Abstract
Using ammonia monooxygenase α-subunit (amoA) gene and 16S rRNA gene, the community structure and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in a nitrogen-removing reactor, which was operated for five phases, were characterized and quantified by cloning, terminal restriction fragment length polymorphism (T-RFLP), and quantitative polymerase chain reaction (qPCR). The results suggested that the dominant AOB in the reactor fell to the genus Nitrosomonas, while the dominant AOA belonged to Crenarchaeotal Group I.1a in phylum Crenarchaeota. Real-time PCR results demonstrated that the levels of AOB amoA varied from 2.9 × 103 to 2.3 × 105 copies per nanogram DNA, greatly (about 60 times) higher than those of AOA, which ranged from 1.7 × 102 to 3.8 × 103 copies per nanogram DNA. This indicated the possible leading role of AOB in the nitrification process in this study. T-RFLP results showed that the AOB community structure significantly shifted in different phases while AOA only showed one major peak for all the phases. The analyses also suggested that the AOB community was more sensitive than that of AOA to operational conditions, such as ammonia loading and dissolved oxygen.
Collapse
|
20
|
Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP. Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. GEOBIOLOGY 2010; 8:140-154. [PMID: 20002204 DOI: 10.1111/j.1472-4669.2009.00228.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A culture-independent community census was combined with chemical and thermodynamic analyses of three springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were approximately 80 degrees C, circumneutral, apparently anaerobic and had similar water chemistries. 16S rRNA gene libraries constructed from DNA isolated from spring sediment revealed moderately diverse but highly novel microbial communities. Over half of the phylotypes could not be grouped into known taxonomic classes. Bacterial libraries from LHC1 and LHC3 were predominantly species within the phyla Aquificae and Thermodesulfobacteria, while those from LHC4 were dominated by candidate phyla, including OP1 and OP9. Archaeal libraries from LHC3 contained large numbers of Archaeoglobales and Desulfurococcales, while LHC1 and LHC4 were dominated by Crenarchaeota unaffiliated with known orders. The heterogeneity in microbial populations could not easily be attributed to measurable differences in water chemistry, but may be determined by availability of trace amounts of oxygen to the spring sediments. Thermodynamic modeling predicted the most favorable reactions to be sulfur and nitrate respirations, yielding 40-70 kJ mol(-1) e(-) transferred; however, levels of oxygen at or below our detection limit could result in aerobic respirations yielding up to 100 kJ mol(-1) e(-) transferred. Important electron donors are predicted to be H(2), H(2)S, S(0), Fe(2+) and CH(4), all of which yield similar energies when coupled to a given electron acceptor. The results indicate that springs associated with the Long Valley Caldera contain microbial populations that show some similarities both to springs in Yellowstone and springs in the Great Basin.
Collapse
Affiliation(s)
- T J Vick
- University of Nevada, Las Vegas, USA
| | | | | | | | | |
Collapse
|
21
|
Horath T, Bachofen R. Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland). MICROBIAL ECOLOGY 2009; 58:290-306. [PMID: 19172216 DOI: 10.1007/s00248-008-9483-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/19/2008] [Indexed: 05/21/2023]
Abstract
Endolithic microorganisms colonize the pores in exposed dolomite rocks in the Piora Valley in the Swiss Alps. They appear as distinct grayish-green bands about 1-8 mm below the rock surface. Based on environmental small subunit ribosomal RNA gene sequences, a diverse community driven by photosynthesis has been found. Cyanobacteria (57 clones), especially the genus Leptolyngbya, form the functional basis for an endolithic community which contains a wide spectrum of so far not characterized species of chemotrophic Bacteria (64 clones) with mainly Actinobacteria, Alpha-Proteobacteria, Bacteroidetes, and Acidobacteria, as well as a cluster within the Chloroflexaceae. Furthermore, a cluster within the Crenarchaeotes (40 clones) has been detected. Although the eukaryotic diversity was outside the scope of the study, an amoeba (39 clones), and several green algae (51 clones) have been observed. We conclude that the bacterial diversity in this endolithic habitat, especially of chemotrophic, nonpigmented organisms, is considerable and that Archaea are present as well.
Collapse
Affiliation(s)
- Thomas Horath
- Institute of Plant Biology/Microbiology, University of Zürich, Zollikerstr. 107, CH-8008 Zürich, Switzerland
| | | |
Collapse
|
22
|
Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 2008; 6:245-52. [PMID: 18274537 DOI: 10.1038/nrmicro1852] [Citation(s) in RCA: 632] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The archaeal domain is currently divided into two major phyla, the Euryarchaeota and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic archaea have been discovered and affiliated with the Crenarchaeota. It was recently recognized that these archaea have a major role in geochemical cycles. Based on the first genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives are not Crenarchaeota, but should be considered as a third archaeal phylum, which we propose to name Thaumarchaeota (from the Greek 'thaumas', meaning wonder).
Collapse
|
23
|
Gao L, Qi J, Sun J, Hao B. Prokaryote phylogeny meets taxonomy: an exhaustive comparison of composition vector trees with systematic bacteriology. ACTA ACUST UNITED AC 2008; 50:587-99. [PMID: 17879055 DOI: 10.1007/s11427-007-0084-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 07/21/2007] [Indexed: 10/22/2022]
Abstract
We perform an exhaustive, taxon by taxon, comparison of the branchings in the composition vector trees (CVTrees) inferred from 432 prokaryotic genomes available on 31 December 2006, with the bacteriologists' taxonomy--primarily the latest online Outline of the Bergey's Manual of Systematic Bacteriology. The CVTree phylogeny agrees very well with the Bergey's taxonomy in majority of fine branchings and overall structures. At the same time most of the differences between the trees and the Manual have been known to biologists to some extent and may hint at taxonomic revisions. Instead of demonstrating the overwhelming agreement this paper puts emphasis on the biological implications of the differences.
Collapse
Affiliation(s)
- Lei Gao
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
24
|
Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA. Phylogenetic systematics of microorganisms inhabiting thermal environments. BIOCHEMISTRY (MOSCOW) 2007; 72:1299-312. [DOI: 10.1134/s0006297907120048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhophadhyay B, Blankenship RE. Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii. J Bacteriol 2007; 189:7392-8. [PMID: 17660283 PMCID: PMC2168459 DOI: 10.1128/jb.00876-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using genomic analysis, researchers previously identified genes coding for proteins homologous to the structural proteins of nitrogenase (J. Raymond, J. L. Siefert, C. R. Staples, and R. E. Blankenship, Mol. Biol. Evol. 21:541-554, 2004). The expression and association of NifD and NifH nitrogenase homologs (named NflD and NflH for "Nif-like" D and H, respectively) have been detected in a non-nitrogen-fixing hyperthermophilic methanogen, Methanocaldococcus jannaschii. These homologs are expressed constitutively and do not appear to be directly involved with nitrogen metabolism or detoxification of compounds such as cyanide or azide. The NflH and NflD proteins were found to interact with each other, as determined by bacterial two-hybrid studies. Upon immunoisolation, NflD and NflH copurified, along with three other proteins whose functions are as yet uncharacterized. The apparent presence of genes coding for NflH and NflD in all known methanogens, their constitutive expression, and their high sequence similarity to the NifH and NifD proteins or the BchL and BchN/BchB proteins suggest that NflH and NflD participate in an indispensable and fundamental function(s) in methanogens.
Collapse
|
26
|
Garcia JL, Patel BK, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 2007; 6:205-26. [PMID: 16887666 DOI: 10.1006/anae.2000.0345] [Citation(s) in RCA: 388] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J L Garcia
- Laboratoire de Microbiologie IRD, Université de Provence, ESIL case 925, 163 Avenue de Luminy, 13288, Marseille cedex 9, France
| | | | | |
Collapse
|
27
|
Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 2007; 8:86. [PMID: 17394648 PMCID: PMC1852104 DOI: 10.1186/1471-2164-8-86] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 03/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood. RESULTS We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota--Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota--Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared by M. kandleri and Methanobacteriales suggest a close evolutionary relationship between them. In contrast to the phylogenomics studies, a monophyletic grouping of archaea is not supported by phylogenetic analyses based on protein sequences. CONCLUSION The identified archaea-specific proteins provide novel molecular markers or signature proteins that are distinctive characteristics of Archaea and all of its major subgroups. The species distributions of these proteins provide novel insights into the evolutionary relationships among different groups within Archaea, particularly regarding the origin of methanogenesis. Most of these proteins are of unknown function and further studies should lead to discovery of novel biochemical and physiological characteristics that are unique to either all archaea or its different subgroups.
Collapse
|
28
|
Kimura H, Ishibashi JI, Masuda H, Kato K, Hanada S. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere. Appl Environ Microbiol 2007; 73:2110-7. [PMID: 17277228 PMCID: PMC1855651 DOI: 10.1128/aem.02800-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Geosciences, Faculty of Science, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8529, Japan.
| | | | | | | | | |
Collapse
|
29
|
Chauhan A, Reddy KR, Ogram AV. Syntrophic-archaeal associations in a nutrient-impacted freshwater marsh. J Appl Microbiol 2006; 100:73-84. [PMID: 16405687 DOI: 10.1111/j.1365-2672.2005.02751.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Evaluation of the composition, distribution and activities of syntrophic bacteria and methanogens in soils from eutrophic and low nutrient regions of a freshwater marsh, and to compare these results with those obtained from a similar study in the Florida Everglades. METHODS AND RESULTS Culture dependent and independent approaches were employed to study consortia of syntrophs and methanogens in a freshwater marsh. Methanogenesis from butyrate oxidation was fourfold higher in microcosms containing soil from eutrophic regions of the marsh than from low nutrient regions. Propionate was oxidized in eutrophic microcosms at lower rates than butyrate and with lower yields of methane. Sequence analysis of 16S rRNA gene clone libraries from DNA extracted from microcosms and soils revealed differences such that the dominant restriction fragment length polymorphism (RFLP) phylotypes (representing 82-88% of clone libraries) from eutrophic soils clustered with fatty acid oxidizing Syntrophomonas spp. The four dominant RFLP phylotypes (representing 11-24%) from microcosms containing soils from low nutrient regions were sequenced, and clustered with micro-organisms having the potential for fermentative and syntrophic metabolism. Archaeal 16S rRNA sequence analysis showed that methanogens from eutrophic regions were from diverse families, including Methanomicrobiaceae, Methanosarcinaceae, and Methanocorpusculaceae, but clone libraries from low nutrient soils revealed only members of Methanosarcinaceae. CONCLUSIONS These findings indicate that syntroph-methanogen consortia differed with nutrient levels in a freshwater marsh. SIGNIFICANCE AND IMPACT OF THE STUDY This is one of few studies addressing the distribution of fatty acid consuming-hydrogen producing bacteria (syntrophs) and their methanogenic partners in wetland soils, and the effects of eutrophication on the ecology these groups.
Collapse
Affiliation(s)
- A Chauhan
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290, USA
| | | | | |
Collapse
|
30
|
Gribaldo S, Brochier-Armanet C. The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 2006; 361:1007-22. [PMID: 16754611 PMCID: PMC1578729 DOI: 10.1098/rstb.2006.1841] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Environmental surveys indicate that the Archaea are diverse and abundant not only in extreme environments, but also in soil, oceans and freshwater, where they may fulfil a key role in the biogeochemical cycles of the planet. Archaea display unique capacities, such as methanogenesis and survival at temperatures higher than 90 degrees C, that make them crucial for understanding the nature of the biota of early Earth. Molecular, genomics and phylogenetics data strengthen Woese's definition of Archaea as a third domain of life in addition to Bacteria and Eukarya. Phylogenomics analyses of the components of different molecular systems are highlighting a core of mainly vertically inherited genes in Archaea. This allows recovering a globally well-resolved picture of archaeal evolution, as opposed to what is observed for Bacteria and Eukarya. This may be due to the fact that no rapid divergence occurred at the emergence of present-day archaeal lineages. This phylogeny supports a hyperthermophilic and non-methanogenic ancestor to present-day archaeal lineages, and a profound divergence between two major phyla, the Crenarchaeota and the Euryarchaeota, that may not have an equivalent in the other two domains of life. Nanoarchaea may not represent a third and ancestral archaeal phylum, but a fast-evolving euryarchaeal lineage. Methanogenesis seems to have appeared only once and early in the evolution of Euryarchaeota. Filling up this picture of archaeal evolution by adding presently uncultivated species, and placing it back in geological time remain two essential goals for the future.
Collapse
Affiliation(s)
- Simonetta Gribaldo
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extremophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
31
|
Ahn DG, Kim SI, Rhee JK, Kim KP, Pan JG, Oh JW. TTSV1, a new virus-like particle isolated from the hyperthermophilic crenarchaeote Thermoproteus tenax. Virology 2006; 351:280-90. [PMID: 16682063 DOI: 10.1016/j.virol.2006.03.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 12/30/2005] [Accepted: 03/28/2006] [Indexed: 11/23/2022]
Abstract
A new virus-like particle TTSV1 was isolated from the hyperthermophilic crenarchaeote Thermoproteus tenax sampled at a hot spring region in Indonesia. TTSV1 had a spherical shape with a diameter of approximately 70 nm and was morphologically similar to the PSV isolated from a strain of Pyrobaculum. The 21.6 kb linear double-stranded DNA genome of TTSV1 had 38 open reading frames (ORFs), of which 15 ORFs were most similar to those of PSV. The remaining 23 ORFs showed little similarity to proteins in the public databases. Southern blot analysis demonstrated that the viral genome is not integrated into the host chromosome. TTSV1 consisted of three putative structural proteins of 10, 20, and 35 kDa in size, and the 10-kDa major protein was identified by mass spectrometry as a TTSV1 gene product. TTSV1 could be assigned as a new member of the newly emerged Globuloviridae family that includes so far only one recently characterized virus PSV.
Collapse
Affiliation(s)
- Dae-Gyun Ahn
- Department of Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
32
|
Chauhan A, Ogram A. Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol 2006; 72:2400-6. [PMID: 16597937 PMCID: PMC1448997 DOI: 10.1128/aem.72.4.2400-2406.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Florida Everglades is one of the largest freshwater marshes in North America and has been subject to eutrophication for decades. A gradient in P concentrations extends for several kilometers into the interior of the northern regions of the marsh, and the structure and function of soil microbial communities vary along the gradient. In this study, stable isotope probing was employed to investigate the fate of carbon from the fermentation products propionate and butyrate in soils from three sites along the nutrient gradient. For propionate microcosms, 16S rRNA gene clone libraries from eutrophic and transition sites were dominated by sequences related to previously described propionate oxidizers, such as Pelotomaculum spp. and Syntrophobacter spp. Significant representation was also observed for sequences related to Smithella propionica, which dismutates propionate to butyrate. Sequences of dominant phylotypes from oligotrophic samples did not cluster with known syntrophs but with sulfate-reducing prokaryotes (SRP) and Pelobacter spp. In butyrate microcosms, sequences clustering with Syntrophospora spp. and Syntrophomonas spp. dominated eutrophic microcosms, and sequences related to Pelospora dominated the transition microcosm. Sequences related to Pelospora spp. and SRP dominated clone libraries from oligotrophic microcosms. Sequences from diverse bacterial phyla and primary fermenters were also present in most libraries. Archaeal sequences from eutrophic microcosms included sequences characteristic of Methanomicrobiaceae, Methanospirillaceae, and Methanosaetaceae. Oligotrophic microcosms were dominated by acetotrophs, including sequences related to Methanosarcina, suggesting accumulation of acetate.
Collapse
Affiliation(s)
- Ashvini Chauhan
- Soil and Water Science Department, University of Florida, P.O. Box 110290, Gainesville, FL 32611-0290, USA
| | | |
Collapse
|
33
|
Silverman BD. Asymmetry in the burial of hydrophobic residues along the histone chains of eukarya, archaea and a transcription factor. BMC STRUCTURAL BIOLOGY 2005; 5:20. [PMID: 16242031 PMCID: PMC1283977 DOI: 10.1186/1472-6807-5-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/21/2005] [Indexed: 11/30/2022]
Abstract
Background The histone fold is a common structural motif of proteins involved in the chromatin packaging of DNA and in transcription regulation. This single chain fold is stabilized by either homo- or hetero-dimer formation in archaea and eukarya. X-ray structures at atomic resolution have shown the eukaryotic nucleosome core particle to consist of a central tetramer of two bound H3-H4 dimers flanked by two H2A-H2B dimers. The c-terminal region of the H3 histone fold involved in coupling the two eukaryotic dimers of the tetramer, through a four-fold helical bundle, had previously been shown to be a region of reduced burial of hydrophobic residues within the dimers, and thereby provide a rationale for the observed reduced stability of the H3-H4 dimer compared with that of the H2A-H2B dimer. Furthermore, comparison between eukaryal and archaeal histones had suggested that this asymmetry in the distribution of hydrophobic residues along the H3 histone chains could be due to selective evolution that enhanced the coupling between the eukaryotic dimers of the tetramer. Results and discussion The present work describes calculations utilizing the X-ray structures at atomic resolution of a hyperthermophile from Methanopyrus kandleri (HMk) and a eukaryotic transcription factor from Drosophila melanogaster (DRm), that are structurally homologous to the eukaryotic (H3-H4)2 tetramer. The results for several other related structures are also described. Reduced burial of hydrophobic residues, at the homologous H3 c-terminal regions of these structures, is found to parallel the burial at the c-terminal regions of the H3 histones and is, thereby, expected to affect dimer stability and the processes involving histone structural rearrangement. Significantly different sequence homology between the two histones of the HMk doublet with other archaeal sequences is observed, and how this might have occurred during selection to enhance tetramer stability is described.
Collapse
Affiliation(s)
- B David Silverman
- IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA.
| |
Collapse
|
34
|
Bapteste E, Brochier C, Boucher Y. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:353-63. [PMID: 15876569 PMCID: PMC2685549 DOI: 10.1155/2005/859728] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We used a phylogenetic approach to analyze the evolution of methanogenesis and methanogens. We show that 23 vertically transmitted ribosomal proteins do not support the monophyly of methanogens, and propose instead that there are two distantly related groups of extant archaea that produce methane, which we have named Class I and Class II. Based on this finding, we subsequently investigated the uniqueness of the origin of methanogenesis by studying both the enzymes of methanogenesis and the proteins that synthesize its specific coenzymes. We conclude that hydrogenotrophic methanogenesis appeared only once during evolution. Genes involved in the seven central steps of the methanogenic reduction of carbon dioxide (CO(2)) are ubiquitous in methanogens and share a common history. This suggests that, although extant methanogens produce methane from various substrates (CO(2), formate, acetate, methylated C-1 compounds), these archaea have a core of conserved enzymes that have undergone little evolutionary change. Furthermore, this core of methanogenesis enzymes seems to originate (as a whole) from the last ancestor of all methanogens and does not appear to have been horizontally transmitted to other organisms or between members of Class I and Class II. The observation of a unique and ancestral form of methanogenesis suggests that it was preserved in two independent lineages, with some instances of specialization or added metabolic flexibility. It was likely lost in the Halobacteriales, Thermoplasmatales and Archaeoglobales. Given that fossil evidence for methanogenesis dates back 2.8 billion years, a unique origin of this process makes the methanogenic archaea a very ancient taxon.
Collapse
Affiliation(s)
- Eric Bapteste
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, NS, B3H 4H7, Canada
| | | | | |
Collapse
|
35
|
Nishihara M, Morii H, Matsuno K, Ohga M, Stetter KO, Koga Y. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:123-31. [PMID: 15803650 PMCID: PMC2685562 DOI: 10.1155/2002/682753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A choline-containing phospholipid (PL-4) in Methanopyrus kandleri cells was identified as archaetidylcholine, which has been described by Sprott et al. (1997). The PL-4 consisted of a variety of molecular species differing in hydrocarbon composition. Most of the PL-4 was acid-labile because of its allyl ether bond. The identity of PL-4 was confirmed by thin-layer chromatography followed by positive staining with Dragendorff reagent and fast-atom bombardment-mass spectrometry. A new method of LiAlH4 hydrogenolysis was developed to cleave allyl ether bonds and recover the corresponding hydrocarbons. We confirmed the validity of the LiAlH4 method in a study of the model compound synthetic unsaturated archaetidic acid (2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate). Saturated ether bonds were not cleaved by the LiAlH4 method. The hydrocarbons formed following LiAlH4 hydrogenolysis of PL-4 were identified by gas-liquid chromatography and mass spectrometry. Four kinds of hydrocarbons with one to four double bonds were detected: 47% of the hydrocarbons had four double bonds; 11% had three double bonds; 14% had two double bonds; 7% had one double bond; and 6% were saturated species. The molecular species composition of PL-4 was also estimated based on acid lability: 77% of the molecular species had two acid-labile hydrocarbons; 11% had one acid-labile and one acid-stable hydrocarbon; and 11% had two acid-stable hydrocarbons. To our knowledge, this is the first report of a specific chemical degradation method for the structural analysis of allyl ether phospholipid in archaea.
Collapse
Affiliation(s)
- Masateru Nishihara
- Department of Chemistry, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
- Deceased August 23, 2001
| | - Hiroyuki Morii
- Department of Chemistry, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Koji Matsuno
- Instrumental Analytical Laboratory, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mami Ohga
- Department of Chemistry, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Karl O. Stetter
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg D-93053, Germany
| | - Yosuke Koga
- Department of Chemistry, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
- Corresponding author ()
| |
Collapse
|
36
|
Sauerwald A, Sitaramaiah D, McCloskey JA, Söll D, Crain PF. N6-Acetyladenosine: a new modified nucleoside from Methanopyrus kandleri tRNA. FEBS Lett 2005; 579:2807-10. [PMID: 15907485 DOI: 10.1016/j.febslet.2005.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/04/2005] [Indexed: 11/19/2022]
Abstract
Post-transcriptionally modified nucleosides are constituents of transfer RNA (tRNA) that are known to influence tertiary structure, stability and coding properties. Modifications in unfractionated tRNA from the phylogenetically unique archaeal methanogen Methanopyrus kandleri (optimal growth temperature 98 degrees C) were studied using liquid chromatography-mass spectrometry to establish the extent to which they might differ from those of other methanogens. The exceptionally diverse population of nucleosides included four new nucleosides of unknown structure, and one that was characterized as N(6)-acetyladenosine, a new RNA constituent. The nucleoside modification pattern in M. kandleri tRNA is notably different from that of other archaeal methanogens, and is closer to that of the thermophilic crenarchaeota.
Collapse
Affiliation(s)
- Anselm Sauerwald
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
37
|
Di Giulio M. The ocean abysses witnessed the origin of the genetic code. Gene 2005; 346:7-12. [PMID: 15716095 DOI: 10.1016/j.gene.2004.07.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Accepted: 07/26/2004] [Indexed: 11/15/2022]
Abstract
The comparison of proteins from a non-barophilous and a barophilous organism makes it possible to define the barophily ranks of amino acids. The correlation of these ranks with the number of codons attributed to amino acids in the genetic code, together with another straightforward argument based on an optimisation percentage of a barophily index (BI) (easily defined by barophily ranks) which can be associated to the genetic code table, suggest that the genetic code originated under high hydrostatic pressure. Moreover, as the BI value can be calculated for the sequence of any protein, it also makes it possible to define the BI for the genetic code if the number of codons attributed to the amino acids in the code is assumed to be the frequency with which the amino acids appeared in ancestral proteins. Finally, sampling the BI variable between many non-barophile organisms and from many proteins of a single non-barophile organism leads to the conclusion that the BI value of the genetic code is not typical of these organisms. Whereas, since the genetic code BI value is statistically higher than that of these non-barophile organisms, it supports the hypothesis that genetic code structuring took place under high hydrostatic pressure.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics 'Adriano Buzzati Traverso', CNR, Via G. Marconi 10, 80125 Naples, Napoli, Italy.
| |
Collapse
|
38
|
Chauhan A, Ogram A. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration. Biochem Biophys Res Commun 2005; 327:884-93. [PMID: 15649428 DOI: 10.1016/j.bbrc.2004.12.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Indexed: 11/17/2022]
Abstract
Efficient metabolism of fatty acids during anaerobic waste digestion requires development of consortia that include "fatty acid consuming H(2) producing bacteria" and methanogenic bacteria. The objective of this research was to optimize methanogenesis from fatty acids by evaluating a variety of support matrices for use in maintaining efficient syntrophic-methanogenic consortia. Tested matrices included clays (montmorillonite and bentonite), glass beads (106 and 425-600mum), microcarriers (cytopore, cytodex, cytoline, and cultispher; conventionally employed for cultivation of mammalian cell lines), BioSep beads (powdered activated carbon), and membranes (hydrophilic; nylon, polysulfone, and hydrophobic; teflon, polypropylene). Data obtained from headspace methane (CH(4)) analyses as an indicator of anaerobic carbon cycling efficiency indicated that material surface properties were important in maintenance and functioning of the anaerobic consortia. Cytoline yielded significantly higher CH(4) than other matrices as early as in the first week of incubation. 16S rRNA gene sequence analysis from crushed cytoline matrix showed the presence of Syntrophomonas spp. (butyrate oxidizing syntrophs) and Syntrophobacter spp. (propionate oxidizing syntrophs), with Methanosaeta spp. (acetate utilizing methanogen), and Methanospirillum spp. (hydrogen utilizing methanogen) cells. It is likely that the more hydrophobic surfaces provided a suitable surface for adherence of cells of syntrophic-methanogenic consortia. Cytoline also appeared to protect entrapped consortia from air, resulting in rapid methanogenesis after aerial exposure. Our study suggests that support matrices can be used in anaerobic digestors, pre-seeded with immobilized or entrapped consortia on support matrices, and may be of value as inoculant-adsorbents to rapidly initiate or recover proper system functioning following perturbation.
Collapse
Affiliation(s)
- Ashvini Chauhan
- Soil and Water Science Department, Soil Molecular Ecology Laboratory, University of Florida, P.O. Box 110290, Gainesville, FL 32611-0290, USA.
| | | |
Collapse
|
39
|
Ramakrishnan V, Ogram AV, Lindner AS. Impacts of co-solvent flushing on microbial populations capable of degrading trichloroethylene. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:55-61. [PMID: 15626648 PMCID: PMC1253710 DOI: 10.1289/ehp.6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 04/07/2004] [Indexed: 05/11/2023]
Abstract
With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbial populations present in aquifer soils taken immediately after and 2 years after ethanol flushing of a former dry cleaners site. Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA analysis identified Methylocystis parvus with 98% similarity, further indicating the presence of a type II methanotroph. Dissimilatory sulfite reductase genes in sulfate-reducing enrichments prepared were also observed. Ethanol flushing was simulated in columns packed with uncontaminated soils from the dry cleaners site that were dosed with TCE at concentrations observed in the field; after flushing, the columns were subjected to a continuous flow of 500 pore volumes of groundwater per week. Total acridine orange direct cell counts of the flushed and nonflushed soils decreased over the 15-week testing period, but after 5 weeks, the flushed soils maintained higher cell counts than the nonflushed soils. Inhibition of methanogenesis by sulfate reduction was observed in all column soils, as was increasing removal of total methane by soils incubated under methanotrophic conditions. These results showed that impacts of ethanol were not as severe as anticipated and imply that ethanol may mitigate the toxicity of TCE to the microorganisms.
Collapse
|
40
|
A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 2004; 4:44. [PMID: 15535883 PMCID: PMC533871 DOI: 10.1186/1471-2148-4-44] [Citation(s) in RCA: 328] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Accepted: 11/09/2004] [Indexed: 11/10/2022] Open
Abstract
Background The timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (~7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method. Results Our phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria) that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5–3.2 billion years ago (Ga) while those for archaebacteria are mostly between 3.1–4.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga), an early origin of methanogenesis (3.8–4.1 Ga), an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8–3.1 Ga, and an origin of aerobic methanotrophy 2.5–2.8 Ga. Conclusions Our early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8–2.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically produced, were made by anoxygenic photosynthesizers. The resistance to desiccation of Terrabacteria and their elaboration of photoprotective compounds suggests that the common ancestor of this group inhabited land. If true, then oxygenic photosynthesis may owe its origin to terrestrial adaptations.
Collapse
|
41
|
Castro H, Ogram A, Reddy KR. Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl Environ Microbiol 2004; 70:6559-68. [PMID: 15528519 PMCID: PMC525246 DOI: 10.1128/aem.70.11.6559-6568.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
Agricultural activities have produced well-documented changes in the Florida Everglades, including establishment of a gradient in phosphorus concentrations in Water Conservation Area 2A (WCA-2A) of the northern Everglades. An effect of increased phosphorus concentrations is increased methanogenesis in the eutrophic regions compared to the oligotrophic regions of WCA-2A. The goal of this study was to identify relationships between eutrophication and composition and activity of methanogenic assemblages in WCA-2A soils. Distributions of two genes associated with methanogens were characterized in soils taken from WCA-2A: the archaeal 16S rRNA gene and the methyl coenzyme M reductase gene. The richness of methanogen phylotypes was greater in eutrophic than in oligotrophic sites, and sequences related to previously cultivated and uncultivated methanogens were found. A preferential selection for the order Methanomicrobiales was observed in mcrA clone libraries, suggesting primer bias for this group. A greater diversity within the Methanomicrobiales was observed in mcrA clone libraries than in 16S rRNA gene libraries. 16S rRNA phylogenetic analyses revealed a dominance of clones related to Methanosaeta spp., an acetoclastic methanogen dominant in environments with low acetate concentrations. A significant number of clones were related to Methanomicrobiales, an order characterized by species utilizing hydrogen and formate as methanogenic substrates. No representatives of the orders Methanobacteriales and Methanococcales were found in any 16S rRNA clone library, although some Methanobacteriales were found in mcrA libraries. Hydrogenotrophs are the dominant methanogens in WCA-2A, and acetoclastic methanogen genotypes that proliferate in low acetate concentrations outnumber those that typically dominate in higher acetate concentrations.
Collapse
Affiliation(s)
- Hector Castro
- Soil and Water Department, University of Florida, Gainesville, Florida 32611-0290, USA
| | | | | |
Collapse
|
42
|
Hao B, Qi J. Prokaryote phylogeny without sequence alignment: from avoidance signature to composition distance. J Bioinform Comput Biol 2004; 2:1-19. [PMID: 15272430 DOI: 10.1142/s0219720004000442] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 11/17/2003] [Accepted: 11/24/2003] [Indexed: 11/18/2022]
Abstract
This is a review of a new and essentially simple method of inferring phylogenetic relationships from complete genome data without using sequence alignment. The method is based on counting the appearance frequency of oligopeptides of a fixed length (up to K = 6) in the collection of protein sequences of a species. It is a method without fine adjustment and choice of genes. Applied to prokaryotic genomes it has led to results comparable with the bacteriologists' systematics as reflected in the latest 2002 outline of the Bergey's Manual of Systematic Bacteriology. The method has also been used to compare chloroplast genomes and to the phylogeny of Coronaviruses including human SARS-CoV. A key point in our approach is subtraction of a random background from the original counts by using a Markov model of order K-2 in order to highlight the shaping role of natural selection. The implications of the subtraction procedure is specially analyzed and further development of the new approach is indicated.
Collapse
Affiliation(s)
- Bailin Hao
- T-Life Research Center, Fudan University, Shanghai 200433, China.
| | | |
Collapse
|
43
|
Chauhan A, Ogram A, Reddy KR. Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol 2004; 70:3475-84. [PMID: 15184146 PMCID: PMC427755 DOI: 10.1128/aem.70.6.3475-3484.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutrient runoff from the Everglades Agricultural Area resulted in a well-documented gradient of phosphorus concentrations in soil and water, with concomitant ecosystem-level changes, in the northern Florida Everglades. It was recently reported that sulfate-reducing prokaryote assemblage composition, numbers, and activities are dependent on position along the gradient (H. Castro, K. R. Reddy, and A. Ogram, Appl. Environ. Microbiol. 68:6129-6137, 2002). The present study utilized a combination of culture- and non-culture-based approaches to study differences in composition of assemblages of syntrophic and methanogenic microbial communities in eutrophic, transition, and oligotrophic areas along the phosphorus gradient. Methanogenesis rates were much higher in eutrophic and transition regions, and sequence analysis of 16S rRNA gene clone libraries constructed from samples taken from these regions revealed differences in composition and activities of syntroph-methanogen consortia. Methanogens from eutrophic and transition regions were almost exclusively composed of hydrogenotrophic methanogens, with approximately 10,000-fold-greater most probable numbers of hydrogenotrophs than of acetotrophs. Most cultivable strains from eutrophic and transition regions clustered within novel lineages. In non-culture-based studies to enrich syntrophs, most bacterial and archaeal clones were either members of novel lineages or closely related to uncultivated environmental clones. Novel cultivable Methanosaeta sp. and fatty acid-oxidizing bacteria related to the genera Syntrophomonas and Syntrophobacter were observed in microcosms containing soil from eutrophic regions, and different lines of evidence indicated the existence of novel syntrophic association in eutrophic regions.
Collapse
Affiliation(s)
- Ashvini Chauhan
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290, USA
| | | | | |
Collapse
|
44
|
Haibin W, Ji Q, Bailin H. Prokaryote phylogeny based on ribosomal proteins and aminoacyl tRNA synthetases by using the compositional distance approach. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2004; 47:313-21. [PMID: 15493472 PMCID: PMC7088628 DOI: 10.1360/03yc0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 12/19/2003] [Indexed: 11/11/2022]
Abstract
In order to show that the newly developed K-string composition distance method, based on counting oligopeptide frequencies, for inferring phylogenetic relations of prokaryotes works equally well without requiring the whole proteome data, we used all ribosomal proteins and the set of aminoacyl tRNA synthetases for each species. The latter group has been known to yield inconsistent trees if used individually. Our trees are obtained without making any sequence alignment. Altogether 16 Archaea, 105 Bacteria and 2 Eucarya are represented on the tree. Most of the lower branchings agree well with the latest, 2003, Outline of the second edition of the Bergey's Manual of Systematic Bacteriology and the trees also suggest some relationships among higher taxa.
Collapse
Affiliation(s)
- Wei Haibin
- College of Life Sciences, Zhejiang University, 310027 Hangzhou, China
- Hangzhou Branch, Beijing Genomics Institute, Chinese Academy of Sciences, 310008 Hangzhou, China
| | - Qi Ji
- T-Life Research Center, Fudan University, 200433 Shanghai, China
- Institute of Theoretical Physics, Academia Sinica, 100080 Beijing, China
| | - Hao Bailin
- Hangzhou Branch, Beijing Genomics Institute, Chinese Academy of Sciences, 310008 Hangzhou, China
- T-Life Research Center, Fudan University, 200433 Shanghai, China
| |
Collapse
|
45
|
Brochier C, Forterre P, Gribaldo S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol 2004; 5:R17. [PMID: 15003120 PMCID: PMC395767 DOI: 10.1186/gb-2004-5-3-r17] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/05/2004] [Accepted: 01/21/2004] [Indexed: 11/25/2022] Open
Abstract
This article presents a phylogenetic analysis of the Archea based on sets of transcription and translation proteins. The phylogenies shed light on the evolutionary position of Methanopyrus kandleri. Background Phylogenetic analysis of the Archaea has been mainly established by 16S rRNA sequence comparison. With the accumulation of completely sequenced genomes, it is now possible to test alternative approaches by using large sequence datasets. We analyzed archaeal phylogeny using two concatenated datasets consisting of 14 proteins involved in transcription and 53 ribosomal proteins (3,275 and 6,377 positions, respectively). Results Important relationships were confirmed, notably the dichotomy of the archaeal domain as represented by the Crenarchaeota and Euryarchaeota, the sister grouping of Sulfolobales and Aeropyrum pernix, and the monophyly of a large group comprising Thermoplasmatales, Archaeoglobus fulgidus, Methanosarcinales and Halobacteriales, with the latter two orders forming a robust cluster. The main difference concerned the position of Methanopyrus kandleri, which grouped with Methanococcales and Methanobacteriales in the translation tree, whereas it emerged at the base of the euryarchaeotes in the transcription tree. The incongruent placement of M. kandleri is likely to be the result of a reconstruction artifact due to the high evolutionary rates displayed by the components of its transcription apparatus. Conclusions We show that two informational systems, transcription and translation, provide a largely congruent signal for archaeal phylogeny. In particular, our analyses support the appearance of methanogenesis after the divergence of the Thermococcales and a late emergence of aerobic respiration from within methanogenic ancestors. We discuss the possible link between the evolutionary acceleration of the transcription machinery in M. kandleri and several unique features of this archaeon, in particular the absence of the elongation transcription factor TFS.
Collapse
Affiliation(s)
- Céline Brochier
- Equipe Phylogénomique, Université Aix-Marseille I, Centre Saint-Charles, 13331 Marseille Cedex 3, France.
| | | | | |
Collapse
|
46
|
Uz I, Rasche ME, Townsend T, Ogram AV, Lindner AS. Characterization of methanogenic and methanotrophic assemblages in landfill samples. Proc Biol Sci 2004; 270 Suppl 2:S202-5. [PMID: 14667383 PMCID: PMC1809964 DOI: 10.1098/rsbl.2003.0061] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A greater understanding of the tightly linked trophic groups of anaerobic and aerobic bacteria residing in municipal solid waste landfills will increase our ability to control methane emissions and pollutant fate in these environments. To this end, we characterized the composition of methanogenic and methanotrophic bacteria in samples taken from two regions of a municipal solid waste landfill that varied in age. A method combining polymerase chain reaction amplification, restriction fragment length polymorphism analysis and phylogenetic analysis was used for this purpose. 16S rDNA sequence analysis revealed a rich assemblage of methanogens in both samples, including acetoclasts, H2/CO2-users and formate-users in the newer samples and H2/CO2-users and formate-users in the older samples, with closely related genera including Methanoculleus, Methanofollis, Methanosaeta and Methanosarcina. Fewer phylotypes of type 1 methanotrophs were observed relative to type 2 methanotrophs. Most type 1 sequences clustered within a clade related to Methylobacter, whereas type 2 sequences were broadly distributed among clades associated with Methylocystis and Methylosinus species. This genetic characterization tool promises rapid screening of landfill samples for genotypes and, therefore, degradation potentials.
Collapse
Affiliation(s)
- Ilker Uz
- Soil and Water Science Department, PO Box 110290, University of Florida, Gainesville, FL 32611-0290, USA
| | | | | | | | | |
Collapse
|
47
|
Li JY, Wu CF. Perspectives on the origin of microfilaments, microtubules, the relevant chaperonin system and cytoskeletal motors--a commentary on the spirochaete origin of flagella. Cell Res 2003; 13:219-27. [PMID: 12974612 DOI: 10.1038/sj.cr.7290167] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The origin of cytoskeleton and the origin of relevant intracellular transportation system are big problems for understanding the emergence of eukaryotic cells. The present article summarized relevant information of evidences and molecular traces on the origin of actin, tubulin, the chaperonin system for folding them, myosins, kinesins, axonemal dyneins and cytoplasmic dyneins. On this basis the authors proposed a series of works, which should be done in the future, and indicated the ways for reaching the targets. These targets are mainly: 1) the reconstruction of evolutionary path from MreB protein of archaeal ancestor of eukaryotic cells to typical actin; 2) the finding of the MreB or MreB-related proteins in crenarchaea and using them to examine J. A. Lake's hypothesis on the origin of eukaryote from "eocytes" (crenarchaea); 3) the examinations of the existence and distribution of cytoskeleton made of MreB-related protein within coccoid archaea, especially in amoeboid archaeon Thermoplasm acidophilum; 4) using Thermoplasma as a model of archaeal ancestor of eukaryotic cells; 5) the searching for the homolog of ancestral dynein in present-day living archaea. During the writing of this article, Margulis' famous spirochaete hypothesis on the origin of flagella and cilia was unexpectedly involved and analyzed from aspects of tubulins, dyneins and spirochaetes. Actually, spirochaete cannot be reasonably assumed as the ectosymbiotic ancestor of eukaryotic flagella and cilia, since their swing depends upon large amount of bacterial flagella beneath the flexible outer wall, but not depends upon their intracellular tubules and the assumed dyneins. In this case, if they had "evolved" into cilia and lost their bacterial flagella, they would immediately become immobile! In fact, tubulin and dynein-like proteins have not been found in any spirochaete.
Collapse
Affiliation(s)
- Jing Yan Li
- Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | |
Collapse
|
48
|
Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3521-3530. [PMID: 12427943 DOI: 10.1099/00221287-148-11-3521] [Citation(s) in RCA: 504] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inferred amino acid sequences of the methyl coenzyme-M reductase (mcrA) gene from five different methanogen species were aligned and two regions with a high degree of homology flanking a more variable region were identified. Analysis of the DNA sequences from the conserved regions yielded two degenerate sequences from which a forward primer, a 32-mer, and a reverse primer, a 23-mer, could be derived for use in the specific PCR-based detection of methanogens. The primers were successfully evaluated against 23 species of methanogen representing all five recognized orders of this group of Archaea, generating a PCR product between 464 and 491 bp. Comparisons between the mcrA and 16S small subunit rRNA gene sequences using PHYLIP demonstrated that the tree topologies were strikingly similar. Methods were developed to enable the analysis of methanogen populations in landfill using the mcrA gene as the target. Two landfill sites were examined and 63 clones from a site in Mucking, Essex, and 102 from a site in Odcombe, Somerset, were analysed. Analysis revealed a far greater diversity in the methanogen population within landfill material than has been seen previously.
Collapse
Affiliation(s)
- Philip E Luton
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Jonathan M Wayne
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Richard J Sharp
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Paul W Riley
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| |
Collapse
|
49
|
Pavlov NA, Cherny DI, Jovin TM, Slesarev AI. Nucleosome-like complex of the histone from the hyperthermophile Methanopyrus kandleri (MkaH) with linear DNA. J Biomol Struct Dyn 2002; 20:207-14. [PMID: 12354072 DOI: 10.1080/07391102.2002.10506836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The MkaH protein from the archaeon Methanopyrus kandleri, an unusual assembly of two histone-fold domains in a single polypeptide chain, demonstrates high structural similarity to eukaryal histones. We studied the DNA binding and self-association properties of MkaH by means of the electrophoretic mobility shift assay (EMSA), electron microscopy (EM), chemical cross-linking, and analytical gel filtration. EMSA showed an increased mobility of linear DNA complexed with MkaH protein with a maximum at a protein-DNA weight ratio (R(w)) of approximately 3; the mobility decreased at higher protein concentration. EM of the complexes formed at Rw <or= 3 revealed formation of isometric loops encompassing 71 +/- 7 bp of DNA duplex. At high values of Rw (>or=9) thickened compact nucleoprotein structures were observed; no individual loops were seen within the complexes. Gel filtration chromatography and chemical fixation indicated that in the absence of DNA the dominant form of the MkaH in solution, unlike other archaeal histones, is a stable dimer (pseudo-tetramer of the histone-fold domain) apparently resembling the eukaryal (H3-H4)(2) tetramer. Similarly, dimers are the dominant form of the protein interacting with DNA. The properties of MkaH supporting the assignment of its intermediate position between other archaeal and eukaryal histones are discussed.
Collapse
Affiliation(s)
- Nikolai A Pavlov
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | | | | | | |
Collapse
|
50
|
Abstract
Genome comparisons indicate that horizontal gene transfer and differential gene loss are major evolutionary phenomena that, at least in prokaryotes, involve a large fraction, if not the majority, of genes. The extent of these events casts doubt on the feasibility of constructing a 'Tree of Life', because the trees for different genes often tell different stories. However, alternative approaches to tree construction that attempt to determine tree topology on the basis of comparisons of complete gene sets seem to reveal a phylogenetic signal that supports the three-domain evolutionary scenario and suggests the possibility of delineation of previously undetected major clades of prokaryotes. If the validity of these whole-genome approaches to tree building is confirmed by analyses of numerous new genomes, which are currently being sequenced at an increasing rate, it would seem that the concept of a universal 'species' tree is still appropriate. However, this tree should be reinterpreted as a prevailing trend in the evolution of genome-scale gene sets rather than as a complete picture of evolution.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|