1
|
Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification. Front Public Health 2024; 12:1410672. [PMID: 38962772 PMCID: PMC11220129 DOI: 10.3389/fpubh.2024.1410672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Maoting Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yusen Ao
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Solanki P, Lipman M, McHugh TD, Satta G. Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria. Front Microbiol 2022; 13:1044515. [PMID: 36523832 PMCID: PMC9745125 DOI: 10.3389/fmicb.2022.1044515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
Collapse
Affiliation(s)
- Priya Solanki
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Marc Lipman
- UCL-TB and UCL Respiratory, University College London, London, United Kingdom
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Timothy D. McHugh
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Giovanni Satta
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2020; 44:281-297. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to the antibiotics develops rapidly and is increasingly serious health concern in the world. It is an insoluble topic due to the multiple resistant mechanisms. The overexpression of relative activities of the efflux pump has proven to be a frequent and important source of bacterial resistance. Efflux transporters in the membrane from the resistant bacteria could play a key role to inhibit the intracellular drug intake and impede the drug activities. However, nanoparticles (NPs), one of the most frequently used encapsulation materials, could increase the intracellular accumulation of the drug and inhibit the transporter activity effectively. The rational and successful application of nanotechnology is a key factor in overcoming bacterial resistance. Furthermore, nanoparticles such as metallic, carbon nanotubes and so on, may prevent the development of drug resistance and be associated with antibiotic agents, inhibiting biofilm formation or increasing the access into the target cell and exterminating the bacteria eventually. In the current study, the mechanisms of bacterial resistance are discussed and summarized. Additionally, the opportunities and challenges in the use of nanoparticles against bacterial resistance are also illuminated. At the same time, the use of nanoparticles to combat multidrug-resistant bacteria is also investigated by coupling natural antimicrobials or other alternatives. In short, we have provided a new perspective for the application of nanoparticles against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhiqun Lei
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
4
|
Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM. New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Front Microbiol 2017; 8:681. [PMID: 28487675 PMCID: PMC5403904 DOI: 10.3389/fmicb.2017.00681] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infectious diseases caused by clinically important Mycobacteria continue to be an important public health problem worldwide primarily due to emergence of drug resistance crisis. In recent years, the control of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (MTB), is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least isoniazid (INH) and rifampicin (RIF), two key drugs in the treatment of the disease. Despite the availability of curative anti-TB therapy, inappropriate and inadequate treatment has allowed MTB to acquire resistance to the most important anti-TB drugs. Likewise, for most mycobacteria other than MTB, the outcome of drug treatment is poor and is likely related to the high levels of antibiotic resistance. Thus, a better knowledge of the underlying mechanisms of drug resistance in mycobacteria could aid not only to select the best therapeutic options but also to develop novel drugs that can overwhelm the existing resistance mechanisms. In this article, we review the distinctive mechanisms of antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Mohammad J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of TabrizTabriz, Iran
| | - Mona Ghazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Abbas A. Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Mohammad M. Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
- Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
5
|
Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to Macrolide Antibiotics in Public Health Pathogens. Cold Spring Harb Perspect Med 2016; 6:a025395. [PMID: 27527699 PMCID: PMC5046686 DOI: 10.1101/cshperspect.a025395] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrolide resistance mechanisms can be target-based with a change in a 23S ribosomal RNA (rRNA) residue or a mutation in ribosomal protein L4 or L22 affecting the ribosome's interaction with the antibiotic. Alternatively, mono- or dimethylation of A2058 in domain V of the 23S rRNA by an acquired rRNA methyltransferase, the product of an erm (erythromycin ribosome methylation) gene, can interfere with antibiotic binding. Acquired genes encoding efflux pumps, most predominantly mef(A) + msr(D) in pneumococci/streptococci and msr(A/B) in staphylococci, also mediate resistance. Drug-inactivating mechanisms include phosphorylation of the 2'-hydroxyl of the amino sugar found at position C5 by phosphotransferases and hydrolysis of the macrocyclic lactone by esterases. These acquired genes are regulated by either translation or transcription attenuation, largely because cells are less fit when these genes, especially the rRNA methyltransferases, are highly induced or constitutively expressed. The induction of gene expression is cleverly tied to the mechanism of action of macrolides, relying on antibiotic-bound ribosomes stalled at specific sequences of nascent polypeptides to promote transcription or translation of downstream sequences.
Collapse
Affiliation(s)
- Corey Fyfe
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | | - Kathy Kerstein
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | |
Collapse
|
6
|
Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. J Clin Microbiol 2015; 53:1211-5. [PMID: 25653399 DOI: 10.1128/jcm.02950-14] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The erm(41) gene confers inducible macrolide resistance in Mycobacterium abscessus subsp. abscessus, calling into question the usefulness of macrolides for treating M. abscessus subsp. abscessus infections. With an extended incubation (14 days), isolates with MICs of ≥8 μg/ml are considered macrolide resistant by current CLSI guidelines. Our goals were to determine the incidence of macrolide susceptibility in U.S. isolates, the validity of currently accepted MIC breakpoints, and the erm(41) sequences associated with susceptibility. Of 349 isolates (excluding those with 23S rRNA gene mutations), 85 (24%) had clarithromycin MICs of ≤8 μg/ml. Sequencing of the erm(41) genes from these isolates, as well as from isolates with MICs of ≥16 μg/ml, including ATCC 19977T, revealed 10 sequevars. The sequence in ATCC 19977T was designated sequevar (type) 1; most macrolide-resistant isolates were of this type. Seven sequevars contained isolates with MICs of >16 μg/ml. The T28C substitution in erm(41), previously associated with macrolide susceptibility, was identified in 62 isolates (18%) comprising three sequevars, with MICs of ≤2 (80%), 4 (10%), and 8 (10%) μg/ml. No other nucleotide substitution was associated with macrolide susceptibility. We recommend that clarithromycin susceptibility breakpoints for M. abscessus subsp. abscessus be changed from ≤2 to ≤4 μg/ml and that isolates with an MIC of 8 μg/ml have repeat MIC testing or erm sequencing performed. Our studies suggest that macrolides are useful for treating approximately 20% of U.S. isolates of M. abscessus subsp. abscessus. Sequencing of the erm gene of M. abscessus subsp. abscessus will predict inducible macrolide susceptibility.
Collapse
|
7
|
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25:545-82. [PMID: 22763637 PMCID: PMC3416486 DOI: 10.1128/cmr.05030-11] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Collapse
|
8
|
Inagaki T, Yagi T, Ichikawa K, Nakagawa T, Moriyama M, Uchiya KI, Nikai T, Ogawa K. Evaluation of a rapid detection method of clarithromycin resistance genes in Mycobacterium avium complex isolates. J Antimicrob Chemother 2011; 66:722-9. [DOI: 10.1093/jac/dkq536] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Pfister P, Corti N, Hobbie S, Bruell C, Zarivach R, Yonath A, Böttger EC. 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A-->G. Proc Natl Acad Sci U S A 2005; 102:5180-5. [PMID: 15795375 PMCID: PMC555689 DOI: 10.1073/pnas.0501598102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 23S rRNA A2058G alteration mediates macrolide, lincosamide, and streptogramin B resistance in the bacterial domain and determines the selectivity of macrolide antibiotics for eubacterial ribosomes, as opposed to eukaryotic ribosomes. However, this mutation is associated with a disparate resistance phenotype: It confers high-level resistance to ketolides in mycobacteria but only marginally affects ketolide susceptibility in streptococci. We used site-directed mutagenesis of nucleotides within domain V of 23S rRNA to study the molecular basis for this disparity. We show that mutational alteration of the polymorphic 2057-2611 base pair from A-U to G-C in isogenic mutants of Mycobacterium smegmatis significantly affects susceptibility to ketolides but does not influence susceptibility to other macrolide antibiotics. In addition, we provide evidence that the 2057-2611 polymorphism determines the fitness cost of the 23S rRNA A2058G resistance mutation. Supported by structural analysis, our results indicate that polymorphic nucleotides mediate the disparate phenotype of genotypically identical resistance mutations and provide an explanation for the large species differences in the epidemiology of defined drug resistance mutations.
Collapse
Affiliation(s)
- Peter Pfister
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Manfredi R, Nanetti A, Valentini R, Ferri M, Morelli S, Calza L. Epidemiological, clinical and therapeutic features of AIDS-related Mycobacterium kansasii infection during the HIV pandemic: an 11-year follow-up study. HIV Med 2005; 5:431-6. [PMID: 15544696 DOI: 10.1111/j.1468-1293.2004.00249.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Optimal diagnosis and timely treatment of atypical mycobacteriosis, and especially Mycobacterium kansasii disease, remain a serious challenge for clinicians engaged in the management of the immunocompromised host. METHODS AND RESULTS From more than 2700 hospitalizations (over 1800 patients) attributable to HIV-associated disorders over an 11-year period, 12 patients were found to have a confirmed M. kansasii infection. This reflects the recent reduction in the frequency of this HIV-related complication, which virtually disappeared after the introduction of potent antiretroviral combinations in 1996. In the early 1990s, the lack of effective antiretroviral regimens made frequent the association with AIDS, a mean CD4 lymphocyte count of nearly 20 cells/microL, and an extremely variable chest X-ray features. The recent detection of a further case was attributable to late recognition of very advanced HIV disease, complicated by multiple opportunistic disorders. CONCLUSIONS Mycobacterium kansasii respiratory or disseminated infection continues to occur, and poses diagnostic problems in terms of late or missed identification as a result of slow culture and frequently concurrent opportunistic disease. Serious therapeutic difficulties also arise from the unpredictable in vitro antimicrobial susceptibility profile of these organisms, and from the need to start an effective combination therapy that does not interfere with other medications as soon as possible.
Collapse
Affiliation(s)
- R Manfredi
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Bologna, 'Alma Mater Studiorum', Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Vemulapalli RK, Cantey JR, Steed LL, Knapp TL, Thielman NM. Emergence of resistance to clarithromycin during treatment of disseminated cutaneous Mycobacterium chelonae infection: case report and literature review. J Infect 2001; 43:163-8. [PMID: 11798252 DOI: 10.1053/jinf.2001.0880] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Results of in vitro susceptibility studies and one clinical trial have led to recommendations of clarithromycin monotherapy for the treatment of disseminated cutaneous Mycobacterium chelonae infections. We describe the case of a 65-year-old woman, immunocompromised by the use of chronic steroid therapy, who developed disseminated cutaneous infection with M. chelonae and failed clarithromycin monotherapy due to the development of drug resistance. In the relapse isolate we document the presence of a single point mutation at position 2058 in the gene coding for 23S rRNA peptidyltransferase regions, a mutation previously implicated in the development of resistance to clarithromycin. Two susceptible control isolates lacked the mutation. Three additional reports in the literature of patients developing recurrent skin lesions with clarithromycin-resistant M. chelonae following initial response to monotherapy are summarized. We demonstrate that clarithromycin monotherapy in patients with disseminated cutaneous infections can lead to clarithromycin resistance and therapeutic failure associated with a single point mutation at position 2058 of 23S rRNA.
Collapse
Affiliation(s)
- R K Vemulapalli
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina and Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
12
|
Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 2001; 45:1-12. [PMID: 11120937 PMCID: PMC90232 DOI: 10.1128/aac.45.1.1-12.2001] [Citation(s) in RCA: 380] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- B Vester
- Department of Molecular Biology, University of Copenhagen, DK-1307 Copenhagen K, Denmark.
| | | |
Collapse
|