1
|
Capitanio JF, Mortini P. Brain and/or Spinal Cord Tumors Accompanied with Other Diseases or Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:645-672. [PMID: 37452957 DOI: 10.1007/978-3-031-23705-8_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Several medical conditions that interest both the brain and the spinal cord have been described throughout the history of medicine. Formerly grouped under the term Phacomatosis because lesions of the eye were frequently encountered or genodermatosis when typical skin lesions were present, these terms have been progressively discarded. Although originally reported centuries ago, they still represent a challenge for their complexity of cure. Nowadays, with the introduction of advanced genetics and the consequent opportunity of whole-genome sequencing, new single cancer susceptibility genes have been identified or better characterized; although there is evidence that the predisposition to a few specific tumor syndromes should be accounted to a group of mutations in different genes while certain syndromes appeared to be manifestations of different mutations in the same gene adding supplementary problems in their characterization and establishing the diagnosis. Noteworthy, many syndromes have been genetically determined and well-characterized, accordingly in the near future, we expect that new targeted therapies will be available for the definitive cure of these syndromes and other gliomas (Pour-Rashidi et al. in World Neurosurgery, 2021). The most common CNS syndromes that will be discussed in this chapter include neurofibromatosis (NF) types 1 and 2, von Hippel-Lindau (VHL) disease, and tuberous sclerosis complex (TSC), as well as syndromes having mostly extra-neural manifestations such as Cowden, Li-Fraumeni, Turcot, and Gorlin syndromes.
Collapse
Affiliation(s)
- Jody Filippo Capitanio
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy.
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Wang MX, Dillman JR, Guccione J, Habiba A, Maher M, Kamel S, Panse PM, Jensen CT, Elsayes KM. Neurofibromatosis from Head to Toe: What the Radiologist Needs to Know. Radiographics 2022; 42:1123-1144. [PMID: 35749292 DOI: 10.1148/rg.210235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurofibromatosis type 1 (NF1) and neurofibromatosis type 2 (NF2) are autosomal dominant inherited neurocutaneous disorders or phakomatoses secondary to mutations in the NF1 and NF2 tumor suppressor genes, respectively. Although they share a common name, NF1 and NF2 are distinct disorders with a wide range of multisystem manifestations that include benign and malignant tumors. Imaging plays an essential role in diagnosis, surveillance, and management of individuals with NF1 and NF2. Therefore, it is crucial for radiologists to be familiar with the imaging features of NF1 and NF2 to allow prompt diagnosis and appropriate management. Key manifestations of NF1 include café-au-lait macules, axillary or inguinal freckling, neurofibromas or plexiform neurofibromas, optic pathway gliomas, Lisch nodules, and osseous lesions such as sphenoid dysplasia, all of which are considered diagnostic features of NF1. Other manifestations include focal areas of signal intensity in the brain, low-grade gliomas, interstitial lung disease, various abdominopelvic neoplasms, scoliosis, and vascular dysplasia. The various NF1-associated abdominopelvic neoplasms can be categorized by their cellular origin: neurogenic neoplasms, interstitial cells of Cajal neoplasms, neuroendocrine neoplasms, and embryonal neoplasms. Malignant peripheral nerve sheath tumors and intracranial tumors are the leading contributors to mortality in NF1. Classic manifestations of NF2 include schwannomas, meningiomas, and ependymomas. However, NF2 may have shared cutaneous manifestations with NF1. Lifelong multidisciplinary management is critical for patients with either disease. The authors highlight the genetics and molecular pathogenesis, clinical and pathologic features, imaging manifestations, and multidisciplinary management and surveillance of NF1 and NF2. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Mindy X Wang
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| | - Jonathan R Dillman
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| | - Jeffrey Guccione
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| | - Ahmed Habiba
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| | - Marwa Maher
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| | - Serageldin Kamel
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| | - Prasad M Panse
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| | - Corey T Jensen
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| | - Khaled M Elsayes
- From the Department of Radiology (M.X.W., C.T.J., K.M.E.) and Department of Lymphoma and Myeloma (S.K.), University of Texas MD Anderson Cancer Center, Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030-4009; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio (J.R.D.); Department of Radiology, Stanford University, Stanford, Calif (J.G.); Department of Radiology (A.H.) and Faculty of Medicine (M.M.), Alexandria University, Alexandria, Egypt; and Department of Radiology, Mayo Clinic Arizona, Phoenix/Scottsdale, Ariz (P.M.P.)
| |
Collapse
|
3
|
Sethi NK, Chadha C, Goyal S, Kaur M. Neurofibromatosis 1: A family case series. J Family Med Prim Care 2022; 11:2252-2255. [PMID: 35800488 PMCID: PMC9254752 DOI: 10.4103/jfmpc.jfmpc_1933_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) or Von Recklinghausen disease comes under a group of multisystem hereditary syndromes called phakomatoses. It presents with skin, ophthalmic, bony, and systemic manifestations. We present a photographically well-documented case series of NF in a family (n = 3). Skin manifestations were present in all the patients. The ophthalmic manifestations were Lisch nodules (100% of eyes), subcutaneous neurofibroma of eyelids (33% of eyes), mechanical ptosis (33% of eyes), and mechanical ectropion (16.5% of eyes). We report the rare occurrence of multiple solitary neurofibromas causing mechanical ptosis and mechanical ectropion.
Collapse
Affiliation(s)
- Neha K. Sethi
- Department of Ophthalmology, Guru Gobind Singh Medical College, Faridkot, Punjab, India
| | - Charu Chadha
- Department of Ophthalmology, Guru Gobind Singh Medical College, Faridkot, Punjab, India
| | - Sumit Goyal
- Department of Ophthalmology, Subdivisional Hospital, Moonak, Sangrur, Punjab, India
| | - Manpreet Kaur
- Department of Ophthalmology, Guru Gobind Singh Medical College, Faridkot, Punjab, India
| |
Collapse
|
4
|
Prabhakar S, Cheah PS, Zhang X, Zinter M, Gianatasio M, Hudry E, Bronson RT, Kwiatkowski DJ, Stemmer-Rachamimov A, Maguire CA, Sena-Esteves M, Tannous BA, Breakefield XO. Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:18-26. [PMID: 31534984 PMCID: PMC6745533 DOI: 10.1016/j.omtm.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome caused by mutations in TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins act as a complex that inhibits mammalian target of rapamycin (mTOR)-mediated cell growth and proliferation. Loss of either protein leads to overgrowth in many organs, including subependymal nodules, subependymal giant cell astrocytomas, and cortical tubers in the human brain. Neurological manifestations in TSC include intellectual disability, autism, hydrocephalus, and epilepsy. In a stochastic mouse model of TSC1 brain lesions, complete loss of Tsc1 is achieved in homozygous Tsc1-floxed mice in a subpopulation of neural cells in the brain by intracerebroventricular (i.c.v.) injection at birth of an adeno-associated virus (AAV) vector encoding Cre recombinase. This results in median survival of 38 days and brain pathology, including subependymal lesions and enlargement of neuronal cells. Remarkably, when these mice were injected intravenously on day 21 with an AAV9 vector encoding hamartin, most survived at least up to 429 days in apparently healthy condition with marked reduction in brain pathology. Thus, a single intravenous administration of an AAV vector encoding hamartin restored protein function in enough cells in the brain to extend lifespan in this TSC1 mouse model.
Collapse
Affiliation(s)
- Shilpa Prabhakar
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Neurodiscovery Center, Harvard Medical School, Charlestown, MA, USA
| | - Pike See Cheah
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Neurodiscovery Center, Harvard Medical School, Charlestown, MA, USA.,Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Xuan Zhang
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Neurodiscovery Center, Harvard Medical School, Charlestown, MA, USA
| | - Max Zinter
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Neurodiscovery Center, Harvard Medical School, Charlestown, MA, USA
| | - Maria Gianatasio
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Eloise Hudry
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Neurodiscovery Center, Harvard Medical School, Charlestown, MA, USA
| | - Roderick T Bronson
- Rodent Histopathology Core Facility, Harvard Medical School, Boston, MA, USA
| | | | | | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Neurodiscovery Center, Harvard Medical School, Charlestown, MA, USA
| | - Miguel Sena-Esteves
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bakhos A Tannous
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Neurodiscovery Center, Harvard Medical School, Charlestown, MA, USA
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Neurodiscovery Center, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
5
|
Friend BD, Wolfe Schneider K, Garrington T, Truscott L, Martinez-Agosto JA, Venick RS, Tsai Chambers E, Weng P, Farmer DG, Chang VY, Federman N. Is polycystic kidney disease associated with malignancy in children? Mol Genet Genomic Med 2019; 7:e00725. [PMID: 31197971 PMCID: PMC6625336 DOI: 10.1002/mgg3.725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 01/16/2023] Open
Abstract
Background Polycystic kidney disease (PKD) is an inherited condition characterized by progressive development of end‐stage renal disease, hypertension, hepatic fibrosis, and cysts in the kidney, liver, pancreas, spleen, thyroid, and epididymis. While malignancies have been reported in association with PKD in adults, the incidence of malignancies in children with PKD is not currently known. Methods We report on five patients with a known history of PKD who developed a malignancy as children at the University of California, Los Angeles and the University of Colorado Anschutz Medical Campus. Patients were included from 2012 to 2017. Results We present five patients with a history of PKD diagnosed with a malignancy during childhood without any additional known mutations to suggest a genetic predisposition to develop cancer. This includes the first reported case of hepatocellular carcinoma in a patient with autosomal recessive polycystic kidney disease. Conclusion Our report illustrates the potential that PKD may be associated with an increased risk for developing cancer, even in children. Further research is necessary to better understand this relationship.
Collapse
Affiliation(s)
- Brian D Friend
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California.,Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, California
| | - Kami Wolfe Schneider
- Section of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado
| | - Timothy Garrington
- Section of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado
| | - Laurel Truscott
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California
| | - Julian A Martinez-Agosto
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California.,Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California.,UCLA Clinical Genomics Center, Los Angeles, California
| | - Robert S Venick
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California
| | - Eileen Tsai Chambers
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California.,Division of Pediatric Nephrology, Department of Pediatrics, Duke University, Durham, North Carolina
| | - Patricia Weng
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California
| | - Douglas G Farmer
- Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Vivian Y Chang
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California.,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Noah Federman
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California.,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, California.,Department of Orthopaedics, UCLA David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
6
|
Goldberg AA, Joung KB, Mansuri A, Kang Y, Echavarria R, Nikolajev L, Sun Y, Yu JJ, Laporte SA, Schwertani A, Kristof AS. Oncogenic effects of urotensin-II in cells lacking tuberous sclerosis complex-2. Oncotarget 2018; 7:61152-61165. [PMID: 27458154 PMCID: PMC5308642 DOI: 10.18632/oncotarget.10748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/01/2016] [Indexed: 01/16/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a destructive lung disease that can arise sporadically or in adults suffering from the tumor syndrome tuberous sclerosis complex (TSC). Microscopic tumors ('LAM nodules') in the lung interstitium arise from lymphatic invasion and metastasis. These consist of smooth muscle-like cells (LAM cells) that exhibit markers of neural crest differentiation and loss of the tumor suppressor protein 'tuberous sclerosis complex-2' (TSC2). Consistent with a neural phenotype, expression of the neuropeptide urotensin-II and its receptor was detected in LAM nodules. We hypothesized that loss of TSC2 sensitizes cells to the oncogenic effects of urotensin-II. TSC2-deficient Eker rat uterine leiomyoma ELT3 cells were stably transfected with empty vector or plasmid for the expression of TSC2. Urotensin-II increased cell viability and proliferation in TSC2-deficient cells, but not in TSC2-reconstituted cells. When exposed to urotensin-II, TSC2-deficient cells exhibited greater migration, anchorage-independent cell growth, and matrix invasion. The effects of urotensin-II on TSC2-deficient cells were blocked by the urotensin receptor antagonist SB657510, and accompanied by activation of Erk mitogen-activated protein kinase and focal adhesion kinase. Urotensin-II-induced proliferation and migration were reproduced in TSC2-deficient human angiomyolipoma cells, but not in those stably expressing TSC2. In a mouse xenograft model, SB657510 blocked the growth of established ELT3 tumors, reduced the number of circulating tumor cells, and attenuated the production of VEGF-D, a clinical biomarker of LAM. Urotensin receptor antagonists may be selective therapeutic agents for the treatment of LAM or other neural crest-derived neoplasms featuring loss of TSC2 or increased expression of the urotensin receptor.
Collapse
Affiliation(s)
- Alexander A Goldberg
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Montreal, Quebec, Canada.,Department of Critical Care Medicine, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Kwang-Bo Joung
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Montreal, Quebec, Canada.,Department of Critical Care Medicine, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Asma Mansuri
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Montreal, Quebec, Canada.,Department of Critical Care Medicine, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Yujin Kang
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Montreal, Quebec, Canada.,Department of Critical Care Medicine, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Raquel Echavarria
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Montreal, Quebec, Canada.,Department of Critical Care Medicine, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Ljiljana Nikolajev
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Yang Sun
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jane J Yu
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Stephane A Laporte
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adel Schwertani
- Division of Cardiology, Montreal General Hospital, Montreal, Quebec, Canada
| | - Arnold S Kristof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Montreal, Quebec, Canada.,Department of Critical Care Medicine, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Abdolrahimzadeh B, Piraino DC, Albanese G, Cruciani F, Rahimi S. Neurofibromatosis: an update of ophthalmic characteristics and applications of optical coherence tomography. Clin Ophthalmol 2016; 10:851-60. [PMID: 27257370 PMCID: PMC4874640 DOI: 10.2147/opth.s102830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neurofibromatosis (NF) is a multisystem disorder and tumor predisposition syndrome caused by genetic mutation on chromosome 17-17q11.2 in NF type 1 (NF1), and on chromosome 22-22q12.2 in NF type 2. The disorder is characterized by considerable heterogeneity of clinical expression. NF1 is the form with the most characteristic ocular manifestations. Lisch nodules of the iris are among the well-known diagnostic criteria for the disease. Glaucoma and associated globe enlargement have been described in a significant proportion of patients with NF1 and orbital–facial involvement. Optic nerve glioma may cause strabismus and proptosis, and palpebral neurofibroma may reach considerable size and occasionally show malignant transformation. Near infrared reflectance has greatly contributed to enhancing our knowledge on choroidal alterations in NF1. Indeed, some authors have proposed to include these among the diagnostic criteria. Optical coherence tomography has given new insight on retinal alterations and is a noninvasive tool in the management of optic nerve gliomas in children. Ocular manifestations in NF type 2 can range from early-onset cataracts in up to 80% of cases to optic nerve hamartomas and combined pigment epithelial and retinal hamartomas.
Collapse
Affiliation(s)
| | - Domenica Carmen Piraino
- Section of Ophthalmology, Department of Sense Organs, University of Rome "Sapienza", Rome, Italy
| | - Giorgio Albanese
- Section of Ophthalmology, Department of Sense Organs, University of Rome "Sapienza", Rome, Italy
| | - Filippo Cruciani
- Section of Ophthalmology, Department of Sense Organs, University of Rome "Sapienza", Rome, Italy
| | - Siavash Rahimi
- Pathology Centre, Queen Alexandra Hospital, Portsmouth, UK
| |
Collapse
|
8
|
Imaging Manifestations of a Subependymal Giant Cell Astrocytoma in Tuberous Sclerosis. Case Rep Radiol 2016; 2016:3750450. [PMID: 26942030 PMCID: PMC4752974 DOI: 10.1155/2016/3750450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 11/17/2022] Open
Abstract
Tuberous sclerosis is a rare genetic disorder resulting in benign tumor growth in various organs including the brain, heart, skin, eyes, kidney, and lung as well as systemic manifestations including seizures, cognitive impairment, and dermatologic abnormalities. This report shows the radiological findings and differentiation between a subependymal nodule and subependymal giant cell astrocytoma in a patient with tuberous sclerosis presenting with new onset seizures.
Collapse
|
9
|
Kristof AS, Zhi Li P, Major P, Landry JS. Lymphangioleiomyomatosis and Tuberous Sclerosis Complex in Quebec: Prevalence and Health-care Utilization. Chest 2015; 148:444-449. [PMID: 25789699 DOI: 10.1378/chest.14-3095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a manifestation of tuberous sclerosis complex (TSC) that causes destruction of the lung and chronic respiratory failure. Population-based estimates of demographics, clinical outcomes, and health-care utilization are lacking for TSC and LAM. METHODS Data on demographics, clinical outcomes, and health-care utilization in the Quebec ministerial provincial health-care database were analyzed for their association with TSC and LAM. RESULTS A total of 1,004 subjects with TSC were identified using International Classification of Diseases, Ninth and 10th Revisions, codes for a prevalence of one in 7,872 people. There were 38 subjects with LAM, nine of whom also had TSC. Mean ages as well as the mean age at death were lower in the LAM and TSC group than in the control group. Mortality rates were higher in subjects with LAM than in those with TSC or in control subjects. Subjects with LAM experienced more medical visits and hospitalizations than did those with TSC and control subjects; these were associated with higher health-care costs. Frequently prescribed drugs in TSC or LAM included anticonvulsants, antidepressants, and sedatives; the use of mammalian target of rapamycin inhibitors was uncommon. CONCLUSIONS The prevalence of TSC in Quebec, Canada, is similar to estimates from previously published surveys. LAM is likely underreported, perhaps due to suboptimal case identification or referral. Health-care utilization and mortality for LAM are high, suggesting that timely diagnosis and therapy could be beneficial. Mental health disorders may be an unrecognized clinical feature of LAM. These results provide a population-based background for policymakers and researchers to better address the needs of patients with TSC and LAM.
Collapse
Affiliation(s)
- Arnold S Kristof
- Department of Critical Care, Meakins-Christie Laboratories, McGill University Health Centre; Department of Medicine, Respiratory Division, McGill University Health Centre.
| | - Pei Zhi Li
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre
| | - Philippe Major
- Department of Neurosciences, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
| | - Jennifer S Landry
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre
| |
Collapse
|
10
|
Delaney SP, Julian LM, Stanford WL. The neural crest lineage as a driver of disease heterogeneity in Tuberous Sclerosis Complex and Lymphangioleiomyomatosis. Front Cell Dev Biol 2014; 2:69. [PMID: 25505789 PMCID: PMC4243694 DOI: 10.3389/fcell.2014.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease, best characterized by the formation of proliferative nodules that express smooth muscle and melanocytic antigens within the lung parenchyma, leading to progressive destruction of lung tissue and function. The pathological basis of LAM is associated with Tuberous Sclerosis Complex (TSC), a multi-system disorder marked by low-grade tumors in the brain, kidneys, heart, eyes, lung and skin, arising from inherited or spontaneous germ-line mutations in either of the TSC1 or TSC2 genes. LAM can develop either in a patient with TSC (TSC-LAM) or spontaneously (S-LAM), and it is clear that the majority of LAM lesions of both forms are characterized by an inactivating mutation in either TSC1 or TSC2, as in TSC. Despite this genetic commonality, there is considerable heterogeneity in the tumor spectrum of TSC and LAM patients, the basis for which is currently unknown. There is extensive clinical evidence to suggest that the cell of origin for LAM, as well as many of the TSC-associated tumors, is a neural crest cell, a highly migratory cell type with extensive multi-lineage potential. Here we explore the hypothesis that the types of tumors that develop and the tissues that are affected in TSC and LAM are dictated by the developmental timing of TSC gene mutations, which determines the identities of the affected cell types and the size of downstream populations that acquire a mutation. We further discuss the evidence to support a neural crest origin for LAM and TSC tumors, and propose approaches for generating humanized models of TSC and LAM that will allow cell of origin theories to be experimentally tested. Identifying the cell of origin and developing appropriate humanized models is necessary to truly understand LAM and TSC pathology and to establish effective and long-lasting therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Sean P Delaney
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
11
|
Gutte R, Khopkar U. Unilateral multiple facial angiofibromas: a case report with brief review of literature. Indian J Dermatol 2013; 58:159. [PMID: 23716831 PMCID: PMC3657241 DOI: 10.4103/0019-5154.108084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tuberous sclerosis (TSC) is an autosomal dominant hereditary condition with many varied forms of clinical presentation. The most frequent cutaneous findings in TSC include multiple angiofibromas, hypopigmented macules, periungual fibromas, and shagreen patch. Rarely, unilateral multiple facial angiofibromas have been reported. We report a case of unilateral multiple facial angiofibromas without any other manifestations of TSC. Although rare, unilateral multiple facial angiofibromas may be a mosaic form of TSC.
Collapse
Affiliation(s)
- Rameshwar Gutte
- Department of Dermatology, Seth G.S. Medical College and King Edward Memorial Hospital, Mumbai, India
| | | |
Collapse
|
12
|
Yvert M, Vallée L, Maugey-Laulom B. La sclérose tubéreuse de Bourneville : modalités de l’imagerie et complexité du pronostic anténatal. Arch Pediatr 2012. [DOI: 10.1016/s0929-693x(12)71263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Thomas CY, Theodorescu D. Molecular Pathogenesis of Urothelial Carcinoma and the Development of Novel Therapeutic Strategies. Bladder Cancer 2009. [DOI: 10.1007/978-1-59745-417-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Umeoka S, Koyama T, Miki Y, Akai M, Tsutsui K, Togashi K. Pictorial review of tuberous sclerosis in various organs. Radiographics 2008; 28:e32. [PMID: 18772274 DOI: 10.1148/rg.e32] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuberous sclerosis is a rare autosomal dominant neurocutaneous syndrome characterized by the presence of benign congenital tumors in multiple organs. The diagnosis is usually established on the basis of diagnostic criteria applied to physical or radiologic findings. Because the classical triad of epilepsy, mental retardation, and adenoma sebaceum is uncommonly seen at clinical examination, radiologic examinations can play an important role in the diagnosis of tuberous sclerosis and in treatment. Cardiac rhabdomyoma, renal angiomyolipoma, and neurologic involvement encompassing cortical or subependymal tubers and white matter abnormalities are the common radiologic findings. Detection of these entities can be strong evidence for suspecting tuberous sclerosis. The presence of pulmonary lymphangioleiomyomatosis, multifocal micronodular pneumocyte hyperplasia, or multiple renal cysts also raises suspicion of tuberous sclerosis. Moreover, tuberous sclerosis can involve bone, liver, and the alimentary tract. The clinical course and patient prognosis depend on the sites of manifestations. Familiarity with the clinical and radiologic findings in various organs is crucial in diagnosis and treatment.
Collapse
Affiliation(s)
- Shigeaki Umeoka
- Department of Radiology, Japanese Red Cross Society, Wakayama Medical Center, Wakayama, Japan
| | | | | | | | | | | |
Collapse
|
15
|
von der Brelie C, Waltereit R, Zhang L, Beck H, Kirschstein T. Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur J Neurosci 2006; 23:686-92. [PMID: 16487150 DOI: 10.1111/j.1460-9568.2006.04594.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberous sclerosis complex (TSC) is a common hereditary disorder caused by mutations in either the TSC1 or TSC2 genes, and characterized by severe epilepsy, cerebral hamartomas and mental retardation. We have used rats that are heterozygous for an autosomal-dominant germline mutation in the TSC2 gene (TSC2+/- rats) to examine the consequences of TSC2 mutations for hippocampal synaptic plasticity. While basal synaptic transmission in the Schaffer collateral-CA1 synapse was not altered, paired-pulse plasticity was significantly enhanced in TSC2+/- rats (interpulse intervals 20-200 ms). Moreover, TSC2+/- rats exhibited a marked reduction of different forms of synaptic plasticity. Long-term potentiation (LTP) elicited following high-frequency tetanization of Schaffer collaterals was significantly decreased from 1.45 +/- 0.05-fold potentiation to 1.15 +/- 0.04 (measured after 60 min). This difference in LTP levels between TSC2+/- and wild-type rats also persisted in the presence of the gamma-aminobutyric acid (GABA)(A) receptor antagonist bicuculline. In addition to changed LTP, the level of long-term depression (LTD) elicited by different forms of low-frequency stimulation was significantly less in TSC2+/- rats. These results suggest that TSC2 mutations may cause hippocampal synapses to lose much of their potential for activity-dependent synaptic modification. An understanding of the underlying molecular pathways may suggest new therapeutic approaches aimed at inhibiting the development of the profound mental retardation in TSC.
Collapse
Affiliation(s)
- Christian von der Brelie
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
16
|
Zikusoka MN, Kidd M, Eick G, Latich I, Modlin IM. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer 2006; 104:2292-309. [PMID: 16258976 DOI: 10.1002/cncr.21451] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathobiology of neuroendocrine tumors (NETs) is hampered by the lack of scientific tools that define their mechanisms of secretion, proliferation, and metastasis; and, currently, there are no accurate means to assess tumor behavior and disease prognosis. Molecular biologic techniques and genetic analysis may facilitate the delineation of the molecular pathology of NETs and provide novel insights into their cellular mechanisms. The current status and recent advances in assessment of the molecular basis of tumorigenesis of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) were reviewed (1981-2004). The objectives of this retrospective study were to provide a cohesive overview of the current state of knowledge and to develop a molecular understanding of these rare tumor entities to facilitate the establishment of therapeutic targets and rational management strategies. Multiple differences in chromosomal aberration patterns were noted between gastrointestinal (GI) neuroendocrine and pancreatic endocrine tumors (PETs). Divergence in gene expression patterns in the development of GI carcinoids and PETs was identified, whereas examination of the PET and GI carcinoid data demonstrated only few areas of overlap in the accumulation of genetic aberrations. These data suggest that the recent World Health Organization classification of GEP-NETs may require updating. In addition, previous assumptions of tumor similarity (pancreatic vs. GI) may be unfounded when they are examined at a molecular level. On the basis of the evolution of genetic information, enteric neuroendocrine lesions (carcinoids) and PETs may need to be classified as two distinct entities rather than grouped together as the single entity "GEP-NETs."
Collapse
Affiliation(s)
- Michelle N Zikusoka
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06520-8062, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Tuberous sclerosis complex (TSC) presents in the pediatric population with a constellation of benign tumors that affect the brain, heart, kidney, lung, and skin. No therapy has been shown to halt disease progression or to prevent its onset. The pathogenesis of TSC stems from the inactivation of one of the two TSC genes, TSC1 and TSC2. A key function of these genes is to regulate the mammalian target of rapamycin (mTOR) pathway in response to cellular energy and nutrient and growth factor availability. Consequently, TSC-related tumors exhibit uncontrolled activation of mTOR and its effectors. Previous work has shown that a specific mTOR inhibitor, rapamycin, effectively down-regulated mTOR activity in renal tumors of Eker rats that carry a germline Tsc2 mutation. Using this model, we investigated the effects of rapamycin on pituitary and renal tumors. We observed that rats with pituitary tumors had significantly shorter survival than those without pituitary pathology. Treatment with rapamycin effectively improved their clinical state and prolonged their survival. Rapamycin also resulted in a significant decrease in the size of the Tsc2-related renal tumors. In both types of pathology, tumor response was accompanied by down-regulation of ribosomal S6 kinase activity, reduction in cell size, and induction of apoptosis. Evidence for drug resistance was found in a small percentage of lesions after prolonged therapy. When rapamycin was given before onset of disease, subsequent development of macroscopic renal tumors was reduced, but no effect on the number of microscopic precursor lesions was found. We conclude that rapamycin-sensitive mTOR activity was critical to tumor progression in the Eker rat model, but rapamycin is unlikely to eradicate all disease as a result of the development of drug resistance. Our data also suggest the role of a rapamycin-insensitive pathway during tumor initiation.
Collapse
Affiliation(s)
- Heidi Kenerson
- Department of Surgery, University of Washington, 1959 NE Pacific Street, Box 356410, Seattle, WA 98195, USA
| | | | | |
Collapse
|
18
|
Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005; 37:19-24. [PMID: 15624019 DOI: 10.1038/ng1494] [Citation(s) in RCA: 750] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 11/23/2004] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) has a central role in the regulation of cell growth. mTOR receives input from multiple signaling pathways, including growth factors and nutrients, to stimulate protein synthesis by phosphorylating key translation regulators such as ribosomal S6 kinase and eukaryote initiation factor 4E binding protein 1. High levels of dysregulated mTOR activity are associated with several hamartoma syndromes, including tuberous sclerosis complex, the PTEN-related hamartoma syndromes and Peutz-Jeghers syndrome. These disorders are all caused by mutations in tumor-suppressor genes that negatively regulate mTOR. Here we discuss the emerging evidence for a functional relationship between the mTOR signaling pathway and several genetic diseases, and we present evidence supporting a model in which dysregulation of mTOR may be a common molecular basis, not only for hamartoma syndromes, but also for other cellular hypertrophic disorders.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|