1
|
Loen V, Vos MA, van der Heyden MAG. The canine chronic atrioventricular block model in cardiovascular preclinical drug research. Br J Pharmacol 2022; 179:859-881. [PMID: 33684961 PMCID: PMC9291585 DOI: 10.1111/bph.15436] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022] Open
Abstract
Ventricular cardiac arrhythmia is a life threating condition arising from abnormal functioning of many factors in concert. Animal models mirroring human electrophysiology are essential to predict and understand the rare pro- and anti-arrhythmic effects of drugs. This is very well accomplished by the canine chronic atrioventricular block (CAVB) model. Here we summarize canine models for cardiovascular research, and describe the development of the CAVB model from its beginning. Understanding of the structural, contractile and electrical remodelling processes following atrioventricular (AV) block provides insight in the many factors contributing to drug-induced arrhythmia. We also review all safety pharmacology studies, efficacy and mechanistic studies on anti-arrhythmic drugs in CAVB dogs. Finally, we compare pros and cons with other in vivo preclinical animal models. In view of the tremendous amount of data obtained over the last 100 years from the CAVB dog model, it can be considered as man's best friend in preclinical drug research. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- Vera Loen
- Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marc A. Vos
- Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | |
Collapse
|
2
|
Nalos L, Jarkovská D, Švíglerová J, Süß A, Záleský J, Rajdl D, Krejčová M, Kuncová J, Rosenberg J, Štengl M. TdP Incidence in Methoxamine-Sensitized Rabbit Model Is Reduced With Age but Not Influenced by Hypercholesterolemia. Front Physiol 2021; 12:692921. [PMID: 34234694 PMCID: PMC8255784 DOI: 10.3389/fphys.2021.692921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic syndrome is associated with hypercholesterolemia, cardiac remodeling, and increased susceptibility to ventricular arrhythmias. Effects of diet-induced hypercholesterolemia on susceptibility to torsades de pointes arrhythmias (TdP) together with potential indicators of arrhythmic risk were investigated in three experimental groups of Carlsson's rabbit model: (1) young rabbits (YC, young control, age 12-16 weeks), older rabbits (AC, adult control, age 20-24 weeks), and older age-matched cholesterol-fed rabbits (CH, cholesterol, age 20-24 weeks). TdP was induced by α-adrenergic stimulation by methoxamine and IKr block in 83% of YC rabbits, 18% of AC rabbits, and 21% of CH rabbits. High incidence of TdP was associated with high incidence of single (SEB) and multiple ectopic beats (MEB), but the QTc prolongation and short-term variability (STV) were similar in all three groups. In TdP-susceptible rabbits, STV was significantly higher compared with arrhythmia-free rabbits but not with rabbits with other than TdP arrhythmias (SEB, MEB). Amplitude-aware permutation entropy analysis of baseline ECG could identify arrhythmia-resistant animals with high sensitivity and specificity. The data indicate that the TdP susceptibility in methoxamine-sensitized rabbits is affected by the age of rabbits but probably not by hypercholesterolemia. Entropy analysis could potentially stratify the arrhythmic risk and identify the low-risk individuals.
Collapse
Affiliation(s)
- Lukáš Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jitka Švíglerová
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Annabell Süß
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jakub Záleský
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Daniel Rajdl
- Institute of Clinical Biochemistry and Haematology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Milada Krejčová
- New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia
| | - Jitka Kuncová
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Josef Rosenberg
- New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
3
|
Langfield P, Feng Y, Bear LR, Duchateau J, Sebastian R, Abell E, Dubois R, Labrousse L, Rogier J, Hocini M, Haissaguerre M, Vigmond E. A novel method to correct repolarization time estimation from unipolar electrograms distorted by standard filtering. Med Image Anal 2021; 72:102075. [PMID: 34020081 DOI: 10.1016/j.media.2021.102075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022]
Abstract
Reliable patient-specific ventricular repolarization times (RTs) can identify regions of functional block or afterdepolarizations, indicating arrhythmogenic cardiac tissue and the risk of sudden cardiac death. Unipolar electrograms (UEs) record electric potentials, and the Wyatt method has been shown to be accurate for estimating RT from a UE. High-pass filtering is an important step in processing UEs, however, it is known to distort the T-wave phase of the UE, which may compromise the accuracy of the Wyatt method. The aim of this study was to examine the effects of high-pass filtering, and improve RT estimates derived from filtered UEs. We first generated a comprehensive set of UEs, corresponding to early and late activation and repolarization, that were then high-pass filtered with settings that mimicked the CARTO filter. We trained a deep neural network (DNN) to output a probabilistic estimation of RT and a measure of confidence, using the filtered synthetic UEs and their true RTs. Unfiltered ex-vivo human UEs were also filtered and the trained DNN used to estimate RT. Even a modest 2 Hz high-pass filter imposes a significant error on RT estimation using the Wyatt method. The DNN outperformed the Wyatt method in 62.75% of cases, and produced a significantly lower absolute error (p=8.99E-13), with a median of 16.91 ms, on 102 ex-vivo UEs. We also applied the DNN to patient UEs from CARTO, from which an RT map was computed. In conclusion, DNNs trained on synthetic UEs improve the RT estimation from filtered UEs, which leads to more reliable repolarization maps that help to identify patient-specific repolarization abnormalities.
Collapse
Affiliation(s)
- Peter Langfield
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Univ. Bordeaux, IMB UMR 5251, Talence F-33400, France.
| | - Yingjing Feng
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Univ. Bordeaux, IMB UMR 5251, Talence F-33400, France.
| | - Laura R Bear
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Bordeaux University Hospital (CHU), Cardiac Electrophysiology and Cardiac Stimulation Team, Pessac, France
| | - Rafael Sebastian
- CoMMLab, Dept. Computer Sciences, Universitat de Valencia, Valencia, Spain
| | - Emma Abell
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Remi Dubois
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Louis Labrousse
- Bordeaux University Hospital (CHU), Cardiac Electrophysiology and Cardiac Stimulation Team, Pessac, France
| | - Julien Rogier
- Bordeaux University Hospital (CHU), Cardiac Electrophysiology and Cardiac Stimulation Team, Pessac, France
| | - Meleze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Bordeaux University Hospital (CHU), Cardiac Electrophysiology and Cardiac Stimulation Team, Pessac, France
| | - Michel Haissaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Bordeaux University Hospital (CHU), Cardiac Electrophysiology and Cardiac Stimulation Team, Pessac, France
| | - Edward Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Univ. Bordeaux, IMB UMR 5251, Talence F-33400, France
| |
Collapse
|
4
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Varga RS, Hornyik T, Husti Z, Kohajda Z, Krajsovszky G, Nagy N, Jost N, Virág L, Tálosi L, Mátyus P, Varró A, Baczkó I. Antiarrhythmic and cardiac electrophysiological effects of SZV-270, a novel compound with combined Class I/B and Class III effects, in rabbits and dogs. Can J Physiol Pharmacol 2020; 99:89-101. [PMID: 32970956 DOI: 10.1139/cjpp-2020-0412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cardiovascular diseases are the leading causes of mortality. Sudden cardiac death is most commonly caused by ventricular fibrillation (VF). Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and heart failure. Pharmacological management of VF and AF remains suboptimal due to limited efficacy of antiarrhythmic drugs and their ventricular proarrhythmic adverse effects. In this study, the antiarrhythmic and cardiac cellular electrophysiological effects of SZV-270, a novel compound, were investigated in rabbit and canine models. SZV-270 significantly reduced the incidence of VF in rabbits subjected to coronary artery occlusion/reperfusion and reduced the incidence of burst-induced AF in a tachypaced conscious canine model of AF. SZV-270 prolonged the frequency-corrected QT interval, lengthened action potential duration and effective refractory period in ventricular and atrial preparations, blocked I Kr in isolated cardiomyocytes (Class III effects), and reduced the maximum rate of depolarization (V max) at cycle lengths smaller than 1000 ms in ventricular preparations (Class I/B effect). Importantly, SZV-270 did not provoke Torsades de Pointes arrhythmia in an anesthetized rabbit proarrhythmia model characterized by impaired repolarization reserve. In conclusion, SZV-270 with its combined Class I/B and III effects can prevent reentry arrhythmias with reduced risk of provoking drug-induced Torsades de Pointes.
Collapse
Affiliation(s)
- Richárd S Varga
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Zsófia Kohajda
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Krajsovszky
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
| | - Norbert Nagy
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - László Tálosi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Péter Mátyus
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Smoczynska A, Beekman HD, Vos MA. The Increment of Short-term Variability of Repolarisation Determines the Severity of the Imminent Arrhythmic Outcome. Arrhythm Electrophysiol Rev 2019; 8:166-172. [PMID: 31576205 PMCID: PMC6766692 DOI: 10.15420/aer.2019.16.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ventricular remodelling can make the heart more susceptible to ventricular arrhythmias like torsades de pointes. Understanding the underlying mechanisms of initiation of ventricular arrhythmias and the determining factors for its severity has the potential to uncover new interventions. Beat-to-beat variation of repolarisation, quantified as short-term variability of repolarisation (STV), has been identified as an important factor contributing to arrhythmogenesis. This article provides an overview of experimental data about STV in relation to the initiation of torsades de pointes in a canine model of complete chronic atrioventricular block susceptible to torsades de pointes arrhythmias. Furthermore, it explores STV in relation to the severity of the arrhythmic outcome.
Collapse
Affiliation(s)
- Agnieszka Smoczynska
- Department of Medical Physiology, University Medical Center Utrecht Utrecht, the Netherlands
| | - Henriëtte Dm Beekman
- Department of Medical Physiology, University Medical Center Utrecht Utrecht, the Netherlands
| | - Marc A Vos
- Department of Medical Physiology, University Medical Center Utrecht Utrecht, the Netherlands
| |
Collapse
|
7
|
Abstract
Ivabradine has recently been demonstrated to have antiarrhythmic properties in atrial fibrillation. The aim of the present study was to assess the electrophysiologic profile of ivabradine in an experimental whole-heart model of long-QT-syndrome. In 12 isolated rabbit hearts long-QT-2-syndrome (LQT2) was simulated by infusion of D,L-sotalol (100 µM). 12 rabbit hearts were treated with veratridine (0.5 µM) to mimic long-QT-3-syndrome (LQT3). Sotalol induced a significant prolongation of QT-interval (+ 40 ms, p < 0.01) and action potential duration (APD, + 20 ms, p < 0.01). Similar results were obtained in veratridine-treated hearts (QT-interval: +52 ms, p < 0.01; APD: + 41 ms, p < 0.01). Of note, both sotalol (+ 26 ms, p < 0.01) and veratridine (+ 42 ms, p < 0.01) significantly increased spatial dispersion of repolarisation. Additional infusion of ivabradine (5 µM) did not change these parameters in sotalol-pretreated hearts but resulted in a further significant increase of QT-interval (+ 26 ms, p < 0.05) and APD (+ 49 ms, p < 0.05) in veratridine-treated hearts. Lowering of potassium concentration in bradycardic AV-blocked hearts resulted in the occurrence of early afterdepolarizations (EAD) or polymorphic ventricular tachycardias (VT) resembling torsade de pointes in 6 of 12 sotalol-treated hearts (56 episodes) and 6 of 12 veratridine-treated hearts (73 episodes). Additional infusion of ivabradine increased occurrence of polymorphic VT. Ivabradine treatment resulted in occurrence of EAD and polymorphic VT in 9 of 12 sotalol-treated hearts (212 episodes), and 8 of 12 veratridine-treated hearts (155 episodes). Treatment with ivabradine in experimental models of LQT2 and LQT3 increases proarrhythmia. A distinct interaction with potassium currents most likely represents a major underlying mechanism. These results imply that ivabradine should be employed with caution in the presence of QT-prolongation.
Collapse
|
8
|
Frommeyer G, Fischer C, Ellermann C, Dechering DG, Kochhäuser S, Lange PS, Wasmer K, Fehr M, Eckardt L. Additive Proarrhythmic Effect of Combined Treatment with QT-Prolonging Agents. Cardiovasc Toxicol 2019; 18:84-90. [PMID: 28612303 DOI: 10.1007/s12012-017-9416-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug combinations may elevate the risk of proarrhythmia. The aim of the present study was to investigate whether combinations of non-cardiovascular agents induce an additive increase in the proarrhythmic risk. In 12 female rabbit hearts, a drug combination of cotrimoxazole (300 µM), ondansetron (5 µM) and domperidone (1 µM) was infused after obtaining baseline data. In another 13 hearts, a combination of cotrimoxazole (300 µM), ondansetron (5 µM) and erythromycin (300 µM) was infused. Monophasic action potentials and ECG displayed a significant QT prolongation in all groups. This was accompanied by a significant increase in action potential duration. Of note, addition of each drug resulted in a further increase in the QT interval. Furthermore, a significant elevation of spatial dispersion of repolarization was observed. Lowering of potassium concentration in bradycardic AV-blocked hearts provoked early afterdepolarizations and torsade de pointes (TDP) in both study groups. Under baseline conditions, no episodes of TDP recorded. After administration of the first agent, TDP occurred in 5 of 12 hearts (37 episodes) and 5 of 13 hearts (26 episodes), respectively. After additional infusion of the second drug, TDP were recorded in 7 of 12 hearts (55 episodes) and 8 of 13 hearts (111 episodes). After additional infusion of the third drug, TDP occurred in 11 of 12 hearts (118 episodes) and 9 of 13 hearts (88 episodes). Combined treatment with several non-cardiovascular QT-prolonging agents resulted in a remarkable occurrence of proarrhythmia. An additive and significant prolongation of cardiac repolarization combined with an increased spatial dispersion of repolarization represents the underlying electrophysiological mechanism.
Collapse
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany.
| | - Christina Fischer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Christian Ellermann
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Dirk G Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Simon Kochhäuser
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Philipp S Lange
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Kristina Wasmer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Michael Fehr
- Clinic of Exotic Pets, Reptiles, Exotic and Feral Birds, University of Hanover, Hanover, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Measurement of J–Tpeakc along with QT-Interval Prolongation May Increase the Assay Sensitivity and Specificity for Predicting the Onset of Drug-Induced Torsade de Pointes: Experimental Evidences Based on Proarrhythmia Model Animals. Cardiovasc Toxicol 2019; 19:357-364. [DOI: 10.1007/s12012-019-09506-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Sprenkeler DJ, Bossu A, Beekman JDM, Schoenmakers M, Vos MA. An Augmented Negative Force-Frequency Relationship and Slowed Mechanical Restitution Are Associated With Increased Susceptibility to Drug-Induced Torsade de Pointes Arrhythmias in the Chronic Atrioventricular Block Dog. Front Physiol 2018; 9:1086. [PMID: 30135660 PMCID: PMC6092493 DOI: 10.3389/fphys.2018.01086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022] Open
Abstract
Introduction: In the chronic AV-block (CAVB) dog model, structural, contractile, and electrical remodeling occur, which predispose the heart to dofetilide-induced Torsade de Pointes (TdP) arrhythmias. Previous studies found a relation between electrical remodeling and inducibility of TdP, while structural remodeling is not a prerequisite for arrhythmogenesis. In this study, we prospectively assessed the relation between in vivo markers of contractile remodeling and TdP inducibility. Methods: In 18 anesthetized dogs, the maximal first derivative of left ventricular pressure (LV dP/dtmax) was assessed at acute AV-block (AAVB) and after 2 weeks of chronic AV-block (CAVB2). Using pacing protocols, three markers of contractile remodeling, i.e., force-frequency relationship (FFR), mechanical restitution (MR), and post-extrasystolic potentiation (PESP) were determined. Infusion of dofetilide (0.025 mg/kg in 5 min) was used to test for TdP inducibility. Results: After infusion of dofetilide, 1/18 dogs and 12/18 were susceptible to TdP-arrhythmias at AAVB and CAVB2, respectively (p = 0.001). The inducible dogs at CAVB2 showed augmented contractility at a CL of 1200 ms (2354 ± 168 mmHg/s in inducible dogs versus 1091 ± 59 mmHg/s in non-inducible dogs, p < 0.001) with a negative FFR, while the non-inducible dogs retained their positive FFR. The time constant (TC) of the MR curve was significantly higher in the inducible dogs (158 ± 7 ms versus 97 ± 8 ms, p < 0.0001). Furthermore, a linear correlation was found between a weighted score of the number and severity of arrhythmias and contractile parameters, i.e., contractility at CL of 1200 ms (r = 0.73, p = 0.002), the slope of the FFR (r = -0.58, p = 0.01) and the TC of MR (r = 0.66, p = 0.003). Thus, more severe arrhythmias were seen in dogs with the most pronounced contractile remodeling. Conclusion: Contractile remodeling is concomitantly observed with susceptibility to dofetilide-induced TdP-arrhythmias. The inducible dogs show augmented contractile remodeling compared to non-inducible dogs, as seen by a negative FFR, higher maximal response of MR and PESP and slowed MR kinetics. These altered contractility parameters could reflect disrupted Ca2+ handling and Ca2+-overload, which predispose the heart to delayed- and early afterdepolarizations that could trigger TdP-arrhythmias.
Collapse
Affiliation(s)
- David J Sprenkeler
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alexandre Bossu
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jet D M Beekman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marieke Schoenmakers
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
11
|
Frommeyer G, Fischer C, Ellermann C, Lange PS, Dechering DG, Kochhäuser S, Fehr M, Eckardt L. Severe Proarrhythmic Potential of the Antiemetic Agents Ondansetron and Domperidone. Cardiovasc Toxicol 2018; 17:451-457. [PMID: 28185059 DOI: 10.1007/s12012-017-9403-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The potential of ondansetron and domperidone, both clinically established antiemetic agents, to increase the QT-interval has been described in several case reports. Therefore, the aim of the present study was to investigate whether these drugs may provoke polymorphic ventricular tachycardia in a sensitive experimental model of drug-induced proarrhythmia. In 10 female rabbits, ondansetron (1, 5 and 10 µM, n = 10) or domperidone (0.5, 1 and 2 µM, n = 8) was infused after obtaining baseline data. Eight endo- and epicardial monophasic action potentials and a simultaneously recorded 12-lead ECG reproduced the clinically observed QT-prolongation (ondansetron: 1 µM:+17 ms, 5 µM:+41 ms, 10 µM:+78 ms, p < 0.01; domperidone: 0.5 µM:+57 ms, 1 µM:+79 ms, 2 µM:+99 ms, p < 0.01). This was accompanied by a significant increase in action potential duration at 90% of repolarization. Administration of both agents also increased dispersion of repolarization (ondansetron: 1 µM:+12 ms, 5 µM:+17 ms; 10 µM:+18 ms, p < 0.05; domperidone: 0.5 µM:+19 ms, 1 µM:+27 ms; 2 µM:+23 ms p < 0.05). Lowering of potassium concentration in bradycardic AV-blocked hearts provoked early afterdepolarizations (EADs) in 9 of 10 ondansetron-treated hearts and induced polymorphic ventricular tachycardia (VT) resembling torsade de pointes in 7 of 10 ondansetron-treated hearts (86 episodes). Under the influence of domperidone, EAD and polymorphic VT occurred in 7 of 8 hearts (131 episodes). In the present study, both ondansetron and domperidone demonstrated a severe proarrhythmic potential. A significant prolongation of cardiac repolarization as well as a marked increase in spatial dispersion of repolarization represents the underlying electrophysiologic mechanisms. These results imply that application of ondansetron should be handled carefully. For regular administration, ECG monitoring should be mandatory.
Collapse
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany.
| | - Christina Fischer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Christian Ellermann
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Philipp S Lange
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Dirk G Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Simon Kochhäuser
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Michael Fehr
- Clinic of Exotic Pets, Reptiles, Exotic and Feral Birds, University of Hanover, Hanover, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Frommeyer G, Krawczyk J, Ellermann C, Bögeholz N, Kochhäuser S, Dechering DG, Fehr M, Eckardt L. Ryanodine-receptor inhibition by dantrolene effectively suppresses ventricular arrhythmias in an ex vivo model of long-QT syndrome. J Cardiovasc Electrophysiol 2018; 29:471-476. [PMID: 29314443 DOI: 10.1111/jce.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
AIMS A significant antiarrhythmic potential of ryanodine receptor inhibition was reported in experimental studies. The aim of the present study was to assess potential antiarrhythmic effects of dantrolene in an experimental whole-heart model of drug-induced long-QT syndrome (LQTS). METHODS In 12 isolated rabbit hearts, long-QT-2-syndrome was simulated by infusion of erythromycin (300 μM). Twelve rabbit hearts were treated with veratridine (0.5 μM) to mimic long-QT-3-syndrome. RESULTS Monophasic action potentials and ECG showed a significant prolongation of QT-interval (+71 ms, P < 0.01) and action potential duration (APD, +43 ms, P < 0.01) after infusion of erythromycin as compared with baseline. Similar results were obtained in veratridine-treated hearts (QT-interval: +43 ms, P < 0.01; APD: +36 ms, P < 0.01). Both erythromycin (+36 ms, P < 0.05) and veratridine (+38 ms) significantly increased dispersion of repolarization. Additional infusion of dantrolene (20 μM) did not significantly alter QT-interval and APD but resulted in a significant reduction of dispersion of repolarization (erythromycin group: -33 ms, P < 0.05; veratridine group: -29 ms, P < 0.05). Lowering of potassium concentration resulted in the occurrence of early afterdepolarizations (EAD) and polymorphic ventricular tachycardia (VT) in 9 of 12 erythromycin-treated hearts (175 episodes) and 8 of 12 veratridine-treated hearts (66 episodes). Additional infusion of dantrolene significantly reduced occurrence of polymorphic VT and resulted in occurrence of EAD and polymorphic VT in 1 of 12 erythromycin-treated hearts (18 episodes) and 1 of 12 veratridine-treated hearts (3 episodes). CONCLUSION Inhibition of the ryanodine receptor by dantrolene significantly reduced occurrence of polymorphic VT in drug-induced LQTS. A significant reduction of spatial dispersion of repolarization represents a major antiarrhythmic mechanism. These results imply that dantrolene may represent a promising antiarrhythmic option in drug-induced LQTS.
Collapse
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Julius Krawczyk
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Christian Ellermann
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Nils Bögeholz
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Simon Kochhäuser
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Dirk G Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Michael Fehr
- Clinic of Exotic Pets, Reptiles, Exotic and Feral Birds, University of Hanover, Hanover, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Frommeyer G, Garthmann J, Ellermann C, Dechering DG, Kochhäuser S, Reinke F, Köbe J, Wasmer K, Eckardt L. Broad antiarrhythmic effect of mexiletine in different arrhythmia models. Europace 2017; 20:1375-1381. [DOI: 10.1093/europace/eux221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Jonas Garthmann
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Christian Ellermann
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Dirk G Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Simon Kochhäuser
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Florian Reinke
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Julia Köbe
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Kristina Wasmer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| |
Collapse
|
14
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
15
|
Wijers SC, Bossu A, Dunnink A, Beekman JDM, Varkevisser R, Aranda Hernández A, Meine M, Vos MA. Electrophysiological measurements that can explain and guide temporary accelerated pacing to avert (re)occurrence of torsade de pointes arrhythmias in the canine chronic atrioventricular block model. Heart Rhythm 2017; 14:749-756. [PMID: 28213055 DOI: 10.1016/j.hrthm.2017.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND Pacing at higher rates is known to suppress torsade de pointes (TdP) arrhythmias. Nevertheless, exact application and mechanism need further clarification. In the anesthetized canine chronic atrioventricular block model, ventricular remodeling is responsible for a high and reproducible incidence of TdP upon a challenge with dofetilide. OBJECTIVE We used this model to investigate by what mechanism accelerated pacing averts TdP and what repolarization parameter could be used to guide temporary accelerated pacing (TAP). METHODS Ten dogs with repetitive TdP after administration of dofetilide when paced at 60 beats/min were selected. In a serial experiment, TAP was initiated at 100 beats/min after the first ectopic beat. Electrocardiogram and right and left ventricular (LV) monophasic action potential durations (MAPDs) were recorded. In a subset, vertical dispersion was determined with a duodecapolar catheter. Temporal dispersion was quantified as short-term variability (STV). Arrhythmias were quantified with the arrhythmia score. RESULTS The increase in repolarization parameters observed after administration of dofetilide was counteracted by TAP (eg, LV MAPD from 381 ± 94 ms back to 310 ± 17 ms; P < .05). Temporal dispersion (STVLVMAPD) increased from 0.69 ± 0.37 to 2.59 ± 0.96 ms (P < .05) after administration of dofetilide and back to 1.15 ± 0.54 ms (P < .05) with TAP. This was accompanied by suppression of recurrent TdP in 7 of 10 dogs (P < .05) and a trend toward reduction in vertical (spatial) dispersion from 56 ± 25 to 31 ± 4 ms (P = .06). In those dogs, seconds after capture of TAP, almost all ectopy disappeared, causing a decrease in arrhythmia score from 21 ± 12 to 4 ± 3 (P < .05). CONCLUSION TAP is effective in averting TdP by decreasing spatial and temporal measures of repolarization. Increase in temporal dispersion (STV) can guide TAP.
Collapse
Affiliation(s)
- Sofieke C Wijers
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandre Bossu
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Dunnink
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jet D M Beekman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rosanne Varkevisser
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Mathias Meine
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Frommeyer G, von der Ahe H, Brücher B, Dechering DG, Lange PS, Reinke F, Wasmer K, Köbe J, Pott C, Mönnig G, Eckardt L. Severe proarrhythmic potential of risperidone compared to quetiapine in an experimental whole-heart model of proarrhythmia. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1073-80. [DOI: 10.1007/s00210-016-1274-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 11/28/2022]
|
17
|
Frommeyer G, Brücher B, von der Ahe H, Kaese S, Dechering DG, Kochhäuser S, Bogossian H, Milberg P, Eckardt L. Low proarrhythmic potential of citalopram and escitalopram in contrast to haloperidol in an experimental whole-heart model. Eur J Pharmacol 2016; 788:192-199. [PMID: 27328775 DOI: 10.1016/j.ejphar.2016.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/10/2016] [Accepted: 06/17/2016] [Indexed: 11/28/2022]
Abstract
In several case reports proarrhythmic effects of citalopram and escitalopram have been reported. Systematic analyses on prorarrhythmic effects of these drugs are not yet available. The aim of the present study was to investigate if application of citalopram, escitalopram or haloperidol provokes polymorphic ventricular tachycardia in a sensitive model of proarrhythmia. In isolated rabbit hearts monophasic action potentials and ECG showed a significant QT-prolongation after application of citalopram (2µM: +47ms, 4µM: +56ms, P<0.05) accompanied by an increase of action potential duration (APD) but not dispersion of repolarization. Reduced potassium concentration in bradycardic AV-blocked hearts provoked early afterdepolarizations (EAD) in 2 of 12 hearts but no polymorphic ventricular tachycardia (pVT). Application of escitalopram also increased QT-interval (2µM: +3ms, 4µM: +30ms, P<0.05) and APD without effects on dispersion. 3 of 10 hearts showed EAD and pVT in 2 of 10 hearts (32 episodes). The results were compared to 12 rabbits treated with haloperidol which led to an increase in QT-interval (1µM:+62ms; 2µM:+96ms; P<0.01), APD and dispersion (1µM:+15ms, 2µM:+40ms; P<0.01) and induced EAD in all 12 and pVT in 10 of 12 hearts (152 episodes). Citalopram and escitalopram demonstrated a rather safe electrophysiologic profile despite significant QT prolongation. In contrast, haloperidol led to significant increase of dispersion of repolarization while this parameter remained stable under the influence of citalopram or escitalopram. These results imply that application of citalopram or escitalopram is not as proarrhythmic as some case reports might suggest while haloperidol is torsadogenic.
Collapse
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany.
| | - Benedict Brücher
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Henning von der Ahe
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Sven Kaese
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Dirk G Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Simon Kochhäuser
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Harilaos Bogossian
- Märkische Kliniken GmbH, Department of Cardiology and Angiology, Klinikum Lüdenscheid, University of Witten-Herdecke, Germany
| | - Peter Milberg
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Frommeyer G, Fischer C, Lange PS, Leitz P, Fehr M, Bogossian H, Milberg P, Eckardt L. Divergent electrophysiologic profile of fluconazole and voriconazole in an experimental whole-heart model of proarrhythmia. Eur J Pharmacol 2016; 776:185-90. [DOI: 10.1016/j.ejphar.2016.02.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 01/08/2023]
|
19
|
Vlachos K, Georgopoulos S, Efremidis M, Sideris A, Letsas KP. An update on risk factors for drug-induced arrhythmias. Expert Rev Clin Pharmacol 2015; 9:117-27. [DOI: 10.1586/17512433.2016.1100073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
van Borren MMGJ, Vos MA, Houtman MJC, Antoons G, Ravesloot JH. Increased sarcolemmal Na(+)/H(+) exchange activity in hypertrophied myocytes from dogs with chronic atrioventricular block. Front Physiol 2013; 4:322. [PMID: 24324438 PMCID: PMC3840718 DOI: 10.3389/fphys.2013.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/16/2013] [Indexed: 11/13/2022] Open
Abstract
Dogs with compensated biventricular hypertrophy due to chronic atrioventricular block (cAVB), are more susceptible to develop drug-induced Torsade-de-Pointes arrhythmias and sudden cardiac death. It has been suggested that the increased Na(+) influx in hypertrophied cAVB ventricular myocytes contribute to these lethal arrhythmias. The increased Na(+) influx was not mediated by Na(+) channels, in fact the Na(+) current proved reduced in cAVB myocytes. Here we tested the hypothesis that increased activity of the Na(+)/H(+) exchanger type 1 (NHE-1), commonly observed in hypertrophic hearts, causes the elevated Na(+) influx. Cardiac acid-base transport was studied with a pH-sensitive fluorescent dye in ventricular myocytes isolated from control and hypertrophied cAVB hearts; the H(+) equivalent flux through NHE-1, Na(+)-HCO(-) 3 cotransport (NBC), Cl(-)/OH(-) exchange (CHE), and Cl(-)/HCO(-) 3 exchange (AE) were determined and normalized per liter cell water and corrected for surface-to-volume ratio. In cAVB, sarcolemmal NHE-1 flux was increased by 65 ± 6.3% in the pH i interval 6.3-7.2 and NBC, AE, and CHE fluxes remained unchanged. Accordingly, at steady-state intracellular pH the total sarcolemmal Na(+) influx by NHE-1 + NBC increased from 8.5 ± 1.5 amol/μm(2)/min in normal myocytes to 15 ± 2.4 amol/μm(2)/min in hypertrophied cAVB myocytes. We conclude that compensated cardiac hypertrophy in cAVB dogs is accompanied with an increased sarcolemmal NHE-1 activity. This in conjunction with unchanged activity of the other acid-base transporters will raise the intracellular Na(+) in hypertrophied cAVB myocytes.
Collapse
|
21
|
Varkevisser R, van der Heyden MAG, Tieland RG, Beekman JDM, Vos MA. Vernakalant is devoid of proarrhythmic effects in the complete AV block dog model. Eur J Pharmacol 2013; 720:49-54. [PMID: 24211677 DOI: 10.1016/j.ejphar.2013.10.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
The anesthetized chronic AV-blocked dog (cAVB) and methoxamine-sensitized rabbit model are widely used to determine pro-arrhythmic properties of drugs. In general, both models show similar results. However, conflicting data have also been reported; K201 and AZD1305 induced Torsade de Pointes (TdP) exclusively in cAVB dogs. Vernakalant, an antiarrhythmic drug that blocks several ion channels has been approved only in Europe. Its propensity to induce repolarization-dependent TdP arrhythmias has been evaluated solely in the methoxamine-sensitized rabbits. We therefore assessed the proarrhythmic potential of vernakalant in the cAVB dog model. Vernakalant was evaluated in 10 mongrel dogs (sinus rhythm (SR) 2mg/kg; chronic AV block (cAVB) 2+3mg/kg). The same dogs were challenged with dofetilide (25 μg/kg) to evaluate TdP inducibility. During the serial experiments the animals were paced from the right ventricular apex (60 beats/min). Short-term variability of repolarization (STV) was quantified for proarrhythmic risk. In SR (n=8) vernakalant prolonged QT (265 ± 11 to 311 ± 18 ms P<0.01(**)) but not PQ or QRS. In cAVB (n=8), 2mg/kg vernakalant prolonged QT (391 ± 43 to 519 ± 73 ms(**)) and QRS (103 ± 24 to 108 ± 23 ms(**)). After a 30 min lag-time, 3mg/kg vernakalant (n=4) increased QT to a lesser extent (413 ± 34 to 454 ± 27 ms(**)) while maintaining QRS prolongation (114 ± 18 to 122 ± 20 ms(**)). Neither dose increased STV or caused arrhythmias. Dofetilide prolonged QT (398 ± 51 to 615 ± 71 ms(**)), increased STV (1.0 ± 0.4 to 2.2 ± 1.0 ms P<0.05(⁎)) and induced TdP arrhythmias in 6/8(⁎) cAVB dogs. Vernakalant did not induce arrhythmias in the cAVB dog model. Higher dosages (3mg/kg) did not prolong repolarization further whereas negative inotropic effects were starting to become apparent precluding further increases in dose.
Collapse
Affiliation(s)
- Rosanne Varkevisser
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Abstract
Drug-induced Torsades de Pointes is a rare, unpredictable, and life-threatening serious adverse event. It can be caused by both cardiac and non-cardiac drugs and has become a major issue in novel drug development and for the regulatory authorities. This review describes the problem, predisposing factors, and the underlying genetic predisposition as it is understood currently. The future potential for pharmacogenomic-guided and personalized prescription to prevent drug-induced Torsades de Pointes is discussed. Database searches utilized reports from www.qtdrugs.org up to January 2012, case reports and articles from www.pubmed.com up to January 2012, and the British National Formulary edition at www.bnf.org.
Collapse
Affiliation(s)
- Elijah R Behr
- Cardiovascular Sciences Research Centre, St George's University of London, London SW17 0RE, UK.
| | | |
Collapse
|
23
|
|
24
|
Stams TRG, Oros A, der Nagel RV, Beekman JDM, Chamberlin P, Dittrich HC, Vos MA. Effects of K201 on repolarization and arrhythmogenesis in anesthetized chronic atrioventricular block dogs susceptible to dofetilide-induced torsade de pointes. Eur J Pharmacol 2011; 672:126-34. [PMID: 22001562 DOI: 10.1016/j.ejphar.2011.09.180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/21/2011] [Accepted: 09/24/2011] [Indexed: 11/16/2022]
Abstract
The novel antiarrhythmic drug K201 (4-[3-{1-(4-benzyl)piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine monohydrochloride) is currently in development for treatment of atrial fibrillation. K201 not only controls intracellular calcium release by the ryanodine receptors, but also possesses a ventricular action that might predispose to torsade de pointes arrhythmias. The anti- and proarrhythmic effects of K201 were investigated in the anesthetized canine chronic atrioventricular block model. Two doses of K201 (0.1 and 0.3mg/kg/2 min followed by 0.01 and 0.03 mg/kg/30 min i.v.) were tested in 4 serial experiments in dogs with normally conducted sinus rhythm (n=10) and in torsade de pointes-susceptible dogs with chronic atrioventricular block. Susceptibility was assessed with dofetilide (0.025 mg/kg/5 min i.v.). Beat-to-beat variability of repolarization was quantified as short-term variability of left ventricular monophasic action potential duration. In dogs with normally conducted sinus rhythm, both doses of K201 prolonged ventricular repolarization whereas only the higher dose prolonged atrial repolarization. At chronic atrioventricular block, dofetilide induced torsade de pointes in 9 of 10 dogs. K201 did neither suppress nor prevent dofetilide-induced torsade de pointes. K201 dose-dependently prolonged ventricular repolarization. In contrary to the lower dose, the higher dose did increase beat-to-beat variability of repolarization (from 1.2 ± 0.3 to 2.9 ± 0.8 ms, P<0.05) and resulted in spontaneous, repetitive torsade de pointes arrhythmias in 1 of 7 dogs; Programmed electrical stimulation resulted in torsade de pointes in 2 more dogs. In conclusion, both doses of K201 showed a class III effect. No relevant antiarrhythmic effects against dofetilide-induced torsade de pointes were seen. Only at the higher dose a proarrhythmic signal was observed.
Collapse
Affiliation(s)
- Thom R G Stams
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Dunnink A, van Opstal JM, Oosterhoff P, Winckels SKG, Beekman JDM, van der Nagel R, Cora Verduyn S, Vos MA. Ventricular remodelling is a prerequisite for the induction of dofetilide-induced torsade de pointes arrhythmias in the anaesthetized, complete atrio-ventricular-block dog. Europace 2011; 14:431-6. [DOI: 10.1093/europace/eur311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
26
|
Supplemental Studies for Cardiovascular Risk Assessment in Safety Pharmacology: A Critical Overview. Cardiovasc Toxicol 2011; 11:285-307. [DOI: 10.1007/s12012-011-9133-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
|
28
|
Haapalahti P, Viitasalo M, Kaartinen M, Väänänen H, Oikarinen L, Heliö T, Toivonen L. Electrocardiographic ventricular repolarization during cardiovascular autonomic function testing in patients with arrhythmogenic right ventricular cardiomyopathy. SCAND CARDIOVASC J 2009; 42:375-82. [DOI: 10.1080/14017430802192337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Haapalahti P, Viitasalo M, Perhonen M, Mäkijärvi M, Väänänen H, Oikarinen L, Salorinne Y, Swan H, Toivonen L. Electrocardiographic interventricular dispersion of repolarization during autonomic adaptation in LQT1 subtype of long QT syndrome. SCAND CARDIOVASC J 2008; 42:130-6. [PMID: 18365896 DOI: 10.1080/14017430701805419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES In LQT1 subtype of inherited long QT syndrome, repolarization abnormalities originating from defective I(Ks) render patients vulnerable to ventricular arrhythmia during sudden sympathetic activation. Experimental studies show lower I(Ks) density and longer action potential duration in left (LV) than in right (RV) ventricle. We studied interventricular dispersion of repolarization in patients with I(Ks) defect during autonomic tests. DESIGN We measured interventricular (difference of QT intervals between LV and RV type leads) and transmural electrocardiographic dispersion of repolarization from 25-lead electrocardiograms in nine asymptomatic KCNQ1 mutation carriers (LQT1) and eight controls during rest, Valsalva maneuver, mental stress, sustained handgrip and supine exercise. RESULTS LQT1 carriers showed increased interventricular dispersion of repolarization (13+/-9 ms vs. 4+/-4 ms, p=0.03) during all tests. Valsalva strain increased the difference between the study groups. In LQT1 carriers, interventricular dispersion of repolarization correlated weakly with electrocardiographic transmural dispersion of repolarization. CONCLUSIONS Asymptomatic KCNQ1 mutation carriers exhibit increased and by abrupt sympathetic activation augmented interventricular difference in electrocardiographic repolarization times. Interventricular and transmural repolarization dispersion behave similarly in patients with I(Ks) defect.
Collapse
Affiliation(s)
- Petri Haapalahti
- Department of Cardiology, Helsinki University Hospital, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The canine model with chronic, complete atrio-ventricular block. Pharmacol Ther 2008; 119:168-78. [DOI: 10.1016/j.pharmthera.2008.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 01/22/2023]
|
31
|
Luo X, Xiao J, Lin H, Li B, Lu Y, Yang B, Wang Z. Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol 2007; 212:358-67. [PMID: 17443681 DOI: 10.1002/jcp.21030] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In cardiac cells, KCNQ1 assembles with KCNE1 and forms a channel complex constituting the slow delayed rectifier current I(Ks). Expression of KCNQ1 and KCNE1 are regionally heterogeneous and changes with pathological states of the heart. The aims of this study were to decipher the molecular mechanisms for transcriptional and post-transcriptional regulation expression of KCNQ1 and KCNE1 genes and to shed light on the molecular mechanisms for their spatial heterogeneity of distribution. We cloned the 5'-flanking region and identified the transcription start sites of the KCNQ1 gene. We characterized the core promoters of KCNQ1 and KCNE1 and revealed the stimulating protein (Sp1) as a common transactivator of KCNQ1 and KCNE1 by interacting with the Sp1 cis-acting elements in the core promoter regions of these genes. We also characterized the 3' untranslated regions (3'UTRs) of the genes and experimentally established KCNQ1 and KCNE1 as targets for repression by the muscle-specific microRNAs miR-133 and miR-1, respectively. We demonstrated spatial heterogeneity of KCNQ1 and KCNE1 distributions at three axes (interventricular, transmural and apical-basal) and disparity between mRNA and protein expressions of these genes. We also found characteristic regional differences of expressions of Sp1 and miR-1/miR-133 in the heart. Our study unraveled a novel aspect of the cellular function of miRNAs and suggests that the I(Ks)-encoding genes KCNQ1 and KCNE1 expressions are dynamically balanced by transcription factor regulation and miRNA repression. The heterogeneities of Sp1 and miR-1/miR-133 offer an explanation for the well-recognized regional differences and disparity between mRNA and protein expressions of KCNQ1 and KCNE1.
Collapse
Affiliation(s)
- Xiaobin Luo
- Research Center, Montreal Heart Institute, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Lengyel C, Varró A, Tábori K, Papp JG, Baczkó I. Combined pharmacological block of I(Kr) and I(Ks) increases short-term QT interval variability and provokes torsades de pointes. Br J Pharmacol 2007; 151:941-51. [PMID: 17533421 PMCID: PMC2042930 DOI: 10.1038/sj.bjp.0707297] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 02/23/2007] [Accepted: 02/25/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Assessing the proarrhythmic potential of compounds during drug development is essential. However, reliable prediction of drug-induced torsades de pointes arrhythmia (TdP) remains elusive. Along with QT interval prolongation, assessment of the short-term variability of the QT interval (STV(QT)) may be a good predictor of TdP. We investigated the relative importance of I(Ks) and I(Kr) block in development of TdP together with correlations between QTc interval, QT interval variability and incidence of TdP. EXPERIMENTAL APPROACH ECGs were recorded from conscious dogs and from anaesthetized rabbits given the I(Kr) blocker dofetilide (DOF), the I(Ks) blocker HMR-1556 (HMR) and their combination, intravenously. PQ, RR and QT intervals were measured and QTc and short-term variability of RR and QT intervals calculated. KEY RESULTS DOF increased QTc interval by 20% in dogs and 8% in rabbits. HMR increased QTc in dogs by 12 and 1.9% in rabbits. Combination of DOF+HMR prolonged QTc by 33% in dogs, by 16% in rabbits. DOF or HMR given alone in dogs or HMR given alone in rabbits induced no TdP. Incidence of TdP increased after DOF+HMR combinations in dogs (63%) and following HMR+DOF (82%) and DOF+HMR combinations (71%) in rabbits. STV(QT) markedly increased only after administration of DOF+HMR combinations in both dogs and rabbits. CONCLUSION AND IMPLICATIONS STV(QT) was markedly increased by combined pharmacological block of I(Kr) and I(Ks) and may be a better predictor of subsequent TdP development than the measurement of QTc interval prolongation.
Collapse
Affiliation(s)
- C Lengyel
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged Szeged, Hungary
- 1st Department of Internal Medicine, Faculty of Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged Szeged, Hungary
| | - A Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged Szeged, Hungary
- Research Unit for Cardiovascular Pharmacology, Hungarian Academy of Sciences Szeged, Hungary
| | - K Tábori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged Szeged, Hungary
| | - J G Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged Szeged, Hungary
- Research Unit for Cardiovascular Pharmacology, Hungarian Academy of Sciences Szeged, Hungary
| | - I Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged Szeged, Hungary
| |
Collapse
|
33
|
Dilaveris P, Giannopoulos G, Riga M, Synetos A, Stefanadis C. Beat by beat variations. Am J Med 2007; 120:21-2. [PMID: 17208074 DOI: 10.1016/j.amjmed.2006.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 11/29/2022]
Affiliation(s)
- Polychronis Dilaveris
- 1st Department of Cardiology, University of Athens Medical School, Hippokration Hospital, Athens, Greece.
| | | | | | | | | |
Collapse
|
34
|
Tran H, White CM, Chow MS, Kluger J. An evaluation of the impact of gender and age on QT dispersion in healthy subjects. Ann Noninvasive Electrocardiol 2006; 6:129-33. [PMID: 11333170 PMCID: PMC7027795 DOI: 10.1111/j.1542-474x.2001.tb00097.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES To determine if gender, age, and gender per age category, have an impact on QT and QTc dispersion in healthy volunteers. METHODS This study was undertaken in 150 patients (50 per age group, 75 males, 75 females). The age groups included young (20-40 years), middle-aged (41-69 years) and elderly (> 70 years) subjects. The QT intervals on a 12 lead ECG were determined and Bazett's formula was used to derive the QTc intervals. The QT and QTc dispersion were determined by subtracting the shortest QTc interval from the longest on each 12-lead recording. RESULTS Males had higher QT dispersion than females (50 +/- 22 vs 42 +/- 18 ms, P = 0.017) but QTc dispersion was not significantly changed. No significant differences were seen among the different age categories for QT or QTc dispersion. In elderly subjects, males had higher QT and QTc dispersion than females (54 +/- 23 vs 42 +/-15 ms, P = 0.039 and 63 +/- 23.7 vs 48 +/- 21 ms, P = 0.032, respectively). CONCLUSIONS When evaluating the effect of gender in different age categories, elderly males have significantly greater QT and QTc dispersion than elderly female subjects. No other gender differences were noted for QT or QTc dispersion in the other two age categories. When evaluating a population of healthy volunteers, regardless of age, gender has an impact on QT dispersion but no significant interaction with QTc dispersion. Evaluating age without dividing the data by gender yields no significant differences in QT or QTc dispersion.
Collapse
Affiliation(s)
- Hieu Tran
- Drug Information, Hong Kong
- Hartford, CT. University of Connecticut Schools of Pharmacy, Hong Kong
| | - C. Michael White
- Drug Information, Hong Kong
- Hartford, CT. University of Connecticut Schools of Pharmacy, Hong Kong
| | | | - Jeffrey Kluger
- Hartford Hospital Divisions of Cardiology, Hong Kong
- Medicine, Storrs and Farmington Connecticut, Hong Kong
| |
Collapse
|
35
|
Abstract
BACKGROUND Prolonged QT dispersion (QTD) is associated with an increased risk of arrhythmic death but its accuracy varies substantially between otherwise similar studies. This study describes a new type of bias that can explain some of these differences. MATERIAL One dataset (DiaSet) consisted of 356 subjects: 169 with diabetes, 187 nondiabetic control persons. Another dataset (ArrSet) consisted of 110 subjects with remote myocardial infarction: 55 with no history of arrhythmia and 55 with a recent history of ventricular tachycardia or fibrillation. METHODS 12-lead surface ECGs were recorded with an amplification of 10 mm/mV at a paper speed of 50 mm/s. The QT interval was measured manually by the tangent-method. The bias depends on the magnitude of the measurement errors and the measurable part of the bias increases with the number of the repeated measurements of QT. RESULTS The measurable bias was significant for both datasets and decreased for increasing QTD in the DiaSet (P < 0.001) and in the ArrSet (P = 0.11). The bias was 2.5 ms and 1.9 ms at QTD = 38 ms and 68 ms, respectively, in the ArrSet, and 7.5 ms and 2.8 ms at QTD = 19 ms and 55 ms, respectively, in the DiaSet. CONCLUSIONS This study shows that random measurement errors of QT introduces a type of bias in QTD that decreases as the dispersion increases, thus reducing the separation between patients with low versus high dispersion. The bias can also explain some of the differences in the mean QTD between studies of healthy populations. Averaging QT over three successive beats reduces the bias efficiently.
Collapse
Affiliation(s)
- K Lund
- Department of Cardiology, Skejby University Hospital, DK-8200 Aarhus N. Denmark.
| | | | | | | | | | | |
Collapse
|
36
|
Giedrimiene D, Giri S, White CM, Giedrirnas E, Kluger J. The immediate and short-term effect of successful percutaneous coronary intervention on repolarization in acute myocardial infarction patients. Ann Noninvasive Electrocardiol 2006; 7:357-62. [PMID: 12431314 PMCID: PMC7027786 DOI: 10.1111/j.1542-474x.2002.tb00185.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The primary objective was to assess the immediate and short-term impact of successful percutaneous coronary intervention (PCI) on QT dispersion (QT disp) and corrected QT dispersion (QTc disp). Secondarily, the impact of PCI on QT and QTc disp within different infarct-related arteries and the impact of successful PCI in these different arteries were evaluated. METHODS Patients (n = 140, age 61.6 +/- 12.9, 69% male) undergoing direct primary PCI for acute MI were evaluated. Twelve-lead ECGs were obtained before (baseline), immediately after (0 h), 24hours after, and 3 days after PCI. The QT and QTc interval in each of the 12-leads were measured and the shortest interval was subtracted from the longest to derive the QT disp and QTc disp, respectively. RESULTS Angiography showed blockages in the left anterior descending, right coronary artery, and circumflex in 37.1, 48.9, and 15.0% of patients, respectively. Overall, 97 patients achieved successful reflow. QT and QTc disp were significantly improved in the group with successful reflow at each follow-up time after PCI versus baseline and corresponding values in the unsuccessful reflow group. QT disp was improved among patients with successful reflow irrespective of which infarct artery was responsible for the acute myocardial infarction. CONCLUSIONS Successful reflow with PCI is associated with a rapid reduction in QT disp and QTc disp that is maintained for at least 3 days after the event. Conversely, unsuccessful reflow was not associated with significant reductions in QT or QTc disp.
Collapse
Affiliation(s)
| | - Satyendra Giri
- Ditisions of Cardiology and Pharmacy, Hartford Hospital, Hartford
| | - C. Michael White
- Ditisions of Cardiology and Pharmacy, Hartford Hospital, Hartford
- University of Connecticut Schools of Pharmacy and Medicine, Storrs and Farmington, Connecticut
| | - Evaldas Giedrirnas
- University of Connecticut Schools of Pharmacy and Medicine, Storrs and Farmington, Connecticut
| | - Jeffrey Kluger
- University of Connecticut Schools of Pharmacy and Medicine, Storrs and Farmington, Connecticut
- University of Connecticut Schools of Pharmacy and Medicine, Storrs and Farmington, Connecticut
| |
Collapse
|
37
|
Picard S, Goineau S, Rouet R. The Action Potential of the Purkinje Fiber: An In Vitro Model for Evaluation of the Proarrhythmic Potential of Cardiac and Noncardiac Drugs. ACTA ACUST UNITED AC 2006; Chapter 11:Unit11.3. [PMID: 22294170 DOI: 10.1002/0471141755.ph1103s33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra Picard
- Porsolt and Partners Pharmacology Boulogne‐Billancourt France
| | - Sonia Goineau
- Porsolt and Partners Pharmacology Boulogne‐Billancourt France
| | | |
Collapse
|
38
|
Kijtawornrat A, Nishijima Y, Roche BM, Keene BW, Hamlin RL. Use of a Failing Rabbit Heart as a Model to Predict Torsadogenicity. Toxicol Sci 2006; 93:205-12. [PMID: 16740615 DOI: 10.1093/toxsci/kfl025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Humans with underlying cardiovascular disease are at greater risk than humans with normal hearts for developing torsade de pointes (TdP) following exposure to some drugs that prolong ventricular repolarization. This study was designed to test the hypothesis that rabbits with ischemic myocardial failure are at similarly increased risk of developing QTc prolongation and TdP following exposure to escalating doses of drugs, which is known to have a capacity to induce TdP in humans. Coronary artery ligation was performed in 28 rabbits, causing significant (p < 0.05) reduction in left ventricular shortening fraction and systolic myocardial dysfunction 4 weeks after ligation in all operated animals compared to 38 normal, nonoperated controls. All studies were performed on rabbits anesthetized with ketamine (35 mg/kg) and xylazine (5 mg/kg). Rabbits were exposed to escalating doses of amiodarone (3, 10, 30 mg/kg/10 min), cisapride (0.10, 0.25, 0.50 mg/kg/10 min), clofilium (0.1, 0.2, 0.4 mg/kg/10 min), dofetilide (0.005, 0.01, 0.02, 0.04 mg/kg/10 min), quinidine (3, 10, 30 mg/kg/10 min), and verapamil (0.25, 0.5, 1.0 mg/kg/10 min). A greater percentage of rabbits with failing hearts developed TdP following intravenous infusion of escalating doses of dofetilide (85%), clofilium (100%), or cisapride (50%) than did normal rabbits exposed to the same drug protocol (20, 33, and 0%, respectively). None of the rabbits in either group developed TdP when exposed to escalating doses of amiodarone, verapamil, or quinidine. Two out of four test articles lengthened QTc more in rabbits with myocardial failure than in normals, and TdP occurred in 13 out of 28 rabbits with myocardial failure as opposed to only four out of 38 rabbits with normal myocardial function.
Collapse
Affiliation(s)
- Anusak Kijtawornrat
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
39
|
Thomsen MB, Matz J, Volders PGA, Vos MA. Assessing the proarrhythmic potential of drugs: current status of models and surrogate parameters of torsades de pointes arrhythmias. Pharmacol Ther 2006; 112:150-70. [PMID: 16714061 DOI: 10.1016/j.pharmthera.2005.04.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/06/2005] [Indexed: 02/08/2023]
Abstract
Torsades de pointes (TdP) is a potentially lethal cardiac arrhythmia that can occur as an unwanted adverse effect of various pharmacological therapies. Before a drug is approved for marketing, its effects on cardiac repolarisation are examined clinically and experimentally. This paper expresses the opinion that effects on repolarisation duration cannot directly be translated to risk of proarrhythmia. Current safety assessments of drugs only involve repolarisation assays, however the proarrhythmic profile can only be determined in the predisposed model. The availability of these proarrhythmic animal models is emphasised in the present paper. It is feasible for the pharmaceutical industry to establish one or more of these proarrhythmic animal models and large benefits are potentially available if pharmaceutical industries and patient-care authorities embraced these models. Furthermore, suggested surrogate parameters possessing predictive power of TdP arrhythmia are reviewed. As these parameters are not developed to finalisation, any meaningful study of the proarrhythmic potential of a new drug will include evaluation in an integrated model of TdP arrhythmia.
Collapse
Affiliation(s)
- Morten B Thomsen
- Department of Medical Physiology, Heart Lung Centre Utrecht, University Medical Centre Utrecht, Yalelaan 50, NL-3584 CM Utrecht, Netherlands.
| | | | | | | |
Collapse
|
40
|
Detre E, Thomsen MB, Beekman JD, Petersen KU, Vos MA. Decreasing the infusion rate reduces the proarrhythmic risk of NS-7: confirming the relevance of short-term variability of repolarisation in predicting drug-induced torsades de pointes. Br J Pharmacol 2006; 145:397-404. [PMID: 15778734 PMCID: PMC1576153 DOI: 10.1038/sj.bjp.0706203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
1 The rate of infusion has been suggested to be important for drug-induced torsades de pointes (TdP) arrhythmias. We investigated the repolarisation-prolonging effects and proarrhythmic properties of NS-7, a neuroprotective drug in development, using two different infusion rates. 2 A fast (5 min intravenously (i.v.)) escalating dosing regimen (0.3 and 3.0 mg kg(-1), n=4) of NS-7 was investigated in anaesthetised control dogs in sinus rhythm (SR). This was compared to a slow infusion (60 min i.v.) of one dose (3.0 mg kg(-1), n=4) NS-7. The similar dosing regimens were investigated in anaesthetised dogs with chronic, complete AV block (CAVB), an animal model of TdP (n=6). 3 No electrophysiological effects were seen after 0.3 mg kg(-1) NS-7. Fast infusion of 3.0 mg kg(-1) caused prolongation of repolarisation, for example, heart rate corrected QT interval (QT(c)): in SR: 6+/-1%; in CAVB: 10+/-7%, which was accompanied by TdP in three of six CAVB dogs. No TdP were seen in SR dogs. 4 Slow infusion did not cause TdP in the same CAVB dogs, although NS-7 caused repolarisation to prolong with a similar magnitude (QT(c): 12+/-7%) as in the fast-infusion experiment. 5 Short-term variability (STV) is a novel parameter for the prediction of drug-induced TdP analysing the beat-to-beat variability of repolarisation. STV was only increased after the fast infusion in CAVB dogs (2.6+/-0.3 versus 6.0+/-1.4 ms, P<0.05), while there was no increase (2.1+/-0.2 versus 2.5+/-1.0 ms) after the slow infusion of NS-7. 6 Peak plasma concentrations attained were lower in slow (0.5+/-0.1 microg ml(-1) after 50 min) than in fast-infusion regimen (2.1+/-0.4 microg ml(-1) after 5 min; P<0.05). 7 The results support the conclusion that limiting peak plasma concentration by decreasing the rate of infusion of NS-7 reduces the proarrhythmic risk despite comparable prolongation in repolarisation parameters. The relevance of STV in predicting drug-induced TdP was confirmed.
Collapse
Affiliation(s)
- Elke Detre
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Academic Hospital Maastricht, Maastricht, The Netherlands
| | - Morten B Thomsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Academic Hospital Maastricht, Maastricht, The Netherlands
- Department of Medical Physiology, Heart Lung Centre Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jet D Beekman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Academic Hospital Maastricht, Maastricht, The Netherlands
- Department of Medical Physiology, Heart Lung Centre Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Marc A Vos
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Academic Hospital Maastricht, Maastricht, The Netherlands
- Department of Medical Physiology, Heart Lung Centre Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
- Author for correspondence:
| |
Collapse
|
41
|
Antzelevitch C, Belardinelli L, Wu L, Fraser H, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, Cordeiro JM, Goodrow RJ, Scornik F, Perez G. Electrophysiologic properties and antiarrhythmic actions of a novel antianginal agent. J Cardiovasc Pharmacol Ther 2005; 9 Suppl 1:S65-83. [PMID: 15378132 DOI: 10.1177/107424840400900106] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ranolazine is a novel antianginal agent capable of producing anti-ischemic effects at plasma concentrations of 2 to 6 microM without a significant reduction of heart rate or blood pressure. This review summarizes the electrophysiologic properties of ranolazine. Ranolazine significantly blocks I(Kr) (IC(50) = 12 microM), late I(Na), late I(Ca), peak I(Ca), I(Na-Ca) (IC(50) = 5.9, 50, 296, and 91 microM, respectively) and I(Ks) (17% at 30 microM), but causes little or no inhibition of I(to) or I(K1). In left ventricular tissue and wedge preparations, ranolazine produces a concentration-dependent prolongation of action potential duration (APD) in epicardium, but abbreviation of APD of M cells, leading to either no change or a reduction in transmural dispersion of repolarization (TDR). The result is a modest prolongation of the QT interval. Prolongation of APD and QT by ranolazine is fundamentally different from that of other drugs that block I(Kr) and induce torsade de pointes in that APD prolongation is rate-independent (ie, does not display reverse rate-dependent prolongation of APD) and is not associated with early after depolarizations, triggered activity, increased spatial dispersion of repolarization, or polymorphic ventricular tachycardia. Torsade de pointes arrhythmias were not observed spontaneously nor could they be induced with programmed electrical stimulation in the presence of ranolazine at concentrations as high as 100 microM. Indeed, ranolazine was found to possess significant antiarrhythmic activity, acting to suppress the arrhythmogenic effects of other QT-prolonging drugs. Ranolazine produces ion channel effects similar to those observed after chronic exposure to amiodarone (reduced late I(Na), I(Kr), I(Ks), and I(Ca)). Ranolazine's actions to reduce TDR and suppress early after depolarization suggest that in addition to its anti-anginal actions, the drug possesses antiarrhythmic activity.
Collapse
|
42
|
Thomsen MB, Truin M, van Opstal JM, Beekman JDM, Volders PGA, Stengl M, Vos MA. Sudden cardiac death in dogs with remodeled hearts is associated with larger beat-to-beat variability of repolarization. Basic Res Cardiol 2005; 100:279-87. [PMID: 15754087 DOI: 10.1007/s00395-005-0519-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/28/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
Increased proarrhythmia in dogs with chronic AV block (AVB) has been explained by ventricular remodeling causing a decrease in repolarization reserve. Beat-to-beat variability of repolarization (BVR) has been suggested to reflect repolarization reserve, in which high variability represents diminished reserve and larger propensity for repolarization-dependent ventricular arrhythmia. A subset of chronic AVB dogs (10%) suffers sudden cardiac death (SCD). With the assumption that repolarization defects constitute a potentially lethal proarrhythmic substrate, we hypothesized that BVR in SCD dogs are larger than in matched control chronic AVB dogs. From a population of 200 chronic AVB dogs, initially two groups were chosen retrospectively: 8 dogs that died suddenly (SCD) and 8 control dogs. Control dogs had a longer lifespan after AVB (10 to 18 weeks) than SCD dogs (5 to 10 weeks). All dogs had undergone electrophysiological testing under anesthesia where ECG, left and right ventricular endocardial monophasic action potentials (MAP) were recorded. BVR was assessed from 30 consecutive beats, illustrated by Poincare plots and was the only parameter discriminating between SCD and control group. All other electrophysiological parameters (RR, QT and MAP durations) were comparable for the two groups. Extending the number of animals and groups confirmed a larger BVR in the SCD group (SCD: 5.1 +/- 2.7; n = 11 versus control: 2.5 +/- 0.4 ms; n = 61; P < 0.05) and showed reverse-use dependence of BVR. In comparison, dogs with acute AVB had low variability (1.3 +/- 0.3 ms; n = 9; P < 0.05 versus chronic AVB). Cardiac electrical remodeling after AVB is associated with an increase in beat-to-beat variability of repolarization. Chronic AVB dogs displaying further elevated variability of repolarization are prone to arrhythmia-related SCD.
Collapse
Affiliation(s)
- Morten B Thomsen
- Department of Medical Physiology, Heart Lung Centre Utrecht, Yalelaan 50, NL-3584 CM Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Schreiner KD, Kelemen K, Zehelein J, Becker R, Senges JC, Bauer A, Voss F, Kraft P, Katus HA, Schoels W. Biventricular hypertrophy in dogs with chronic AV block: effects of cyclosporin A on morphology and electrophysiology. Am J Physiol Heart Circ Physiol 2004; 287:H2891-8. [PMID: 15178548 DOI: 10.1152/ajpheart.01051.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic atrioventricular (AV) block (CAVB) and biventricular hypertrophy in dogs increase susceptibility to drug-induced polymorphic ventricular tachycardia (PVT). In various rodent models, cyclosporin A (CsA) prevented hypertrophy. A similar effect in the CAVB model would allow us to determine whether hypertrophy represents an epiphenomenon, the cause of electrophysiological changes, and/or the anatomic substrate for PVTs. Upon AV node ablation, 6 dogs were studied acutely (AAVB), 25 dogs were kept for 6 (6W) and 12 wk (12W), receiving no treatment [CTL-CAVB-6W ( n = 6) and CTL-CAVB-12W ( n = 7)] or a daily oral dose of 10–20 mg/kg CsA directly ( n = 6, CsA-CAVB-6W) or 6 wk after radio-frequency ablation ( n = 6, CsA-CAVB-12W). For the final study, dogs were anesthetized, and 60 needles were inserted into both ventricles and connected to a multiplexer mapping system. Local effective refractory periods (ERPs) were determined at 56 ± 22 randomly selected sites (extrastimulus technique, basic cycle length = 800 ms). Arrhythmias within 30 min after application of almokalant (0.34 μmol/kg iv) were registered. The hearts were then excised to obtain the heart weight-body weight index (HBWI). Compared with AAVB, CTL-CAVB-6W and CTL-CAVB-12W showed increased HBWI and ERP associated with PVT inducibility in none of six AAVB dogs, four of six CTL-CAVB-6W dogs, and one of seven CTL-CAVB-12W dogs. Compared with CTL-CAVB-6W and CTL-CAVB-12W, CsA-CAVB-6W and CsA-CAVB-12W partially prevented hypertrophy or led to a regression of hypertrophy without reducing ERP prolongation. Despite ERP prolongation, PVTs were no longer inducible with CsA treatment. Thus prolongation of refractoriness seems to provide the trigger, but hypertrophy provides the essential substrate for the induction of PVTs in this model.
Collapse
Affiliation(s)
- Kirsten D Schreiner
- Dept. of Cardiology, Univ. of Heidelberg, Bergheimerstr. 58, 69115 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thomsen MB, Verduyn SC, Stengl M, Beekman JDM, de Pater G, van Opstal J, Volders PGA, Vos MA. Increased Short-Term Variability of Repolarization Predicts
d
-Sotalol–Induced Torsades de Pointes in Dogs. Circulation 2004; 110:2453-9. [PMID: 15477402 DOI: 10.1161/01.cir.0000145162.64183.c8] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background—
Identification of patients at risk for drug-induced torsades de pointes arrhythmia (TdP) is difficult. Increased temporal lability of repolarization has been suggested as being valuable to predict proarrhythmia. The predictive value of different repolarization parameters, including beat-to-beat variability of repolarization (BVR), was compared in this serial investigation in dogs with chronic AV block.
Methods and Results—
In anesthetized dogs with electrically remodeled hearts, the dose-dependent difference in drug-induced TdP (
d
-sotalol, 2 and 4 mg/kg IV over 5 minutes, 25% and 75% TdP, respectively) could not be accounted for by prolongation of QT
c
(410±37 to 475±60 versus 415±47 to 484±52 ms, respectively). BVR was quantified by Poincaré plots at baseline and immediately before onset of
d
-sotalol–induced extrasystolic activity. TdP occurrence was associated with an increase in short-term variability (STV) of the left ventricular monophasic action potential duration (3.5±1.5 to 5.5±1.6 versus 3.0±0.7 to 8.6±3.8 ms, respectively), which was reversible when TdP was abolished by
I
K,ATP
activation. The absence of TdP despite QT
c
prolongation after chronic amiodarone treatment could also be explained by an unchanged STV. In experiments with isolated ventricular myocytes, STV increased after
I
Kr
block and was highest in cells that subsequently showed early afterdepolarizations.
Conclusions—
Proarrhythmia is not related to differences in prolongation of repolarization but corresponds to BVR, here quantified as STV of the left ventricle. STV could be a new parameter to predict drug-induced TdP in patients.
Collapse
Affiliation(s)
- Morten B Thomsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fenichel RR, Malik M, Antzelevitch C, Sanguinetti M, Roden DM, Priori SG, Ruskin JN, Lipicky RJ, Cantilena L. Drug-induced torsades de pointes and implications for drug development. J Cardiovasc Electrophysiol 2004; 15:475-95. [PMID: 15090000 PMCID: PMC1544371 DOI: 10.1046/j.1540-8167.2004.03534.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Torsades de pointes is a potentially lethal arrhythmia that occasionally appears as an adverse effect of pharmacotherapy. Recently developed understanding of the underlying electrophysiology allows better estimation of the drug-induced risks and explains the failures of older approaches through the surface ECG. This article expresses a consensus reached by an independent academic task force on the physiologic understanding of drug-induced repolarization changes, their preclinical and clinical evaluation, and the risk-to-benefit interpretation of drug-induced torsades de pointes. The consensus of the task force includes suggestions on how to evaluate the risk of torsades within drug development programs. Individual sections of the text discuss the techniques and limitations of methods directed at drug-related ion channel phenomena, investigations aimed at action potentials changes, preclinical studies of phenomena seen only in the whole (or nearly whole) heart, and interpretation of human ECGs obtained in clinical studies. The final section of the text discusses drug-induced torsades within the larger evaluation of drug-related risks and benefits.
Collapse
|
46
|
Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci 2004; 24:619-25. [PMID: 14654302 DOI: 10.1016/j.tips.2003.10.002] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Torsades de pointes (TdP) is a malignant polymorphic ventricular tachyarrhythmia that can be caused by drugs that induce electrophysiological changes. Although the number of drugs known to cause TdP has increased in recent years, there is no cell-based assay, in vitro heart preparation or animal model that predicts the potential of a drug to induce TdP in humans. Nevertheless, certain electrophysiological events are known to be associated with the development of TdP. For example, a drug that prolongs action potential duration, induces early afterdepolarizations and ectopic beats, and increases dispersion of ventricular repolarization is likely to cause TdP. By contrast, a drug that does not induce these changes is unlikely to cause TdP. The exact relationship between these electrophysiological events and the development of TdP has not been defined, but the potential of a drug to elicit these events might predict its pro-arrhythmic risk.
Collapse
|
47
|
Thomsen MB, Volders PGA, Stengl M, Spätjens RLHMG, Beekman JDM, Bischoff U, Kall MA, Frederiksen K, Matz J, Vos MA. Electrophysiological safety of sertindole in dogs with normal and remodeled hearts. J Pharmacol Exp Ther 2003; 307:776-84. [PMID: 12966159 DOI: 10.1124/jpet.103.052753] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition of the potassium current IKr and QT prolongation are associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. We investigated the cardiac electrophysiological effects of sertindole, an antipsychotic drug reported to prolong the QT interval in schizophrenic patients. In cell cultures, sertindole seemed to be a selective blocker of IHERG over other ion currents. For IHERG, the IC50 value was 64 +/- 7 nM, whereas ISCN5A, ICa,L, ICa,T, IKCNQ1/KCNE1, and IKv4.3 were blocked in the micromolar range. In canine ventricular myocytes, the IC50 value for IKr inhibition by sertindole was 107 +/- 21 nM. Action potentials in these cells prolonged in a reverse rate- and concentration-dependent manner at 10 to 300 nM sertindole. In vivo, sertindole was administered to anesthetized dogs at clinically relevant (0.05-0.20 mg/kg) and high doses (1.0-2.0 mg/kg) i.v. At 0.05 to 0.20 mg/kg sertindole (plasma concentrations 30-157 nM), QTc was prolonged by 1 to 5% in normal dogs and by 9 to 20% in dogs with remodeled hearts due to chronic atrioventricular block (CAVB). TdP was not induced at these doses in normal dogs or in CAVB dogs with reproducible induction of TdP by dofetilide in previous experiments. At 1.0 to 2.0 mg/kg sertindole (plasma concentrations 0.5-3.1 microM), QTc prolonged by 6 to 11% in normal dogs and by 22% in dofetilide-sensitive CAVB dogs. TdP occurred in three of five animals in the latter group. Thus, at high i.v. doses sertindole can pose a serious proarrhythmic risk when electrical remodeling of the ventricles is present. At clinically relevant doses, however, sertindole does not cause TdP in anesthetized dogs with normal or remodeled hearts.
Collapse
Affiliation(s)
- Morten B Thomsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Academic Hospital Maastricht, P.O. Box 5800, NL 6202 AZ, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sims JJ, Miller AW, Ujhelyi MR. Electrical heterogeneity and arrhythmogenesis: importance of conduction velocity dispersion. J Cardiovasc Pharmacol 2003; 41:795-803. [PMID: 12717112 DOI: 10.1097/00005344-200305000-00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An experimental model of conduction velocity (CV) and refractory period dispersion was established to determine which variable is a determinant of myocardial vulnerability. Anesthetized swine were instrumented with a left anterior descending coronary artery catheter for regional infusion of lidocaine (n = 6), low-dose d-sotalol (n = 4), high-dose d-sotalol (n = 6), or saline (n = 6), to create dispersion in CV (lidocaine), refractoriness (d-sotalol), or neither (saline). Ventricular fibrillation thresholds (VFTs) and refractory periods were determined at five sites (one drug perfused, four non-drug perfused). CV was determined in one drug-perfused area (left ventricular epicardial apex) and one non-drug perfused area (right ventricular epicardial base). Lidocaine and low- and high-dose d-sotalol increased VFT when stimuli were delivered in the drug-perfused area. However, lidocaine decreased VFT when stimuli were delivered at non-drug perfused areas by an average of 52%. Neither d-sotalol dose affected VFT when stimuli were delivered in non-drug perfused areas. Lidocaine increased CV dispersion by 18-26 cm/s but did not alter refractoriness. Both d-sotalol doses increased dispersion in refractoriness by 15-27 ms but did not alter CV. Saline did not affect either variable. Regional lidocaine had profibrillatory effects when stimuli were delivered in non-drug perfused areas, whereas regional d-sotalol did not. Hence, CV dispersion is a more likely determinant of myocardial vulnerability than refractoriness.
Collapse
Affiliation(s)
- J Jason Sims
- University of Georgia College of Pharmacy, Medical College of Georgia, Augusta, USA.
| | | | | |
Collapse
|
49
|
Giedrimiene D, Giri S, Giedrimas A, Kiernan F, Kluger J. Effects of ischemia on repolarization in patients with single and multivessel coronary disease. Pacing Clin Electrophysiol 2003; 26:390-3. [PMID: 12687852 DOI: 10.1046/j.1460-9592.2003.00056.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To evaluate if QT dispersion (QTd) may be affected by the number of obstructed coronary arteries (CAs) in patients with acute myocardial infarction (MI) and undergoing angioplasty, and to evaluate if QTd may be affected by ejection function of the heart. The infarct related CA was identified by coronary angiography in 141 patients (97 men, mean age 61.6 +/- 12.9 years) with acute MI undergoing percutaneous angioplasty. Successful reperfusion was defined as TIMI III flow with < 20% residual stenosis. QTd, calculated by subtracting the shortest from the longest QT interval on 12-lead electrocardiograms, was examined immediately before and after angioplasty, at 24 hours, and 3 days after angioplasty. Successful reperfusion was achieved in 98 (69.5%) patients. Prolonged QTd at baseline was found in all patients with ischemia. A trend toward a decrease in QTd was observed immediately after angioplasty and at 24 hours, and a significant decrease at 3 days in patients with successful reperfusion regardless of the number of occluded CAs. There was no change in QTd found in patients with no reperfusion. An increase in QTd was observed in patients with acute ischemia due to single or multivessel disease.
Collapse
Affiliation(s)
- Dalia Giedrimiene
- Hartford Hospital Division of Cardiology, Hartford, Saint Joseph College, Department of Biology, West Hartford, Connecticut, USA
| | | | | | | | | |
Collapse
|
50
|
Vos MA. Do we understand the electrophysiologic mechanisms responsible for drug-induced cardiac arrhythmias? J Cardiovasc Pharmacol 2002; 40:647-50. [PMID: 12409972 DOI: 10.1097/00005344-200211000-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|