1
|
Nealy Z, Wang S, Patel AR. The complex role of cardiovascular imaging in viability testing. Prog Cardiovasc Dis 2025:S0033-0620(24)00177-4. [PMID: 39788340 DOI: 10.1016/j.pcad.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Myocardial viability assessment is used to determine if chronically dysfunctional myocardium may benefit from coronary revascularization. Cardiac magnetic resonance with late gadolinium enhancement is the current gold standard for visualizing myocardial scar and provides valuable insight into myocardial viability. Viability assessments can also be made with Cardiac Positron Emission Tomography, Echocardiography, Single Photon Emission Tomography, and Cardiac Computed Tomography with each having advantages and disadvantages. Despite the classical interpretation that viability predicts segmental functional improvement, more recent studies have found that revascularization of viable myocardium has conflicting roles in predicting benefits for patients, especially as it relates to major adverse cardiovascular events, development of heart failure symptoms, and all-cause mortality. This review covers these conflicts along with an in-depth review of the pathophysiologic processes that are fundamental to myocardial viability and the various methods used for determining viability.
Collapse
Affiliation(s)
- Zachariah Nealy
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shuo Wang
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Amit R Patel
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
2
|
Canton L, Suma N, Amicone S, Impellizzeri A, Bodega F, Marinelli V, Ciarlantini M, Casuso M, Bavuso L, Belà R, Salerno J, Armillotta M, Angeli F, Sansonetti A, Attinà D, Russo V, Lovato L, Tuttolomondo D, Gaibazzi N, Bergamaschi L, Pizzi C. Clinical impact of multimodality assessment of myocardial viability. Echocardiography 2024; 41:e15854. [PMID: 38940225 DOI: 10.1111/echo.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Coronary artery disease (CAD) is a prevalent cause of left ventricular dysfunction. Nevertheless, effective elective revascularization, particularly surgical revascularization, can enhance long-term outcomes and, in selected cases, global left ventricular contractility. The assessment of myocardial viability and scars is still relevant in guiding treatment decisions and selecting patients who are likely to benefit most from blood flow restoration. Although the most recent randomized studies challenge the notion of "hibernating myocardium" and the clinical usefulness of assessing myocardial viability, the advancement of imaging techniques still renders this assessment valuable in specific situations. According to the guidelines of the European Society of Cardiology, non-invasive stress imaging may be employed to define myocardial ischemia and viability in patients with CAD and heart failure before revascularization. Currently, several non-invasive imaging techniques are available to evaluate the presence and extent of viable myocardium. The selection of the most suitable technique should be based on the patient, clinical context, and resource availability. This narrative review evaluates the characteristics of available imaging modalities for assessing myocardial viability to determine the most appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Lisa Canton
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nicole Suma
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Sara Amicone
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Impellizzeri
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Bodega
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Virginia Marinelli
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Mariachiara Ciarlantini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marcello Casuso
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Leonardo Bavuso
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Rebecca Belà
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Jessica Salerno
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Matteo Armillotta
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Angeli
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Angelo Sansonetti
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Domenico Attinà
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Vincenzo Russo
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Lovato
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Nicola Gaibazzi
- Department of Cardiology, Parma University Hospital, Parma, Italy
| | - Luca Bergamaschi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Arjomandi Rad A, Tserioti E, Magouliotis DE, Vardanyan R, Samiotis IV, Skoularigis J, Ariff B, Xanthopoulos A, Triposkiadis F, Casula R, Athanasiou T. Assessment of Myocardial Viability in Ischemic Cardiomyopathy With Reduced Left Ventricular Function Undergoing Coronary Artery Bypass Grafting. Clin Cardiol 2024; 47:e24307. [PMID: 38953367 PMCID: PMC11217808 DOI: 10.1002/clc.24307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND We aim to provide a comprehensive review of the current state of knowledge of myocardial viability assessment in patients undergoing coronary artery bypass grafting (CABG), with a focus on the clinical markers of viability for each imaging modality. We also compare mortality between patients with viable myocardium and those without viability who undergo CABG. METHODS A systematic database search with meta-analysis was conducted of comparative original articles (both observations and randomized controlled studies) of patients undergoing CABG with either viable or nonviable myocardium, in EMBASE, MEDLINE, Cochrane database, and Google Scholar, from inception to 2022. Imaging modalities included were dobutamine stress echocardiography (DSE), cardiac magnetic resonance (CMR), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). RESULTS A total of 17 studies incorporating a total of 2317 patients were included. Across all imaging modalities, the relative risk of death post-CABG was reduced in patients with versus without viability (random-effects model: odds ratio: 0.42; 95% confidence interval: 0.29-0.61; p < 0.001). Imaging for myocardial viability has significant clinical implications as it can affect the accuracy of the diagnosis, guide treatment decisions, and predict patient outcomes. Generally, based on local availability and expertise, either SPECT or DSE should be considered as the first step in evaluating viability, while PET or CMR would provide further evaluation of transmurality, perfusion metabolism, and extent of scar tissue. CONCLUSION The assessment of myocardial viability is an essential component of preoperative evaluation in patients with ischemic heart disease undergoing surgical revascularization. Careful patient selection and individualized assessment of viability remain paramount.
Collapse
Affiliation(s)
- Arian Arjomandi Rad
- Division of Medical SciencesUniversity of OxfordOxfordUK
- Department of Surgery and CancerImperial College LondonLondonUK
| | - Eleni Tserioti
- Department of Surgery and CancerImperial College LondonLondonUK
| | | | | | - Ilias V. Samiotis
- Department of Cardiothoracic SurgeryUniversity Hospital of LarissaLarissaGreece
| | - John Skoularigis
- Department of CardiologyUniversity Hospital of LarissaLarissaGreece
| | - Ben Ariff
- Department of Radiology, Hammersmith HospitalImperial College Healthcare NHS TrustLondonUK
| | | | | | - Roberto Casula
- Department of Surgery and CancerImperial College LondonLondonUK
- Department of Cardiothoracic Surgery, Hammersmith HospitalImperial College Healthcare NHS TrustLondonUK
| | - Thanos Athanasiou
- Department of Surgery and CancerImperial College LondonLondonUK
- Department of Cardiothoracic SurgeryUniversity Hospital of LarissaLarissaGreece
- Department of Cardiothoracic Surgery, Hammersmith HospitalImperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
4
|
Silva TQAC, Pezel T, Jerosch-Herold M, Coelho-Filho OR. The Role and Advantages of Cardiac Magnetic Resonance in the Diagnosis of Myocardial Ischemia. J Thorac Imaging 2023; 38:235-246. [PMID: 36917509 DOI: 10.1097/rti.0000000000000701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Ischemic heart disease continues to be the leading cause of death and disability worldwide. For the diagnosis of ischemic heart disease, some form of cardiac stress test involving exercise or pharmacological stimulation continues to play an important role, despite advances within modalities like computer tomography for the noninvasive detection and characterization of epicardial coronary lesions. Among noninvasive stress imaging tests, cardiac magnetic resonance (CMR) combines several capabilities that are highly relevant for the diagnosis of ischemic heart disease: assessment of wall motion abnormalities, myocardial perfusion imaging, and depiction of replacement and interstitial fibrosis markers by late gadolinium enhancement techniques and T1 mapping. On top of these qualities, CMR is also well tolerated and safe in most clinical scenarios, including in the presence of cardiovascular implantable devices, while in the presence of renal disease, gadolinium-based contrast should only be used according to guidelines. CMR also offers outstanding viability assessment and prognostication of cardiovascular events. The last 2019 European Society of Cardiology guidelines for chronic coronary syndromes has positioned stress CMR as a class I noninvasive imaging technique for the diagnosis of coronary artery disease in symptomatic patients. In the present review, we present the current state-of-the-art assessment of myocardial ischemia by stress perfusion CMR, highlighting its advantages and current shortcomings. We discuss the safety, clinical, and cost-effectiveness aspects of gadolinium-based CMR-perfusion imaging for ischemic heart disease assessment.
Collapse
Affiliation(s)
- Thiago Quinaglia A C Silva
- Discipline of Cardiology, Faculty of Medical Science-State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Théo Pezel
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Cardiology, University of Paris, CHU Lariboisière, Inserm, UMRS 942, Paris, France
| | - Michael Jerosch-Herold
- Noninvasive Cardiovascular Imaging Program and Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Otávio R Coelho-Filho
- Discipline of Cardiology, Faculty of Medical Science-State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Raj V, Gowda S, Kothari R. Myocardial tissue characterization by cardiac magnetic resonance: A primer for the clinician. JOURNAL OF THE INDIAN ACADEMY OF ECHOCARDIOGRAPHY & CARDIOVASCULAR IMAGING 2023. [DOI: 10.4103/jiae.jiae_44_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
6
|
Babes EE, Tit DM, Bungau AF, Bustea C, Rus M, Bungau SG, Babes VV. Myocardial Viability Testing in the Management of Ischemic Heart Failure. Life (Basel) 2022; 12:1760. [PMID: 36362914 PMCID: PMC9698475 DOI: 10.3390/life12111760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Although major advances have occurred lately in medical therapy, ischemic heart failure remains an important cause of death and disability. Viable myocardium represents a cause of reversible ischemic left ventricular dysfunction. Coronary revascularization may improve left ventricular function and prognosis in patients with viable myocardium. Although patients with impaired left ventricular function and multi-vessel coronary artery disease benefit the most from revascularization, they are at high risk of complications related to revascularization procedure. An important element in selecting the patients for myocardial revascularization is the presence of the viable myocardium. Multiple imaging modalities can assess myocardial viability and predict functional improvement after revascularization, with dobutamine stress echocardiography, nuclear imaging tests and magnetic resonance imaging being the most frequently used. However, the role of myocardial viability testing in the management of patients with ischemic heart failure is still controversial due to the failure of randomized controlled trials of revascularization to reveal clear benefits of viability testing. This review summarizes the current knowledge regarding the concept of viable myocardium, depicts the role and tools for viability testing, discusses the research involving this topic and the controversies related to the utility of myocardial viability testing and provides a patient-centered approach for clinical practice.
Collapse
Affiliation(s)
- Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Victor Vlad Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
7
|
Edvardsen T, Asch FM, Davidson B, Delgado V, DeMaria A, Dilsizian V, Gaemperli O, Garcia MJ, Kamp O, Lee DC, Neglia D, Neskovic AN, Pellikka PA, Plein S, Sechtem U, Shea E, Sicari R, Villines TC, Lindner JR, Popescu BA. Non-Invasive Imaging in Coronary Syndromes: Recommendations of The European Association of Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with The American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr 2022; 16:362-383. [PMID: 35729014 DOI: 10.1016/j.jcct.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.
| | - Federico M Asch
- MedStar Health Research Institute, Georgetown University, Washington, District of Columbia
| | - Brian Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Mario J Garcia
- Division of Cardiology, Montefiore-Einstein Center for Heart and Vascular Care, Bronx, New York
| | - Otto Kamp
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Daniel C Lee
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Danilo Neglia
- Department of Cardiology, Istituto di Scienze della Vita Scuola Superiore Sant Anna Pisa, Pisa, Italy
| | - Aleksandar N Neskovic
- Faculty of Medicine, Department of Cardiology, Clinical Hospital Center Zemun, University of Belgrade, Belgrade, Serbia
| | - Patricia A Pellikka
- Division of Cardiovascular Ultrasound, Department of Cardiovascular Medicine, Rochester, Minnesota
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Udo Sechtem
- Cardiologicum Stuttgart and Department of Cardiology, Robert Bosch Krankenhaus, Stuttgart, Germany
| | - Elaine Shea
- Alta Bates Summit Medical Center, Berkeley and Oakland, Berkeley, California
| | - Rosa Sicari
- CNR, Institute of Clinical Physiology, Pisa, Italy
| | - Todd C Villines
- Division of Cardiovascular Medicine, University of Virginia Health System, University of Virginia Health Center, Charlottesville, Virginia
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy Carol Davila Euroecolab, Emergency Institute for Cardiovascular Diseases Prof. Dr. C. C. Iliescu, Bucharest, Romania
| |
Collapse
|
8
|
Edvardsen T, Asch FM, Davidson B, Delgado V, DeMaria A, Dilsizian V, Gaemperli O, Garcia MJ, Kamp O, Lee DC, Neglia D, Neskovic AN, Pellikka PA, Plein S, Sechtem U, Shea E, Sicari R, Villines TC, Lindner JR, Popescu BA. Non-Invasive Imaging in Coronary Syndromes: Recommendations of The European Association of Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with The American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 2022; 35:329-354. [PMID: 35379446 DOI: 10.1016/j.echo.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.
| | - Federico M Asch
- MedStar Health Research Institute, Georgetown University, Washington, District of Columbia
| | - Brian Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Mario J Garcia
- Division of Cardiology, Montefiore-Einstein Center for Heart and Vascular Care, Bronx, New York
| | - Otto Kamp
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Daniel C Lee
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Danilo Neglia
- Department of Cardiology, Istituto di Scienze della Vita Scuola Superiore Sant'Anna - Pisa, Pisa, Italy
| | - Aleksandar N Neskovic
- Faculty of Medicine, Department of Cardiology, Clinical Hospital Center Zemun, University of Belgrade, Belgrade, Serbia
| | - Patricia A Pellikka
- Division of Cardiovascular Ultrasound, Department of Cardiovascular Medicine, Rochester, Minnesota
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Udo Sechtem
- Cardiologicum Stuttgart and Department of Cardiology, Robert Bosch Krankenhaus, Stuttgart, Germany
| | - Elaine Shea
- Alta Bates Summit Medical Center, Berkeley and Oakland, Berkeley, California
| | - Rosa Sicari
- CNR, Institute of Clinical Physiology, Pisa, Italy
| | - Todd C Villines
- Division of Cardiovascular Medicine, University of Virginia Health System, University of Virginia Health Center, Charlottesville, Virginia
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| |
Collapse
|
9
|
Edvardsen T, Asch FM, Davidson B, Delgado V, DeMaria A, Dilsizian V, Gaemperli O, Garcia MJ, Kamp O, Lee DC, Neglia D, Neskovic AN, Pellikka PA, Plein S, Sechtem U, Shea E, Sicari R, Villines TC, Lindner JR, Popescu BA. Non-invasive Imaging in Coronary Syndromes - Recommendations of the European Association of Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. Eur Heart J Cardiovasc Imaging 2021; 23:e6-e33. [PMID: 34751391 DOI: 10.1093/ehjci/jeab244] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Coronary artery disease (CAD) is one of the major causes of mortality and morbidity worldwide, with a high socioeconomic impact.(1) Non-invasive imaging modalities play a fundamental role in the evaluation and management of patients with known or suspected CAD. Imaging end-points have served as surrogate markers in many observational studies and randomized clinical trials that evaluated the benefits of specific therapies for CAD.(2) A number of guidelines and recommendations have been published about coronary syndromes by cardiology societies and associations, but have not focused on the excellent opportunities with cardiac imaging. The recent European Society of Cardiology (ESC) 2019 guideline on chronic coronary syndromes (CCS) and 2020 guideline on acute coronary syndromes in patients presenting with non-ST-segment elevation (NSTE-ACS) highlight the importance of non-invasive imaging in the diagnosis, treatment, and risk assessment of the disease.(3)(4) The purpose of the current recommendations is to present the significant role of non-invasive imaging in coronary syndromes in more detail. These recommendations have been developed by the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE), in collaboration with the American Society of Nuclear Cardiology, the Society of Cardiovascular Computed Tomography, and the Society for Cardiovascular Magnetic Resonance, all of which have approved the final document.
Collapse
Affiliation(s)
- Thor Edvardsen
- Dept of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo Norway, and University of Oslo, Norway
| | - Federico M Asch
- MedStar Health Research Institute, Georgetown University, Washington, DC, . USA
| | - Brian Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University; VA Portland Health Care System, Portland, OR, USA
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, 2300RC, Leiden, The Netherlands
| | | | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, USA
| | | | - Mario J Garcia
- Division of Cardiology, Montefiore-Einstein Center for Heart and Vascular Care, 111 East 210th Street, Bronx, New York, 10467, USA
| | - Otto Kamp
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, The Netherlands
| | - Daniel C Lee
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Danilo Neglia
- Department of Cardiology, Fondazione Toscana G. Monastrerio, Pisa, Italy
| | - Aleksandar N Neskovic
- Dept of Cardiology, Clinical Hospital Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patricia A Pellikka
- Division of Cardiovascular Ultrasound, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Udo Sechtem
- Cardiologicum Stuttgart and Department of Cardiology, Robert Bosch Krankenhaus, Stuttgart, Germany
| | - Elaine Shea
- Alta Bates Summit Medical Center, Berkeley and Oakland, California, ., USA
| | - Rosa Sicari
- CNR, Institute of Clinical Physiology, Pisa and Milan, Italy
| | - Todd C Villines
- Division of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute and Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila" - Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| |
Collapse
|
10
|
Di Bella G, Aquaro GD, Bogaert J, Piaggi P, Micari A, Pizzino F, Camastra G, Carerj S, Campisi M, Bracco A, Carerj ML, Emdin M, Khandheria BK, Pingitore A. Non-transmural myocardial infarction associated with regional contractile function is an independent predictor of positive outcome: an integrated approach to myocardial viability. J Cardiovasc Magn Reson 2021; 23:121. [PMID: 34719402 PMCID: PMC8559354 DOI: 10.1186/s12968-021-00818-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance permits assessment of irreversible myocardial fibrosis and contractile function in patients with previous myocardial infarction. We aimed to assess the prognostic value of myocardial fibrotic tissue with preserved/restored contractile activity. METHODS In 730 consecutive myocardial infarction patients (64 ± 11 years), we quantified left ventricular (LV) end-diastolic (EDV) and end-systolic (ESV) volumes, ejection fraction (EF), regional wall motion (WM) (1 normal, 2 hypokinetic, 3 akinetic, 4 dyskinetic), and WM score index (WMSI), and measured the transmural (1-50 and 51-100) and global extent of the infarct scar by late gadolinium enhancement (LGE). Contractile fibrotic (CT-F) segments were identified as those showing WM-1 and WM-2 with LGE ≤ or ≥ 50%. RESULTS During follow-up (median 2.5, range 1-4.7 years), cardiac events (cardiac death or appropriate implantable defibrillator shocks) occurred in 123 patients (17%). At univariate analysis, age, LVEDV, LVESV, LVEF, WMSI, extent of LGE, segments with transmural extent > 50%, and CT-F segments were associated with cardiac events. At multivariate analysis, age > 65 years, LVEF < 30%, WMSI > 1.7, and dilated LVEDV independently predicted cardiac events, while CT-F tissue was the only independent predictor of better outcome. After adjustment for LVEF < 30% and LVEDV dilatation, the presence of CT-F tissue was associated with good prognosis. CONCLUSIONS In addition to CMR imaging parameters associated with adverse outcome (severe LV dysfunction, poor WM, and dilated EDV), the presence of fibrotic myocardium showing contractile activity in patients with previous myocardial infarction yields a beneficial effect on patient survival.
Collapse
Affiliation(s)
- Gianluca Di Bella
- Clinical and Experimental Department of Medicine, University of Messina, via Consolare Valeria 1, 98100, Messina, Italy
| | | | - Jan Bogaert
- Department of Radiology, KU Leuven - UZ Leuven, Gasthuisberg Campus. Herestraat 49, 3000, Leuven, Belgium
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, via G. Caruso 16, 56122, Pisa, Italy
| | - Antonio Micari
- Clinical and Experimental Department of Medicine, University of Messina, via Consolare Valeria 1, 98100, Messina, Italy
| | - Fausto Pizzino
- Department of Cardiology, "Santa Maria Dei Battuti" Hospital, Conegliano - ULSS2 Marca Trevigiana, Via Brigata Bisagno 2, 31015, Conegliano, Treviso, Italy
| | - Giovanni Camastra
- Cardiac Department, Vannini Hospital Rome, via Acqua Bullicante 4, 00177, Roma, Italy
| | - Scipione Carerj
- Clinical and Experimental Department of Medicine, University of Messina, via Consolare Valeria 1, 98100, Messina, Italy
| | - Mariapaola Campisi
- Clinical and Experimental Department of Medicine, University of Messina, via Consolare Valeria 1, 98100, Messina, Italy
| | - Antonio Bracco
- Clinical and Experimental Department of Medicine, University of Messina, via Consolare Valeria 1, 98100, Messina, Italy
- Department of Cardiology, ISMETT" Hospital, via Ernesto Tricomi, 5, 90127, Palermo, Province of Palermo, Italy
| | - Maria Ludovica Carerj
- Clinical and Experimental Department of Medicine, University of Messina, via Consolare Valeria 1, 98100, Messina, Italy
| | - Michele Emdin
- Fondazione Toscana G. Monasterio, via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Bijoy K Khandheria
- Aurora Cardiovascular and Thoracic Services, Advocate Aurora Health, Aurora Sinai/Aurora St. Luke's Medical Centers, 2801 W. Kinnickinnic River Parkway, Ste. 880, Milwaukee, WI, 53215, USA.
| | - Alessandro Pingitore
- C.N.R. Clinical Physiology Institute, via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
11
|
Kersten J, Eberhardt N, Prasad V, Keßler M, Markovic S, Mörike J, Nita N, Stephan T, Tadic M, Tesfay T, Rottbauer W, Buckert D. Non-invasive Imaging in Patients With Chronic Total Occlusions of the Coronary Arteries-What Does the Interventionalist Need for Success? Front Cardiovasc Med 2021; 8:713625. [PMID: 34527713 PMCID: PMC8435679 DOI: 10.3389/fcvm.2021.713625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/06/2021] [Indexed: 10/26/2022] Open
Abstract
Chronic total occlusion (CTO) of coronary arteries is a common finding in patients with known or suspected coronary artery disease (CAD). Although tremendous advances have been made in the interventional treatment of CTOs over the past decade, correct patient selection remains an important parameter for achieving optimal results. Non-invasive imaging can make a valuable contribution. Ischemia and viability, two major factors in this regard, can be displayed using echocardiography, single-photon emission tomography, positron emission tomography, computed tomography, and cardiac magnetic resonance imaging. Each has its own strengths and weaknesses. Although most have been studied in patients with CAD in general, there is an increasing number of studies with positive preselectional factors for patients with CTOs. The aim of this review is to provide a structured overview of the current state of pre-interventional imaging for CTOs.
Collapse
Affiliation(s)
- Johannes Kersten
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Nina Eberhardt
- Department for Nuclear Medicine, University of Ulm, Ulm, Germany
| | - Vikas Prasad
- Department for Nuclear Medicine, University of Ulm, Ulm, Germany
| | - Mirjam Keßler
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Sinisa Markovic
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Johannes Mörike
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Nicoleta Nita
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Tilman Stephan
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Marijana Tadic
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | - Temsgen Tesfay
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| | | | - Dominik Buckert
- Department for Internal Medicine II, University of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Shaaban M, Tantawy SW, Elkafrawy F, Romeih S, Elmozy W. Multiparametric Rest and Dobutamine Stress Magnetic Resonance in Assessment of Myocardial Viability. J Magn Reson Imaging 2021; 54:1773-1781. [PMID: 34018279 DOI: 10.1002/jmri.27733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND MR feature-tracking (FT) is a novel technique that quantitatively calculates myocardial strain and can assess myocardial viability. PURPOSE To evaluate the feasibility of FT at rest and with low-dose dobutamine (LDD), visual assessment of contractility with LDD and left ventricle (LV) end-diastolic wall thickness (EDWT) in the assessment of viability in ischemic cardiomyopathy (ICM) patients compared to delayed gadolinium enhancement (DGE). STUDY TYPE Prospective. SUBJECTS Thirty ICM patients and 30 healthy volunteers. FIELD STRENGTH/SEQUENCES A 1.5 T with balanced steady-state free precession (bSSFP) cine and phase-sensitive inversion prepared segmented gradient echo sequences. ASSESSMENT LDD (5 μg/kg/min and 10 μg/kg/min) was administered in the patient group. LV was divided into 16 segments and MR-FT was derived from bSSFP cine images using dedicated software. Viable segments were defined as those with a dobutamine-induced increase in resting MR-FT values >20%, a dobutamine-induced increase in systolic wall thickening ≥2 mm by visual assessment, ≤50% fibrosis on DGE, and resting EDWT ≥5.5 mm. STATISTICAL TESTS One-way analysis of variance (ANOVA), two-sampled t-test, paired samples t-test, and receiver operating characteristic (ROC) curve analysis. A P value < 0.05 was considered statistically significant. RESULTS Resting peak global circumferential (Ecc) and radial (Err) strains were significantly impaired in patients compared to controls (-11.7 ± 7.9 vs. -20.1 ± 5.7 and 19.7 ± 13.9 vs. 32.7 ± 15.4, respectively). Segments with no DGE (n = 354) and ≤ 50% (n = 38) DGE showed significant improvement of both Ecc and Err with LDD while segments with >50% DGE (n = 88) showed no improvement. In comparison to viable and nonviable segments identified by reference-standard DGE, the sensitivity, specificity, and diagnostic accuracy of the four methods were: 74%, 92%, and 89%, respectively, for Ecc; 70%, 89%, and 86%, respectively, for Err; 67%, 88%, and 84% for visual assessment; and 39%, 90%, and 80% for EDWT. DATA CONCLUSION Quantitative assessment of MR-FT, along with EDWT and qualitative visual assessment of myocardial contractility with LDD, are feasible alternative methods for the assessment of myocardial viability with moderate sensitivity and high specificity. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage: 2.
Collapse
Affiliation(s)
- Mahmoud Shaaban
- Aswan Heart Centre (Magdi Yacoub Foundation), Aswan, Egypt.,Cardiology Department, Faculty of Medicine, Tanta University, Egypt
| | - Sara W Tantawy
- Aswan Heart Centre (Magdi Yacoub Foundation), Aswan, Egypt.,Radiology Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Fatma Elkafrawy
- Aswan Heart Centre (Magdi Yacoub Foundation), Aswan, Egypt.,Radiology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Soha Romeih
- Aswan Heart Centre (Magdi Yacoub Foundation), Aswan, Egypt.,Cardiology Department, Faculty of Medicine, Tanta University, Egypt
| | - Wesam Elmozy
- Aswan Heart Centre (Magdi Yacoub Foundation), Aswan, Egypt.,Radiology Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
13
|
Yamagishi M, Tamaki N, Akasaka T, Ikeda T, Ueshima K, Uemura S, Otsuji Y, Kihara Y, Kimura K, Kimura T, Kusama Y, Kumita S, Sakuma H, Jinzaki M, Daida H, Takeishi Y, Tada H, Chikamori T, Tsujita K, Teraoka K, Nakajima K, Nakata T, Nakatani S, Nogami A, Node K, Nohara A, Hirayama A, Funabashi N, Miura M, Mochizuki T, Yokoi H, Yoshioka K, Watanabe M, Asanuma T, Ishikawa Y, Ohara T, Kaikita K, Kasai T, Kato E, Kamiyama H, Kawashiri M, Kiso K, Kitagawa K, Kido T, Kinoshita T, Kiriyama T, Kume T, Kurata A, Kurisu S, Kosuge M, Kodani E, Sato A, Shiono Y, Shiomi H, Taki J, Takeuchi M, Tanaka A, Tanaka N, Tanaka R, Nakahashi T, Nakahara T, Nomura A, Hashimoto A, Hayashi K, Higashi M, Hiro T, Fukamachi D, Matsuo H, Matsumoto N, Miyauchi K, Miyagawa M, Yamada Y, Yoshinaga K, Wada H, Watanabe T, Ozaki Y, Kohsaka S, Shimizu W, Yasuda S, Yoshino H. JCS 2018 Guideline on Diagnosis of Chronic Coronary Heart Diseases. Circ J 2021; 85:402-572. [PMID: 33597320 DOI: 10.1253/circj.cj-19-1131] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine Graduate School
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Graduate School
| | - Kenji Ueshima
- Center for Accessing Early Promising Treatment, Kyoto University Hospital
| | - Shiro Uemura
- Department of Cardiology, Kawasaki Medical School
| | - Yutaka Otsuji
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School
| | | | | | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School
| | | | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School
| | | | - Hiroshi Tada
- Department of Cardiovascular Medicine, University of Fukui
| | | | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | | | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa Universtiy
| | | | - Satoshi Nakatani
- Division of Functional Diagnostics, Department of Health Sciences, Osaka University Graduate School of Medicine
| | | | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Atsushi Nohara
- Division of Clinical Genetics, Ishikawa Prefectural Central Hospital
| | | | | | - Masaru Miura
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | | | | | | | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University
| | - Toshihiko Asanuma
- Division of Functional Diagnostics, Department of Health Sciences, Osaka University Graduate School
| | - Yuichi Ishikawa
- Department of Pediatric Cardiology, Fukuoka Children's Hospital
| | - Takahiro Ohara
- Division of Community Medicine, Tohoku Medical and Pharmaceutical University
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tokuo Kasai
- Department of Cardiology, Uonuma Kinen Hospital
| | - Eri Kato
- Department of Cardiovascular Medicine, Department of Clinical Laboratory, Kyoto University Hospital
| | | | - Masaaki Kawashiri
- Department of Cardiovascular and Internal Medicine, Kanazawa University
| | - Keisuke Kiso
- Department of Diagnostic Radiology, Tohoku University Hospital
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School
| | | | | | | | - Akira Kurata
- Department of Radiology, Ehime University Graduate School
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center
| | - Eitaro Kodani
- Department of Internal Medicine and Cardiology, Nippon Medical School Tama Nagayama Hospital
| | - Akira Sato
- Department of Cardiology, University of Tsukuba
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Hiroki Shiomi
- Department of Cardiovascular Medicine, Kyoto University Graduate School
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University
| | - Masaaki Takeuchi
- Department of Laboratory and Transfusion Medicine, Hospital of the University of Occupational and Environmental Health, Japan
| | | | - Nobuhiro Tanaka
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Ryoichi Tanaka
- Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University
| | | | | | - Akihiro Nomura
- Innovative Clinical Research Center, Kanazawa University Hospital
| | - Akiyoshi Hashimoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Hospital
| | - Masahiro Higashi
- Department of Radiology, National Hospital Organization Osaka National Hospital
| | - Takafumi Hiro
- Division of Cardiology, Department of Medicine, Nihon University
| | | | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center
| | - Naoya Matsumoto
- Division of Cardiology, Department of Medicine, Nihon University
| | | | | | | | - Keiichiro Yoshinaga
- Department of Diagnostic and Therapeutic Nuclear Medicine, Molecular Imaging at the National Institute of Radiological Sciences
| | - Hideki Wada
- Department of Cardiology, Juntendo University Shizuoka Hospital
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University
| | - Yukio Ozaki
- Department of Cardiology, Fujita Medical University
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Myocardial viability is an important pathophysiologic concept which may have significant clinical impact in patients with left ventricular dysfunction due to ischemic heart disease. Understanding the imaging modalities used to assess viability, and the clinical implication of their findings, is critical for clinical decision-making in this population. RECENT FINDINGS The ability of dobutamine echocardiography, single-photon emission computed tomography, positron emission tomography, and cardiac magnetic resonance imaging to predict functional recovery following revascularization is well-established. Despite different advantages and disadvantages for each imaging modality, each modality has demonstrated reasonable performance characteristics in identifying viable myocardium. Recent data, however, has called into question whether this functional recovery leads to improved clinical outcomes. Although the assessment of viability can be used to aid in clinical decision-making prior to revascularization, its broad application to all patients is limited by a lack of data confirming improvement in clinical outcomes. Thus, viability assessments may be best applied to select patients (such as those with increased surgical risk) and integrated with clinical, laboratory, and imaging data to guide clinical care. Future research efforts should be aimed at establishing the impact of viability on clinical outcomes.
Collapse
Affiliation(s)
- Kinjan Parikh
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alana Choy-Shan
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, 10016, USA
- Division of Cardiology, VA Harbor Medical Center, Manhattan Campus, 423 E 23rd Street, 12 West, Cardiology, New York, NY, 10010, USA
| | - Munir Ghesani
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Donnino
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, 10016, USA.
- Division of Cardiology, VA Harbor Medical Center, Manhattan Campus, 423 E 23rd Street, 12 West, Cardiology, New York, NY, 10010, USA.
- Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
15
|
Abstract
Ischemic heart disease is the most common cause of cardiovascular morbidity and mortality. Cardiac magnetic resonance (CMR) improves on other noninvasive modalities in detection, assessment, and prognostication of ischemic heart disease. The incorporation of CMR in clinical trials allows for smaller patient samples without the sacrifice of power needed to demonstrate clinical efficacy. CMR can accurately quantify infarct acuity, size, and complications; guide therapy; and prognosticate recovery. Timing of revascularization remains the holy grail of ischemic heart disease, and viability assessment using CMR may be the missing link needed to help reduce morbidity and mortality associated with the disease.
Collapse
Affiliation(s)
- Aneesh S Dhore-Patil
- Tulane University Heart and Vascular Center, Tulane University, 1415 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ashish Aneja
- Department of Cardiovascular Diseases, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|
16
|
Garcia MJ, Kwong RY, Scherrer-Crosbie M, Taub CC, Blankstein R, Lima J, Bonow RO, Eshtehardi P, Bois JP. State of the Art: Imaging for Myocardial Viability: A Scientific Statement From the American Heart Association. Circ Cardiovasc Imaging 2020; 13:e000053. [PMID: 32833510 DOI: 10.1161/hci.0000000000000053] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A substantial proportion of patients with acute myocardial infarction develop clinical heart failure, which remains a common and major healthcare burden. It has been shown that in patients with chronic coronary artery disease, ischemic episodes lead to a global pattern of cardiomyocyte remodeling and dedifferentiation, hallmarked by myolysis, glycogen accumulation, and alteration of structural proteins. These changes, in conjunction with an impaired global coronary reserve, may eventually become irreversible and result in ischemic cardiomyopathy. Moreover, noninvasive imaging of myocardial scar and hibernation can inform the risk of sudden cardiac death. Therefore, it would be intuitive that imaging of myocardial viability is an essential tool for the proper use of invasive treatment strategies and patient prognostication. However, this notion has been challenged by large-scale clinical trials demonstrating that, in the modern era of improved guideline-directed medical therapies, imaging of myocardial viability failed to deliver effective guidance of coronary bypass surgery to a reduction of adverse cardiac outcomes. In addition, current available imaging technologies in this regard are numerous, and they target diverse surrogates of structural or tissue substrates of myocardial viability. In this document, we examine these issues in the current clinical context, collect current evidence of imaging technology by modality, and inform future directions.
Collapse
|
17
|
Quinaglia T, Jerosch-Herold M, Coelho-Filho OR. State-of-the-Art Quantitative Assessment of Myocardial Ischemia by Stress Perfusion Cardiac Magnetic Resonance. Magn Reson Imaging Clin N Am 2020; 27:491-505. [PMID: 31279452 DOI: 10.1016/j.mric.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic heart disease remains the foremost determinant of death and disability across the world. Quantification of the ischemia burden is currently the preferred approach to predict event risk and to trigger adequate treatment. Cardiac magnetic resonance (CMR) can be a prime protagonist in this scenario due to its synergistic features. It allows assessment of wall motility, myocardial perfusion, and tissue scar by means of late gadolinium enhancement imaging. We discuss the clinical and preclinical aspects of gadolinium-based, perfusion CMR imaging, including the relevance of high spatial resolution and 3-dimensional whole-heart coverage, among important features of this auspicious method.
Collapse
Affiliation(s)
- Thiago Quinaglia
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Rua Tessália Viera de Camargo, 126 - Cidade Universitária "Zeferino Vaz", Campinas, São Paulo 13083-887, Brazil
| | - Michael Jerosch-Herold
- Noninvasive Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Room L1-RA050, Mailbox #22, Boston, MA 02115, USA
| | - Otávio R Coelho-Filho
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Rua Tessália Viera de Camargo, 126 - Cidade Universitária "Zeferino Vaz", Campinas, São Paulo 13083-887, Brazil; Department of Internal Medicine, Hospital das Clínicas, State University of Campinas, UNICAMP, Rua Vital Brasil, 251- Cidade Universitária "Zeferino Vaz", Campinas, São Paulo 13083-888, Brazil.
| |
Collapse
|
18
|
Li J, He Y, Dong W, Zhang L, Mi H, Zhang D, Huang R, Song X. Comparison of cardiac MRI with PET for assessment of myocardial viability in patients with coronary chronic total occlusion. Clin Radiol 2019; 74:410.e1-410.e9. [DOI: 10.1016/j.crad.2019.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
19
|
Wang M, Zhang WB, Song JL, Luan Y, Jin CY. Effect of Breviscapine on Recovery of Viable Myocardium and Left Ventricular Remodeling in Chronic Total Occlusion Patients After Revascularization: Rationale and Design for a Randomized Controlled Trial. Med Sci Monit 2018; 24:4602-4609. [PMID: 29970875 PMCID: PMC6064194 DOI: 10.12659/msm.906438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND How to speed the recovery of viable myocardium in chronic total occlusion (CTO) patients after revascularization is still an unsolved problem. Breviscapine is widely used in cardiovascular diseases. However, there has been no study focused on the effect of breviscapine on viable myocardium recovery and left ventricular remodeling after CTO revascularization. MATERIAL AND METHODS We propose to recruit 78 consecutive coronary artery disease (CAD) patients with CTO during a period of 12 months. They will be randomly assigned to receive either breviscapine (40 mg) or placebo in the following 12 months. Blood tests, electrocardiogram, and Major Adverse Cardiac Events (MACE) will be collected at baseline and the follow-up visits at 1, 3, 6, 9, and 12 months. Low-dose dobutamine MRI will be applied for the assessment of viable myocardium, microcirculation perfusion, and left ventricular remodeling, and the concentrations of angiogenic cytokine, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) will be investigated at baseline and at 1- and 12-month follow-up. The recovery of viable myocardium after revascularization in CTO patients was the primary endpoint. Improvement of microcirculation perfusion, left ventricular remodeling, peripheral concentrations of VEGF and bFGF as well as MACE will be the secondary endpoints. RESULTS Breviscapine treatment obviously improve the recovery of viable myocardium, myocardial microcirculation perfusion, and left ventricular remodeling after revascularization in CTO patients, and reduce the occurrence of MACE. We also will determine if breviscapine increases the peripheral blood angiogenic cytokine concentrations of VEGF and bFGF. CONCLUSIONS This study will aim to demonstrate the effect of breviscapine on the recovery of viable myocardium and left ventricular remodeling in CTO patients after revascularization.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wen-Bin Zhang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jia-le Song
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yi Luan
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chong-Ying Jin
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
20
|
Stillman AE, Oudkerk M, Bluemke DA, de Boer MJ, Bremerich J, Garcia EV, Gutberlet M, van der Harst P, Hundley WG, Jerosch-Herold M, Kuijpers D, Kwong RY, Nagel E, Lerakis S, Oshinski J, Paul JF, Slart RHJA, Thourani V, Vliegenthart R, Wintersperger BJ. Imaging the myocardial ischemic cascade. Int J Cardiovasc Imaging 2018; 34:1249-1263. [PMID: 29556943 DOI: 10.1007/s10554-018-1330-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/05/2018] [Indexed: 01/25/2023]
Abstract
Non-invasive imaging plays a growing role in the diagnosis and management of ischemic heart disease from its earliest manifestations of endothelial dysfunction to myocardial infarction along the myocardial ischemic cascade. Experts representing the North American Society for Cardiovascular Imaging and the European Society of Cardiac Radiology have worked together to organize the role of non-invasive imaging along the framework of the ischemic cascade. The current status of non-invasive imaging for ischemic heart disease is reviewed along with the role of imaging for guiding surgical planning. The issue of cost effectiveness is also considered. Preclinical disease is primarily assessed through the coronary artery calcium score and used for risk assessment. Once the patient becomes symptomatic, other imaging tests including echocardiography, CCTA, SPECT, PET and CMR may be useful. CCTA appears to be a cost-effective gatekeeper. Post infarction CMR and PET are the preferred modalities. Imaging is increasingly used for surgical planning of patients who may require coronary artery bypass.
Collapse
Affiliation(s)
- Arthur E Stillman
- Department of Radiology and Imaging Sciences, Emory University, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Matthijs Oudkerk
- Center of Medical Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - David A Bluemke
- Department of Radiology and Imaging Sciences, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Menko Jan de Boer
- Department of Cardiology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Jens Bremerich
- Department of Radiology, University of Basel Hospital, Basel, Switzerland
| | - Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Matthias Gutberlet
- Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Pim van der Harst
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - W Gregory Hundley
- Departments of Internal Medicine & Radiology, Wake Forest University, Winston-Salem, NC, USA
| | | | - Dirkjan Kuijpers
- Department of Radiology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Raymond Y Kwong
- Department of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, University Hospital, Frankfurt/Main, Germany
| | | | - John Oshinski
- Department of Radiology and Imaging Sciences, Emory University, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA
| | | | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vinod Thourani
- Department of Cardiac Surgery, MedStar Heart and Vascular Institute, Georgetown University, Washington, DC, USA
| | | | | |
Collapse
|
21
|
Jamiel A, Ebid M, Ahmed AM, Ahmed D, Al-Mallah MH. The role of myocardial viability in contemporary cardiac practice. Heart Fail Rev 2017; 22:401-413. [DOI: 10.1007/s10741-017-9626-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Mester A, Oltean-Péter B, Rodean I, Opincariu D, Stănescu A, Lázár E, Benedek I, Benedek I, Benedek I. Magnetic Resonance Imaging of Myocardial Function Following Intracoronary and Intramyocardial Stem Cell Injection. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Stem cell-based therapy is a new therapeutic option that can be used in patients with cardiac diseases caused by myocardial injury. Cardiac magnetic resonance imaging (MRI) is a new noninvasive imaging method with an increasingly widespread indication. The aim of this review was to evaluate the role of cardiac MRI in patients with myocardial infarction undergoing stem cell therapy. We studied the role of MRI in the assessment of myocardial viability, stem cell tracking, assessment of cell survival rate, and monitoring of the long-term effects of stem cell therapy. Based on the current knowledge in this field, this noninvasive, in vivo cardiac imaging technique has a large indication in this group of patients and plays an important role in all stages of stem cell therapy, from the indication to the long-term follow-up of patients.
Collapse
Affiliation(s)
- András Mester
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Balázs Oltean-Péter
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Ioana Rodean
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Diana Opincariu
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Alexandra Stănescu
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Erzsébet Lázár
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureș , Romania
| | - István Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureș , Romania
| | - Imre Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - István Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureș , Romania
| |
Collapse
|
23
|
Paiman EHM, Lamb HJ. When should we use contrast material in cardiac MRI? J Magn Reson Imaging 2017; 46:1551-1572. [PMID: 28480596 DOI: 10.1002/jmri.25754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/18/2017] [Indexed: 12/29/2022] Open
Abstract
At present, most of the cardiac magnetic resonance imaging (MRI) examinations rely on contrast-enhanced protocols, but noncontrast alternatives are emerging. Late gadolinium enhancement (LGE) imaging for the detection of myocardial scar can be considered the main cause for the embedding of cardiac MRI into the clinical routine. The novel noncontrast technique of native T1 mapping shows promise for tissue characterization in ischemic and nonischemic cardiomyopathy and may provide additional information over conventional LGE imaging. Technical issues, including measurements variability, still need to be resolved to facilitate a wide clinical application. Ischemia detection can be performed with contrast-based stress perfusion and contrast-free stress wall motion imaging. For coronary magnetic resonance angiography (MRA), protocols with and without contrast material have been developed. Research on coronary atherosclerotic plaque characterization has introduced new applications of contrast material. For MRA of the aorta, which traditionally relied on contrast administration, several noncontrast protocols have become available. This review provides an overview of when to use contrast material in cardiac and cardiac-related vascular MRI, summarizes the major imaging building blocks, and describes the diagnostic value of the available contrast-enhanced and noncontrast techniques. Contrast material in cardiac MRI should be used for LGE imaging for tissue characterization in ischemic or nonischemic cardiomyopathy and may be used for stress perfusion imaging for the detection of ischemia. In cardiac-related vascular MRI, use of contrast material should be avoided, unless high-quality angiography is required that cannot be obtained with noncontrast protocols. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1551-1572.
Collapse
Affiliation(s)
- Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
McDiarmid AK, Pellicori P, Cleland JG, Plein S. Taxonomy of segmental myocardial systolic dysfunction. Eur Heart J 2017; 38:942-954. [PMID: 27147609 PMCID: PMC5381597 DOI: 10.1093/eurheartj/ehw140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022] Open
Abstract
The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms 'viable' and 'hibernating' are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction.
Collapse
MESH Headings
- Acute Disease
- Cardiac Imaging Techniques/methods
- Cardiomyopathy, Dilated/classification
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/classification
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Chronic Disease
- Heart/physiology
- Heart Failure, Diastolic/classification
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/pathology
- Humans
- Myocardial Infarction/classification
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Ischemia/classification
- Myocardial Ischemia/metabolism
- Myocardial Ischemia/pathology
- Myocardial Stunning/classification
- Myocardial Stunning/metabolism
- Myocardial Stunning/pathology
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Terminology as Topic
Collapse
Affiliation(s)
- Adam K. McDiarmid
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Pierpaolo Pellicori
- Academic Cardiology Unit, University of Hull, Castle Hill Hospital, Kingston upon Hull, UK
| | - John G. Cleland
- Academic Cardiology Unit, University of Hull, Castle Hill Hospital, Kingston upon Hull, UK
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
25
|
|
26
|
de Zan M, Carrascosa P, Deviggiano A, Capuñay C, Rodríguez-Granillo GA. [Myocardial regional thickness in patients with and without cardiomyopathy assessed by cardiac magnetic resonance]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 86:305-312. [PMID: 27156043 DOI: 10.1016/j.acmx.2016.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To explore regional differences in myocardial wall thickness (WT) among the most prevalent cardiomyopathies and in individuals without structural heart disease using cardiac magnetic resonance. METHODS Patients older than 18 years referred to cardiac magnetic resonance during the period between January 2014 and September 2014, with a diagnosis of hypertrophic cardiomyopathy, idiopathic dilated cardiomyopathy, ischemic cardiomyopathy, and myocarditis were retrospectively selected from our database. RESULTS One hundred twenty patients patients were included. The control group had an average WT of 5.9±1.1mm, with a WT index of 2.9±0.8. Significantly lower mean WT in the apical segments were identified in both the control group (basal 6.7±1.3 vs. mid 6.0±1.3 vs. apical 4.6±1.0mm, P<.0001) and in all evaluated cardiomyopathies (hypertrophic cardiomyopathy: basal 10.5±2.4 vs. mid 10.8±2.7 vs. apical 7.3±3.3mm, P<.0001; idiopathic dilated cardiomyopathy: basal 7.7±1.7 vs. mid 7.6±1.3 vs. apical 5.4±1.3mm, P<.0001; ischemic cardiomyopathy: basal 7.4±1.7 vs. mid 7.5±1.9 vs. apical 5.5±1.8mm, P<.0001; myocarditis: basal 7.1±1.5 vs. mid 6.4±1.1 vs. apical 5.1±0.8, P<.0001). Significant gender differences were also evident regarding the mean WT both in the control group (male 6.5±2.1 vs. female 5.2±1.7mm, P<.0001), as in hypertrophic cardiomyopathy (10.5±5.3 vs. 8.5±5.7mm, P<.0001) and myocarditis (6.6±2.0 vs. 5.2±1.6mm, P<.0001). CONCLUSION We found a relatively high prevalence of segments commonly deemed thinned among patients without structural heart disease. We also observed a marked asymmetry and longitudinal gradient in wall thickness both in controls and in the various cardiomyopathies evaluated.
Collapse
Affiliation(s)
- Macarena de Zan
- Departamento de Estudios Cardiovasculares No Invasivos de Diagnóstico Maipú, Buenos Aires, Argentina
| | - Patricia Carrascosa
- Departamento de Estudios Cardiovasculares No Invasivos de Diagnóstico Maipú, Buenos Aires, Argentina
| | - Alejandro Deviggiano
- Departamento de Estudios Cardiovasculares No Invasivos de Diagnóstico Maipú, Buenos Aires, Argentina
| | - Carlos Capuñay
- Departamento de Estudios Cardiovasculares No Invasivos de Diagnóstico Maipú, Buenos Aires, Argentina
| | | |
Collapse
|
27
|
Dastidar AG, Rodrigues JCL, Baritussio A, Bucciarelli-Ducci C. MRI in the assessment of ischaemic heart disease. Heart 2015; 102:239-52. [DOI: 10.1136/heartjnl-2014-306963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
28
|
Campbell F, Thokala P, Uttley LC, Sutton A, Sutton AJ, Al-Mohammad A, Thomas SM. Systematic review and modelling of the cost-effectiveness of cardiac magnetic resonance imaging compared with current existing testing pathways in ischaemic cardiomyopathy. Health Technol Assess 2015; 18:1-120. [PMID: 25265259 DOI: 10.3310/hta18590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cardiac magnetic resonance imaging (CMR) is increasingly used to assess patients for myocardial viability prior to revascularisation. This is important to ensure that only those likely to benefit are subjected to the risk of revascularisation. OBJECTIVES To assess current evidence on the accuracy and cost-effectiveness of CMR to test patients prior to revascularisation in ischaemic cardiomyopathy; to develop an economic model to assess cost-effectiveness for different imaging strategies; and to identify areas for further primary research. DATA SOURCES Databases searched were: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations Initial searches were conducted in March 2011 in the following databases with dates: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations via Ovid (1946 to March 2011); Bioscience Information Service (BIOSIS) Previews via Web of Science (1969 to March 2011); EMBASE via Ovid (1974 to March 2011); Cochrane Database of Systematic Reviews via The Cochrane Library (1996 to March 2011); Cochrane Central Register of Controlled Trials via The Cochrane Library 1998 to March 2011; Database of Abstracts of Reviews of Effects via The Cochrane Library (1994 to March 2011); NHS Economic Evaluation Database via The Cochrane Library (1968 to March 2011); Health Technology Assessment Database via The Cochrane Library (1989 to March 2011); and the Science Citation Index via Web of Science (1900 to March 2011). Additional searches were conducted from October to November 2011 in the following databases with dates: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations via Ovid (1946 to November 2011); BIOSIS Previews via Web of Science (1969 to October 2011); EMBASE via Ovid (1974 to November 2011); Cochrane Database of Systematic Reviews via The Cochrane Library (1996 to November 2011); Cochrane Central Register of Controlled Trials via The Cochrane Library (1998 to November 2011); Database of Abstracts of Reviews of Effects via The Cochrane Library (1994 to November 2011); NHS Economic Evaluation Database via The Cochrane Library (1968 to November 2011); Health Technology Assessment Database via The Cochrane Library (1989 to November 2011); and the Science Citation Index via Web of Science (1900 to October 2011). Electronic databases were searched March-November 2011. REVIEW METHODS The systematic review selected studies that assessed the clinical effectiveness and cost-effectiveness of CMR to establish the role of CMR in viability assessment compared with other imaging techniques: stress echocardiography, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Studies had to have an appropriate reference standard and contain accuracy data or sufficient details so that accuracy data could be calculated. Data were extracted by two reviewers and discrepancies resolved by discussion. Quality of studies was assessed using the QUADAS II tool (University of Bristol, Bristol, UK). A rigorous diagnostic accuracy systematic review assessed clinical and cost-effectiveness of CMR in viability assessment. A health economic model estimated costs and quality-adjusted life-years (QALYs) accrued by diagnostic pathways for identifying patients with viable myocardium in ischaemic cardiomyopathy with a view to revascularisation. The pathways involved CMR, stress echocardiography, SPECT, PET alone or in combination. Strategies of no testing and revascularisation were included to determine the most cost-effective strategy. RESULTS Twenty-four studies met the inclusion criteria. All were prospective. Participant numbers ranged from 8 to 52. The mean left ventricular ejection fraction in studies reporting this outcome was 24-62%. CMR approaches included stress CMR and late gadolinium-enhanced cardiovascular magnetic resonance imaging (CE CMR). Recovery following revascularisation was the reference standard. Twelve studies assessed diagnostic accuracy of stress CMR and 14 studies assessed CE CMR. A bivariate regression model was used to calculate the sensitivity and specificity of CMR. Summary sensitivity and specificity for stress CMR was 82.2% [95% confidence interval (CI) 73.2% to 88.7%] and 87.1% (95% CI 80.4% to 91.7%) and for CE CMR was 95.5% (95% CI 94.1% to 96.7%) and 53% (95% CI 40.4% to 65.2%) respectively. The sensitivity and specificity of PET, SPECT and stress echocardiography were calculated using data from 10 studies and systematic reviews. The sensitivity of PET was 94.7% (95% CI 90.3% to 97.2%), of SPECT was 85.1% (95% CI 78.1% to 90.2%) and of stress echocardiography was 77.6% (95% CI 70.7% to 83.3%). The specificity of PET was 68.8% (95% CI 50% to 82.9%), of SPECT was 62.1% (95% CI 52.7% to 70.7%) and of stress echocardiography was 69.6% (95% CI 62.4% to 75.9%). All currently used diagnostic strategies were cost-effective compared with no testing at current National Institute for Health and Care Excellence thresholds. If the annual mortality rates for non-viable patients were assumed to be higher for revascularised patients, then testing with CE CMR was most cost-effective at a threshold of £20,000/QALY. The proportion of model runs in which each strategy was most cost-effective, at a threshold of £20,000/QALY, was 40% for CE CMR, 42% for PET and 16.5% for revascularising everyone. The expected value of perfect information at £20,000/QALY was £620 per patient. If all patients (viable or not) gained benefit from revascularisation, then it was most cost-effective to revascularise all patients. LIMITATIONS Definitions and techniques assessing viability were highly variable, making data extraction and comparisons difficult. Lack of evidence meant assumptions were made in the model leading to uncertainty; differing scenarios were generated around key assumptions. CONCLUSIONS All the diagnostic pathways are a cost-effective use of NHS resources. Given the uncertainty in the mortality rates, the cost-effectiveness analysis was performed using a set of scenarios. The cost-effectiveness analyses suggest that CE CMR and revascularising everyone were the optimal strategies. Future research should look at implementation costs for this type of imaging service, provide guidance on consistent reporting of diagnostic testing data for viability assessment, and focus on the impact of revascularisation or best medical therapy in this group of high-risk patients. FUNDING The National Institute of Health Technology Assessment programme.
Collapse
Affiliation(s)
- Fiona Campbell
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Praveen Thokala
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Lesley C Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Anthea Sutton
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Steven M Thomas
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Alexanderson-Rosas E, Guinto-Nishimura GY, Cruz-Mendoza JR, Oropeza-Aguilar M, De La Fuente-Mancera JC, Barrero-Mier AF, Monroy-Gonzalez A, Juarez-Orozco LE, Cano-Zarate R, Meave-Gonzalez A. Current and future trends in multimodality imaging of coronary artery disease. Expert Rev Cardiovasc Ther 2015; 13:715-31. [PMID: 25912725 DOI: 10.1586/14779072.2015.1039991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nowadays, there is a wide array of imaging studies available for the evaluation of coronary artery disease, each with its particular indications and strengths. Cardiac single photon emission tomography is mostly used to evaluate myocardial perfusion, having experienced recent marked improvements in image acquisition. Cardiac PET has its main utility in perfusion imaging, atherosclerosis and endothelial function evaluation, and viability assessment. Cardiovascular computed tomography has long been used as a reference test for non-invasive evaluation of coronary lesions and anatomic characterization. Cardiovascular magnetic resonance is currently the reference standard for non-invasive ventricular function evaluation and myocardial scarring delineation. These specific strengths have been enhanced with the advent of hybrid equipment, offering a true integration of different imaging modalities into a single, simultaneous and comprehensive study.
Collapse
Affiliation(s)
- Erick Alexanderson-Rosas
- Department of Nuclear Cardiology, Instituto Nacional de Cardiología 'Ignacio Chávez', Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Patel HC, Ellis SG. Role of revascularization to improve left ventricular function. Heart Fail Clin 2015; 11:203-14. [PMID: 25834970 DOI: 10.1016/j.hfc.2014.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coronary revascularization to improve left ventricular (LV) function and improve mortality in patients with ischemic cardiomyopathy remains controversial, especially in the absence of angina or ischemia. A large body of observational evidence suggests that patients with dysfunctional but viable myocardium may experience improvement in mortality and LV function after revascularization. However, results of randomized trials conducted in the last decade dispute the value of viability testing or coronary revascularization in improving outcomes of patients with ischemic cardiomyopathy. However, because of the numerous methodological limitations of these studies, clinical equipoise persists regarding the role of coronary revascularization in certain patients.
Collapse
Affiliation(s)
- Harsh C Patel
- Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stephen G Ellis
- Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
|
32
|
Ripley DP, Motwani M, Plein S, Greenwood JP. Established and emerging cardiovascular magnetic resonance techniques for the assessment of stable coronary heart disease and acute coronary syndromes. Quant Imaging Med Surg 2014; 4:330-44. [PMID: 25392820 DOI: 10.3978/j.issn.2223-4292.2014.07.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
Abstract
Coronary heart disease (CHD) is a leading cause of death and disability worldwide. International guidelines recommend cardiovascular magnetic resonance (CMR) as an investigative option in those presenting with chest pain to inform diagnosis, risk stratify and determine the need for revascularization. CMR offers a unique method to assess global and regional cardiac function, myocardial perfusion, myocardial viability, tissue characterisation and proximal coronary anatomy all within a single study. This results in high diagnostic accuracy for the detection of significant coronary stenoses and an established role in the management of both stable CHD and acute coronary syndromes (ACS). The growing evidence base for the prognostic value of CMR, emerging advances in acquisition techniques, improvements in hardware and the completion of current major multi-centre clinical CMR trials will further raise its prominence in international guidelines and routine cardiological practice. This article will focus on the rapidly evolving role of the multi-parametric CMR examination in the assessment of patients with stable and unstable CHD.
Collapse
Affiliation(s)
- David P Ripley
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Manish Motwani
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
33
|
Cardiac magnetic resonance imaging for ischemic heart disease: update on diagnosis and prognosis. Top Magn Reson Imaging 2014; 23:21-31. [PMID: 24509621 DOI: 10.1097/rmr.0000000000000014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite significant advancements in the treatment of ischemic heart disease (IHD), IHD remains a leading cause of mortality and morbidity. In addition, there remains clinical equipoise regarding a number of important management issues across the spectrum of IHD, from evaluating patients with chest pain in the emergency department, to deciding whether patients with chronic stable angina or severe ischemic cardiomyopathies should undergo invasive revascularization procedures. Recent data over the past 2 decades has demonstrated that cardiac magnetic resonance imaging is highly accurate and carries robust prognostic value in the evaluation of patients with both acute and chronic IHD. The combination of cine imaging for cardiac structure and function, late gadolinium enhancement imaging of myocardial scar, qualitative and quantitative measures of myocardial fibrosis, and stress perfusion imaging for the presence and extent of ischemia provides a comprehensive and detailed characterization of cardiac anatomy and physiology that guides critical treatment decisions for patients. This review aims to cover both the diagnostic and prognostic utility of cardiac magnetic resonance imaging for the spectrum of IHD.
Collapse
|
34
|
Pahk K, Oh SY, Jeong E, Lee SH, Woo SK, Yu JW, Choe JG, Cheon GJ. Is it Feasible to Use the Commercially Available Autoquantitation Software for the Evaluation of Myocardial Viability on Small-Animal Cardiac F-18 FDG PET Scan? Nucl Med Mol Imaging 2014; 47:104-14. [PMID: 24900090 DOI: 10.1007/s13139-013-0206-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To evaluate the reliability of quantitation of myocardial viability on cardiac F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scans with three different methods of visual scoring system, autoquantitation using commercially available autoquantitation software, and infarct-size measurement using histogram-based maximum pixel threshold identification on polar-map in rat hearts. METHODS A myocardial infarct (MI) model was made by left anterior descending artery (LAD) ligation in rat hearts. Eighteen MI rats underwent cardiac FDG-PET-computed tomography (CT) twice within a 4-week interval. Myocardium was partitioned into 20 segments for the comparison, and then we quantitated non-viable myocardium on cardiac FDG PET-CT with three different methods: method A-infarct-size measurement using histogram-based maximum pixel threshold identification on polar-map; method B-summed MI score (SMS) by a four-point visual scoring system; method C-metabolic non-viable values by commercially available autoquantitation software. Changes of non-viable myocardium on serial PET-CT scans with three different methods were calculated by the change of each parameter. Correlation and reproducibility were evaluated between the different methods. RESULTS Infarct-size measurement, visual SMS, and non-viable values by autoquantitation software presented proportional relationship to each other. All the parameters of methods A, B, and C showed relatively good correlation between each other. Among them, infarct-size measurement (method A) and autoquantitation software (method C) showed the best correlation (r = 0.87, p < 0.001). When we evaluated the changes of non-viable myocardium on the serial FDG-PET-CT- however, autoquantitation program showed less correlation with the other methods. Visual assessment (method B) and those of infarct size (method A) showed the best correlation (r = 0.54, p = 0.02) for the assessment of interval changes. CONCLUSIONS Commercially available quantitation software could be applied to measure the myocardial viability on small animal cardiac FDG-PET-CT scan. This kind of quantitation showed good correlation with infarct size measurement by histogram-based maximum pixel threshold identification. However, this method showed the weak correlation when applied in the measuring the changes of non-viable myocardium on the serial scans, which means that the caution will be needed to evaluate the changes on the serial monitoring.
Collapse
Affiliation(s)
- Kisoo Pahk
- Department of Nuclear Medicine, Korea University Anam Hospital, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705 South Korea
| | - Sun Young Oh
- Department of Nuclear Medicine, Korea University Anam Hospital, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705 South Korea
| | - Eugene Jeong
- Department of Nuclear Medicine, Korea University Anam Hospital, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705 South Korea
| | - Sung Ho Lee
- Department of Cardiovascular Surgery, Korea University Anam Hospital, Seoul, South Korea
| | - Sang Keun Woo
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jung Woo Yu
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Gol Choe
- Department of Nuclear Medicine, Korea University Anam Hospital, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705 South Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Korea University Anam Hospital, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705 South Korea ; Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 110-744 South Korea
| |
Collapse
|
35
|
Abstract
Chronic total occlusions (CTOs) are often detected on diagnostic coronary angiograms, but percutaneous coronary intervention (PCI) for CTO is currently infrequently performed owing to high technical difficulty, perceived risk of complications, and a lack of randomized data. However, successful CTO-PCI can significantly increase a patient's quality of life, improve left ventricular function, reduce the need for subsequent CABG surgery, and possibly improve long-term survival. A number of factors must be taken into account for the selection of patients for CTO-PCI, including the extent of ischaemia surrounding the occlusion, the level of myocardial viability, coronary location of the CTO, and probability of procedural success. Moreover, in patients with ST-segment elevation myocardial infarction, a CTO in a noninfarct-related artery might lead to an increase in infarct area, increased end-diastolic left ventricular pressure, and decreased left ventricular function, which are all associated with poor clinical outcomes. In this Review, we provide an overview of the anatomy and histopathology of CTOs, perceived benefits of CTO-PCI, considerations for patient selection for this procedure, and a summary of emerging techniques for CTO-PCI.
Collapse
|
36
|
Bhatia G, Sosin M, Leahy JF, Connolly DL, Davis RC, Lip GYH. Hibernating myocardium in heart failure. Expert Rev Cardiovasc Ther 2014; 3:111-22. [PMID: 15723580 DOI: 10.1586/14779072.3.1.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ischemic left ventricular systolic dysfunction may result from myocardial necrosis or from hypocontractile areas of viable myocardium. In some cases, recovery of contractility may occur on revascularization--this reversibly dysfunctional tissue is commonly referred to as hibernating myocardium. Observational data suggest that revascularization of patients with ischemic left ventricular systolic dysfunction and known viable myocardium provides a survival benefit over medical therapy. Identification of viable, dysfunctional myocardium may be especially worthwhile in deciding which patients with ischemic left ventricular systolic dysfunction will benefit from revascularization procedures. Randomized, prospective trials evaluating this are currently ongoing. This review will provide an overview of the complex pathophysiology of viable, dysfunctional myocardium, and will discuss outcomes after revascularization. Of the techniques used to determine the presence of hibernating myocardium, functional methods such as stress echocardiography and cardiac magnetic resonance appear more specific, but less sensitive, than the nuclear modalities, which assess perfusion and metabolic activity. Currently, the availability of all methods is variable.
Collapse
Affiliation(s)
- Gurbir Bhatia
- Sandwell Hospital, Department of Cardiology, Sandwell and West Birmingham NHS Trust, West Bromwich, UK
| | | | | | | | | | | |
Collapse
|
37
|
Swoboda PP, Plein S. Established and emerging cardiovascular magnetic resonance techniques for prognostication and guiding therapy in heart failure. Expert Rev Cardiovasc Ther 2013; 12:45-55. [DOI: 10.1586/14779072.2014.870035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Abstract
Left ventricular (LV) dysfunction caused by ischemia secondary to coronary artery disease results not only from cardiac myocyte death but also from stunning and hibernation, which are potentially reversible phenomena. Myocardial viability testing is often used in patients with ischemic cardiomyopathy to predict recovery of contractile function after revascularization. Although several observational studies have supported the use of viability testing, the Surgical Treatment for Ischemic Heart failure (STICH) viability substudy challenged its role in clinical decision-making, as viability testing in this study did not predict differential outcomes based on treatment type, and there was a trend toward increased survival in patients with no viability who underwent revascularization. However, the results of the STICH trial have caused controversy because of limitations in study design and implementation. Randomized controlled trials using high-resolution modalities such as positron emission tomography or delayed hyperenhancement cardiac magnetic resonance are needed to determine the incremental benefits that revascularization may afford based on myocardial viability.
Collapse
|
39
|
Allman KC. Noninvasive assessment myocardial viability: current status and future directions. J Nucl Cardiol 2013; 20:618-37; quiz 638-9. [PMID: 23771636 DOI: 10.1007/s12350-013-9737-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/22/2022]
Abstract
Observations of reversibility of cardiac contractile dysfunction in patients with coronary artery disease and ischemia were first made more than 40 years ago. Since that time a wealth of basic science and clinical data has been gathered exploring the mechanisms of this phenomenon of myocardial viability and relevance to clinical care of patients. Advances in cardiac imaging techniques have contributed greatly to knowledge in the area, first with thallium-201 imaging, then later with Tc-99m-based tracers for SPECT imaging and metabolic tracers used in conjunction with positron emission tomography (PET), most commonly F-18 FDG in conjunction with blood flow imaging with N-13 ammonia or Rb-82 Cl. In parallel, stress echocardiography has made great progress also. Over time observational studies in patients using these techniques accumulated and were later summarized in several meta-analyses. More recently, cardiac magnetic resonance imaging (CMR) has contributed further information in combination with either late gadolinium enhancement imaging or dobutamine stress. This review discusses the tracer and CMR imaging techniques, the pooled observational data, the results of clinical trials, and ongoing investigation in the field. It also examines some of the current challenges and issues for researchers and explores the emerging potential of combined PET/CMR imaging for myocardial viability.
Collapse
Affiliation(s)
- Kevin C Allman
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia.
| |
Collapse
|
40
|
|
41
|
[Diagnosis and therapy of chronic myocardial ischemia. Role of cardiac magnetic resonance imaging]. Herz 2013; 38:350-8. [PMID: 23604110 DOI: 10.1007/s00059-013-3803-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In patients with chronic coronary artery disease different therapeutic strategies, such as optimal medical therapy, revascularization by percutaneous coronary intervention or coronary artery bypass grafting have been shown to improve the prognosis and symptoms and yield proven superiority over other treatment strategies in different patient populations. Thus, individual assessment of cardiac function and structure is of paramount importance to choose the optimal therapeutic strategy and subsequently improve patient prognosis. In this setting cardiac magnetic resonance imaging (CMR) has been shown to provide important diagnostic information. Myocardial ischemia can be detected by either perfusion stress CMR demonstrating perfusion deficits indicative of hemodynamically relevant coronary artery stenosis or dobutamin stress CMR for objectifying wall motion abnormalities during stress. Both techniques are superior to single photon emission computerized tomography and stress echocardiography in specific patient populations. Myocardial viability can be assessed by means of end-diastolic wall thickness or delayed enhancement imaging which allows quantification of the transmural extent of scarring. Furthermore, low-dose dobutamin stress CMR can detect a contractile reserve. Delayed enhancement imaging leads to accurate results due to its high resolution, can be performed at rest requiring no stress within a short time period and is easy to analyze. Thus this technique can be recommended as the favored technique to assess myocardial viability. In the following article the CMR techniques for ischemia and viability testing will be presented and their role in diagnosis and therapy of chronic myocardial ischemia will be discussed.
Collapse
|
42
|
|
43
|
Shah DJ, Kim HW, James O, Parker M, Wu E, Bonow RO, Judd RM, Kim RJ. Prevalence of regional myocardial thinning and relationship with myocardial scarring in patients with coronary artery disease. JAMA 2013; 309:909-18. [PMID: 23462787 PMCID: PMC3979456 DOI: 10.1001/jama.2013.1381] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE Regional left ventricular (LV) wall thinning is believed to represent chronic transmural myocardial infarction and scar tissue. However, recent case reports using delayed-enhancement cardiovascular magnetic resonance (CMR) imaging raise the possibility that thinning may occur with little or no scarring. OBJECTIVE To evaluate patients with regional myocardial wall thinning and to determine scar burden and potential for functional improvement. DESIGN, SETTING, AND PATIENTS Investigator-initiated, prospective, 3-center study conducted from August 2000 through January 2008 in 3 parts to determine (1) in patients with known coronary artery disease (CAD) undergoing CMR viability assessment, the prevalence of regional wall thinning (end-diastolic wall thickness ≤5.5 mm), (2) in patients with thinning, the presence and extent of scar burden, and (3) in patients with thinning undergoing coronary revascularization, any changes in myocardial morphology and contractility. MAIN OUTCOMES AND MEASURES Scar burden in thinned regions assessed using delayed-enhancement CMR and changes in myocardial morphology and function assessed using cine-CMR after revascularization. RESULTS Of 1055 consecutive patients with CAD screened, 201 (19% [95% CI, 17% to 21%]) had regional wall thinning. Wall thinning spanned a mean of 34% (95% CI, 32% to 37% [SD, 15%]) of LV surface area. Within these regions, the extent of scarring was 72% (95% CI, 69% to 76% [SD, 25%]); however, 18% (95% CI, 13% to 24%) of thinned regions had limited scar burden (≤50% of total extent). Among patients with thinning undergoing revascularization and follow-up cine-CMR (n = 42), scar extent within the thinned region was inversely related to regional (r = -0.72, P < .001) and global (r = -0.53, P < .001) contractile improvement. End-diastolic wall thickness in thinned regions with limited scar burden increased from 4.4 mm (95% CI, 4.1 to 4.7) to 7.5 mm (95% CI, 6.9 to 8.1) after revascularization (P < .001), resulting in resolution of wall thinning. On multivariable analysis, scar extent had the strongest association with contractile improvement (slope coefficient, -0.03 [95% CI, -0.04 to -0.02]; P < .001) and reversal of thinning (slope coefficient, -0.05 [95% CI, -0.06 to -0.04]; P < .001). CONCLUSIONS AND RELEVANCE Among patients with CAD referred for CMR and found to have regional wall thinning, limited scar burden was present in 18% and was associated with improved contractility and resolution of wall thinning after revascularization. These findings, which are not consistent with common assumptions, warrant further investigation.
Collapse
Affiliation(s)
- Dipan J Shah
- Duke Cardiovascular MRI Center, DUMC 3934, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Raja S, Singh B, Rohit MK, Manohar K, Kashyap R, Bhattacharya A, Mittal BR. Comparison of nitrate augmented Tc-99m tetrofosmin gated SPECT imaging with FDG PET imaging for the assessment of myocardial viability in patients with severe left ventricular dysfunction. J Nucl Cardiol 2012; 19:1176-81. [PMID: 22872319 DOI: 10.1007/s12350-012-9607-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/14/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Of various nuclear medicine techniques, F-18/flourodeoxyglucose (FDG) positron emission tomography (PET) is considered as the best modality for the assessment of viable myocardium (VM). In this study, we compared the diagnostic accuracy of nitrate augmented Tc-99m tetrofosmin gated G-single-photon emission computed tomography (SPECT) with FDG PET. METHODS 54 consecutive cases of angiographically proven CAD with severe LV dysfunction were enrolled in the study. The patients underwent Tc-99m tetrofosmin G-SPECT and FDG PET as per the standard protocols and were compared. RESULTS SPECT data analysis indicated functional abnormalities in 661/918 myocardial segments. F-18 FDG PET revealed VM in 496/661 segments. The diagnostic accuracy of baseline NAC, postnitrate NAC, baseline AC, and postnitrate AC Tc-99m tetrofosmin SPECT was 84%, 87%, 90%, and 94%, respectively. κ values for NAC baseline, NAC postnitrate, AC baseline, and AC postnitrate Tc-99m tetrofosmin G-SPECT were 0.65, 0.70, 0.77, and 0.85, respectively. Attenuation correction revealed viability additionally in 46 segments which were non-viable on NAC postnitrate study (P < .001). Nitrate augmentation showed viability additionally in 25 segments which were non-viable on AC baseline scan (P = .004). On patient-based analysis FDG PET changes the management only in 13% (7/54) of patients. CONCLUSIONS Nitrate augmented AC Tc-99m tetrofosmin G-SPECT shows excellent (κ = .85) agreement with FDG PET. FDG PET changes management only in 13% of the patients. Tc-99m tetrofosmin G-SPECT being more widely available and cheaper imaging modality can be reliably used to detect VM where FDG PET is not available.
Collapse
Affiliation(s)
- Senthil Raja
- Department of Nuclear Medicine & PET, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
45
|
von Knobelsdorff-Brenkenhoff F, Schulz-Menger J. Cardiovascular magnetic resonance imaging in ischemic heart disease. J Magn Reson Imaging 2012; 36:20-38. [PMID: 22696124 DOI: 10.1002/jmri.23580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ischemic heart disease is the most frequent etiology for cardiovascular morbidity and mortality. Early detection and accurate monitoring are essential to guide optimal patient treatment and assess the individual's prognosis. In this regard, cardiovascular magnetic resonance (CMR), which entered the arena of noninvasive cardiovascular imaging over the past two decades, became a very important imaging modality, mainly due to its unique versatility. CMR has proven accuracy and is a robust technique for the assessment of myocardial function both at rest and during stress. It also allows stress perfusion analysis with high spatial and temporal resolution, and provides a means by which to differentiate tissue such as distinguishing between reversibly and irreversibly injured myocardium. In particular, the latter aspect is a unique benefit of CMR compared with other noninvasive imaging modalities such as echocardiography and nuclear medicine, and provides novel information concerning the presence, size, transmurality, and prognosis of myocardial infarction. This article is intended to provide the reader with an overview of the various applications of CMR for the assessment of ischemic heart disease from a clinical perspective.
Collapse
Affiliation(s)
- Florian von Knobelsdorff-Brenkenhoff
- Working Group on Cardiovascular Magnetic Resonance, Medical University Berlin, Experimental Clinical Research Center, a joint cooperation of the Charité and the Max-Delbrueck-Center, Berlin, Germany
| | | |
Collapse
|
46
|
Bondarenko O, Beek AM, McCann GP, van Rossum AC. Revascularization in patients with chronic ischaemic myocardial dysfunction: insights from cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2012; 13:985-90. [PMID: 23034989 DOI: 10.1093/ehjci/jes194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In patients with chronic ischaemic left ventricular dysfunction, revascularization may lead to symptomatic and prognostic improvement. Cardiovascular magnetic resonance (CMR) imaging with its high spatial resolution provides the qualitative and quantitative, global and regional information on myocardial anatomy and function. In combination with a gadolinium-based contrast agent, CMR allows an accurate quantification of the myocardial scar and predicts the likelihood of functional recovery after revascularization. The aim of this review is to summarize our current understanding of the detection of myocardial viability using CMR, and why it may be the preferred technique in the assessment of patients with ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Olga Bondarenko
- Department of Cardiology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Romero J, Xue X, Gonzalez W, Garcia MJ. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc Imaging 2012; 5:494-508. [PMID: 22595157 DOI: 10.1016/j.jcmg.2012.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the diagnostic accuracy of cardiac magnetic resonance (CMR) assessing myocardial viability in patients with chronic left ventricular (LV) dysfunction due to coronary artery disease using 3 techniques: 1) end-diastolic wall thickness (EDWT); 2) low-dose dobutamine (LDD); and 3) contrast delayed enhancement (DE). BACKGROUND CMR has been proposed to assess myocardial viability over the past decade. However, the best CMR strategy to evaluate patients being contemplated for revascularization has not yet been determined. Some centers advocate DE CMR due to its high sensitivity to identify scar, whereas others favor the use of LDD CMR for its ability to identify contractile reserve. METHODS A systematic review of MEDLINE, Cochrane, and Embase for all the prospective trials assessing myocardial viability in subjects with chronic LV dysfunction using CMR was performed using a standard approach for meta-analysis for diagnostic tests and a bivariate analysis of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). RESULTS A total of 24 studies of CMR evaluating myocardial viability with 698 patients fulfilled the inclusion criteria. Eleven studies used DE, 9 studies used LDD, and 4 studies used EDWT. Our meta-analysis indicates that among CMR methods, DE CMR provides the highest sensitivity as well as the highest NPV (95% and 90%, respectively) for predicting improved segmental LV contractile function after revascularization, followed by EDWT CMR, whereas LDD CMR demonstrated the lowest sensitivity/NPV among all modalities. On the other hand, LDD CMR offered the highest specificity and PPV (91% and 93%, respectively), followed by DE CMR, whereas EDWT showed the lowest of these parameters. CONCLUSIONS DE CMR provides the highest sensitivity and NPV, whereas LDD CMR provides the best specificity and PPV. In light of these findings, integrating these 2 methods should provide increased accuracy in evaluating patients with chronic LV dysfunction being considered for revascularization.
Collapse
Affiliation(s)
- Jorge Romero
- Division of Cardiology and Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467-2400, USA
| | | | | | | |
Collapse
|
48
|
Myocardial viability: what we knew and what is new. Cardiol Res Pract 2012; 2012:607486. [PMID: 22988540 PMCID: PMC3440854 DOI: 10.1155/2012/607486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/29/2012] [Accepted: 06/09/2012] [Indexed: 12/12/2022] Open
Abstract
Some patients with chronic ischemic left ventricular dysfunction have shown significant improvements of contractility with favorable long-term prognosis after revascularization. Several imaging techniques are available for the assessment of viable myocardium, based on the detection of preserved perfusion, preserved glucose metabolism, intact cell membrane and mitochondria, and presence of contractile reserve. Nuclear cardiology techniques, dobutamine echocardiography and positron emission tomography are used to assess myocardial viability. In recent years, new advances have improved methods of detecting myocardial viability. This paper summarizes the pathophysiology, methods, and impact of detection of myocardial viability, concentrating on recent advances in such methods. We reviewed the literature using search engines MIDLINE, SCOUPS, and EMBASE from 1988 to February 2012. We used key words: myocardial viability, hibernation, stunning, and ischemic cardiomyopathy. Recent studies showed that the presence of viable myocardium was associated with a greater likelihood of survival in patients with coronary artery disease and LV dysfunction, but the assessment of myocardial viability did not identify patients with survival benefit from revascularization, as compared with medical therapy alone. This topic is still debatable and needs more evidence.
Collapse
|
49
|
Kirschbaum SW, Rossi A, Boersma E, Springeling T, van de Ent M, Krestin GP, Serruys PW, Duncker DJ, de Feyter PJ, van Geuns RJM. Combining magnetic resonance viability variables better predicts improvement of myocardial function prior to percutaneous coronary intervention. Int J Cardiol 2012; 159:192-7. [DOI: 10.1016/j.ijcard.2011.02.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/06/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
|
50
|
Arai AE. The cardiac magnetic resonance (CMR) approach to assessing myocardial viability. J Nucl Cardiol 2012. [PMID: 21882082 DOI: 10.1007/s12350-011-9441-5.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Cardiac magnetic resonance (CMR) is a noninvasive imaging method that can determine myocardial anatomy, function, perfusion, and viability in a relative short examination. In terms of viability assessment, CMR can determine viability in a non-contrast enhanced scan using dobutamine stress following protocols comparable to those developed for dobutamine echocardiography. CMR can also determine viability with late gadolinium enhancement (LGE) methods. The gadolinium-based contrast agents used for LGE differentiate viable myocardium from scar on the basis of differences in cell membrane integrity for acute myocardial infarction. In chronic myocardial infarction, the scarred tissue enhances much more than normal myocardium due to increases in extracellular volume. LGE is well validated in pre-clinical and clinical studies that now span from almost a cellular level in animals to human validations in a large international multicenter clinical trial. Beyond infarct size or infarct detection, LGE is a strong predictor of mortality and adverse cardiac events. CMR can also image microvascular obstruction and intracardiac thrombus. When combined with a measure of area at risk like T2-weighted images, CMR can determine infarct size, area at risk, and thus estimate myocardial salvage 1-7 days after acute myocardial infarction. Thus, CMR is a well validated technique that can assess viability by gadolinium-free dobutamine stress testing or late gadolinium enhancement.
Collapse
Affiliation(s)
- Andrew E Arai
- Cardiovascular and Pulmonary Branch, Department of Health and Human Services, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1061, USA.
| |
Collapse
|