1
|
Abstract
In 1968, while cardiologists were focused on cardiac structures imaged by ultrasound, Daniel Kalmanson in Paris, France, devised a new ultrasonic modality, directional continuous-wave Doppler, enabling him to record instantaneous cardiovascular blood flow velocities with recognition of their direction (relative to the transducer) in vessels. An innovative presentation of Doppler data also made velocity traces physiologically understandable. Following the noninvasive study of the arterial and venous beds, flow velocity in the right (1969) and left (1970) cardiac chambers was studied by means of a directional Doppler catheter. The curtain was then raised for the renewal of our pathophysiologic understanding of cardiac dynamics and the adoption of a new methodology. Technological evolution paved the way for clever researchers to pioneer important advances, diversifying the technique. Guided by the early principles, which are still valid in 2018, directional Doppler finally gained acceptance from the entire scientific community.
Collapse
Affiliation(s)
- Colette Veyrat
- Centre National de la Recherche Scientifique Honorary Researcher, Paris, France.
| |
Collapse
|
2
|
Quien MM, Vainrib AF, Freedberg RS, Bamira DG, Benenstein RJ, Williams MR, Saric M. Advanced Imaging Techniques for Mitral Regurgitation. Prog Cardiovasc Dis 2018; 61:390-396. [PMID: 30321560 DOI: 10.1016/j.pcad.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
Mitral regurgitation (MR) is one of the most commonly encountered valvular lesions in clinical practice. MR can be either primary (degenerative) or secondary (functional) depending on the etiology of MR and the pathology of the mitral valve (MV). Echocardiography is the primary diagnostic tool for MR and is key in determining this etiology as well as MR severity. While clinicians usually turn to 2 Dimensional echocardiography as first-line imaging, 3 Dimensional echocardiography (3DE) has continually shown to be superior in terms of describing MV anatomy and pathology. This review article elaborates on 3DE techniques, modalities, and advances in software. Furthermore, the article demonstrates how 3DE has reformed MR evaluation and has played a vital role in determining patient management.
Collapse
Affiliation(s)
- Mary M Quien
- Leon H. Charney Division of Cardiology, New York University Langone Health, 560 First Avenue, New York, NY 10016
| | - Alan F Vainrib
- Leon H. Charney Division of Cardiology, New York University Langone Health, 560 First Avenue, New York, NY 10016
| | - Robin S Freedberg
- Leon H. Charney Division of Cardiology, New York University Langone Health, 560 First Avenue, New York, NY 10016
| | - Daniel G Bamira
- Leon H. Charney Division of Cardiology, New York University Langone Health, 560 First Avenue, New York, NY 10016
| | - Ricardo J Benenstein
- Leon H. Charney Division of Cardiology, New York University Langone Health, 560 First Avenue, New York, NY 10016
| | - Mathew R Williams
- Leon H. Charney Division of Cardiology, New York University Langone Health, 560 First Avenue, New York, NY 10016
| | - Muhamed Saric
- Leon H. Charney Division of Cardiology, New York University Langone Health, 560 First Avenue, New York, NY 10016.
| |
Collapse
|
3
|
Cobey FC, Ferreira R, Ursprung W, Karhausen J, Swaminathan M, Mackensen GB. A Novel Approach to Assess the Three-Dimensional Anatomy of a Mitral Valve Regurgitant Jet Orifice. J Cardiothorac Vasc Anesth 2017; 31:169-173. [DOI: 10.1053/j.jvca.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 11/11/2022]
|
4
|
|
5
|
Abstract
Three-dimensional (3D) echocardiography has been conceived as one of the most promising methods for the diagnosis of valvular heart disease, and recently has become an integral clinical tool thanks to the development of high quality real-time transesophageal echocardiography (TEE). In particular, for mitral valve diseases, this new approach has proven to be the most unique, powerful, and convincing method for understanding the complicated anatomy of the mitral valve and its dynamism. The method has been useful for surgical management, including robotic mitral valve repair. Moreover, this method has become indispensable for nonsurgical mitral procedures such as edge to edge mitral repair and transcatheter closure of paravaluvular leaks. In addition, color Doppler 3D echo has been valuable to identify the location of the regurgitant orifice and the severity of the mitral regurgitation. For aortic and tricuspid valve diseases, this method may not be quite as valuable as for the mitral valve. However, the necessity of 3D echo is recognized for certain situations even for these valves, such as for evaluating the aortic annulus for transcatheter aortic valve implantation. It is now clear that this method, especially with the continued development of real-time 3D TEE technology, will enhance the diagnosis and management of patients with these valvular heart diseases.
Collapse
Affiliation(s)
- Takahiro Shiota
- Department of Medicine, Heart Institute, Cedars-Sinai Medical Center and University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Wunderlich NC, Siegel RJ. Peri-interventional echo assessment for the MitraClip procedure. Eur Heart J Cardiovasc Imaging 2013; 14:935-49. [DOI: 10.1093/ehjci/jet060] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 2012; 13:1-46. [PMID: 22275509 DOI: 10.1093/ehjci/jer316] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Abstract
PURPOSE OF REVIEW To review the utility and the latest developments in three-dimensional (3D) echocardiography of mitral valve prolapse. RECENT FINDINGS Although 3D echocardiography was invented in 1974, it did not gain wide clinical acceptance until the introduction of real-time 3D echocardiography in the first decade of the 21st century. Driven by improvements in probe technology and increases in computing power, 3D echocardiography now provides unprecedented images of mitral valve prolapse and its associated mitral regurgitation with no or minimal requirements for image post processing. SUMMARY 3D echocardiography has become the echocardiographic modality of choice for establishing the diagnosis, describing the precise anatomy, and visualization of mitral regurgitant jets in mitral valve prolapse. 3D echocardiography is becoming indispensable in guiding surgical and percutaneous methods of mitral valve repair and replacement.
Collapse
|
9
|
Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 2012; 25:3-46. [PMID: 22183020 DOI: 10.1016/j.echo.2011.11.010] [Citation(s) in RCA: 481] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Zhang L, Xie M, Balluz R, Ge S. Real Time Three-Dimensional Echocardiography for Evaluation of Congenital Heart Defects: State of the Art. Echocardiography 2012; 29:232-41. [DOI: 10.1111/j.1540-8175.2011.01589.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
11
|
|
12
|
Zakkar M, Patni R, Punjabi PP. Mitral valve regurgitation and 3D echocardiography. Future Cardiol 2010; 6:231-42. [DOI: 10.2217/fca.09.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mitral valve is a complex, dynamic and functional apparatus that can be altered by a wide range of disorders leading to stenosis or regurgitation. Surgical management of mitral valve disease may be difficult. Planned intervention may not always be feasible when the surgeon is faced with complex pathology that cannot be assessed fully by conventional 2D echocardiography. Transthoracic and transesophageal 3D echocardiography can provide a more reliable functional and anatomical assessment of the different valve components and evaluation of its geometry, which can aid the surgeon in planning a more suitable surgical intervention and improve outcomes. Although 3D echocardiography is a new technology, it has proven to be an important modality for the accurate assessment of valvular heart disease and in the future, it promises to be an essential part in the routine assessment of cardiovascular patients.
Collapse
Affiliation(s)
- Mustafa Zakkar
- Department of Cardiothoracic surgery, Imperial College NHS Trust, Hammersmith Hospital, London, UK
| | - Ravi Patni
- Department of Cardiothoracic surgery, Imperial College NHS Trust, Hammersmith Hospital, London, UK
| | - Prakash P Punjabi
- Department of Cardiothoracic surgery, Imperial College NHS Trust, Hammersmith Hospital, Du Cane Road London, W12 0HS, UK
| |
Collapse
|
13
|
|
14
|
Solis J, Sitges M, Levine RA, Hung J. Ecocardiografía tridimensional. Nuevas perspectivas sobre la caracterización de la válvula mitral. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)70161-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Shiota T. 3D echocardiography: The present and the future. J Cardiol 2008; 52:169-85. [DOI: 10.1016/j.jjcc.2008.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 12/14/2022]
|
16
|
Fischer GW, Salgo IS, Adams DH. Real-time Three-Dimensional Transesophageal Echocardiography: The Matrix Revolution. J Cardiothorac Vasc Anesth 2008; 22:904-12. [DOI: 10.1053/j.jvca.2008.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Indexed: 11/11/2022]
|
17
|
Abstract
Three-dimensional (3D) color Doppler echocardiography is a relatively new noninvasive tool that displays and quantitates regurgitant flow and also enables estimation of cardiac output, stroke volume, pulmonary outflow, and shunt calculations. This article provides an overview of the current methodology of 3D color flow, and its advantages and limitations.
Collapse
Affiliation(s)
- Lissa Sugeng
- Section of Cardiology, Department of Medicine, University of Chicago Medical Center, MC 5084, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | |
Collapse
|
18
|
Hoda MR, Schwarz T, Wolf I, Mottl-Link S, Meinzer HP, Karck M, De Simone R. [Three-dimensional echocardiography in cardiac surgery. Current status and perspectives]. Chirurg 2007; 78:435-42. [PMID: 17426941 DOI: 10.1007/s00104-007-1329-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Three-dimensional (3D) echocardiography is a new imaging technique that can provide useful information about cardiovascular morphology, pathology, and function. Recent refinements in instrumentation, data acquisition, post-processing, and computation speed allow 3D echocardiography to play an important role in cardiac imaging. These modalities provide comprehensive information on ventricular and valve morphology and function. Combined with 3D color Doppler sonography, further assessment of valvular function and determination of flow in the left ventricular outflow tract and cross-septal defects are now possible. Three-dimensional color flow imaging also makes echocardiography accurate for assessing the severity of mitral regurgitation. The purpose of this review is to describe technical developments in 3D echocardiography and its clinical application in cardiac surgery. Moreover, based on clinical studies at our centre, we describe the morphology of the mitral valve, its flow pattern, and function of the mitral annulus.
Collapse
Affiliation(s)
- M R Hoda
- Klinik für Herzchirurgie, Chirurgische Klinik der Universität Heidelberg, Heidelberg, Deutschland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Little SH, Igo SR, Pirat B, McCulloch M, Hartley CJ, Nosé Y, Zoghbi WA. In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol 2007; 99:1440-7. [PMID: 17493476 PMCID: PMC3348701 DOI: 10.1016/j.amjcard.2006.12.079] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/25/2022]
Abstract
The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional-PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flow-meter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional-PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r(2) = 0.47, p <0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 +/- 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r(2) = 0.92, p <0.001), with a mean regurgitant volume underestimate of 2.7 +/- 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions.
Collapse
Affiliation(s)
| | | | - Bahar Pirat
- Methodist DeBakey Heart Center, Houston, Texas
| | | | | | | | - William A. Zoghbi
- Methodist DeBakey Heart Center, Houston, Texas
- Corresponding author: Tel: 713-441-4342; fax: 713-793-1641. (W.A. Zoghbi)
| |
Collapse
|
20
|
Colombo C, Tamborini G, Pepi M, Alimento M, Fiorentini C. Three-Dimensional Echocardiography in Valve Disease. Heart Int 2007. [DOI: 10.1177/1826186807003001-205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chiara Colombo
- Centro Cardiologico Monzino, IRCCS, Istituto di Cardiologia dell'Università degli Studi di Milano, Milano - Italy
| | - Gloria Tamborini
- Centro Cardiologico Monzino, IRCCS, Istituto di Cardiologia dell'Università degli Studi di Milano, Milano - Italy
| | - Mauro Pepi
- Centro Cardiologico Monzino, IRCCS, Istituto di Cardiologia dell'Università degli Studi di Milano, Milano - Italy
| | - Marina Alimento
- Centro Cardiologico Monzino, IRCCS, Istituto di Cardiologia dell'Università degli Studi di Milano, Milano - Italy
| | - Cesare Fiorentini
- Centro Cardiologico Monzino, IRCCS, Istituto di Cardiologia dell'Università degli Studi di Milano, Milano - Italy
| |
Collapse
|
21
|
Le Tourneau T, Polge AS, Gautier C, Deklunder G. [Three-dimensional echography: cardiovascular applications]. JOURNAL DE RADIOLOGIE 2006; 87:1993-2004. [PMID: 17211312 DOI: 10.1016/s0221-0363(06)74183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Real-time three-dimensional echocardiography is currently used in a standard echocardiographic examination. Volume-rendered images better identify and locate anatomic structures and improve our comprehensive approach to various heart diseases. The assessment of mitral valve disease and congenital cardiopathies and the measurement of left ventricular mass, volume, and ejection fraction are the three main applications of three-dimensional echocardiography. Three-dimensional vascular imaging is an emerging and promising application of three-dimensional echography. The near future of three-dimensional echography requires the integration of all modalities of conventional echography in three dimensional probes, a higher image resolution compared to the current situation, as well as the development of real-time three-dimensional probes dedicated to transesophageal cardiac or vascular examination.
Collapse
Affiliation(s)
- T Le Tourneau
- Service d'Explorations Fonctionnelles Cardio-vasculaires, Hôpital Cardiologique, CHRU, Boulevard du Pr. J. Leclercq, 59037 Lille Cedex.
| | | | | | | |
Collapse
|
22
|
Paszczuk A, Wiegers SE. Quantitative assessment of mitral insufficiency: its advantages and disadvantages. Heart Fail Rev 2006; 11:205-17. [PMID: 17041761 DOI: 10.1007/s10741-006-0100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Anna Paszczuk
- Hospital of University of Pennsylvania, Pennsylvania, USA
| | | |
Collapse
|
23
|
Das Regurgitationsjetvolumen zur Quantifizierung der Mitralklappeninsuffizienz. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2006. [DOI: 10.1007/s00398-006-0543-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Iwakura K, Ito H, Kawano S, Okamura A, Kurotobi T, Date M, Inoue K, Fujii K. Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 2006; 97:1630-7. [PMID: 16728228 DOI: 10.1016/j.amjcard.2005.12.065] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 12/06/2005] [Accepted: 12/06/2005] [Indexed: 11/29/2022]
Abstract
Effective regurgitant orifice area is a useful index of the severity of mitral regurgitation (MR). The calculation of regurgitant orifice area using the proximal isovelocity surface area (PISA) method has some technical limitations. Three-dimensional reconstruction of the MR jet was performed using the Live 3D system on a Sonos 7500 to measure regurgitant orifice area directly in 109 cases of MR. Regurgitant orifice area was also measured by quantitative 2-dimensional echocardiography and by the PISA method. To analyze the shape of the regurgitant orifice, the ratio of the long axis to the short axis of the orifice (the L/S ratio) was calculated. Regurgitant orifice area on 3-dimensional echocardiography showed an almost identical correlation with that obtained by quantitative echocardiography (r = 0.91, p <0.0001, slope = 0.97) regardless of the L/S ratio. It was also significantly correlated with orifice area obtained using the PISA method (r = 0.93, p <0.0001). However, orifice area on 3-dimensional echocardiography was significantly larger than that obtained using the PISA method in the whole study group and in the 62 cases of MR with L/S ratios >1.5, whereas the correlation was almost identical in cases of MR with L/S ratios < or =1.5. Orifice area obtained using the PISA method also underestimated that obtained by quantitative echocardiography in cases of MR with L/S ratios >1.5. Three-dimensional echocardiography provided robust values independent of the eccentricity of the MR jet or of cardiac rhythm. In conclusion, the direct measurement of the regurgitant orifice area of MR with 3-dimensional Doppler echocardiography could be a promising method to overcome the limitations of the PISA method, especially in cases of MR with elliptic orifice shapes.
Collapse
Affiliation(s)
- Katsuomi Iwakura
- Division of Cardiology, Sakurabashi Watanabe Hospital, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lu Q, Liu X, Xie M, Wang X, Wang J, Zhuang L. Real-time three-dimensional color Doppler flow imaging: an improved technique for quantitative analysis of aortic regurgitation. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2006; 26:148-52. [PMID: 16711032 DOI: 10.1007/bf02828064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r = 0.93, Y = 0.89X + 3.9, SEE = 8.6 mL, P < 0.001); the mean (SD) difference between the two methods was--1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r = 0.88, Y = 0.71X + 14.8, SEE = 6.4%, P < 0.001); the mean (SD) difference between the two methods was--1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.
Collapse
Affiliation(s)
- Qing Lu
- Department of Echocardiography, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | |
Collapse
|
26
|
Khanna D, Miller AP, Nanda NC, Ahmed S, Lloyd SG. Transthoracic and Transesophageal Echocardiographic Assessment of Mitral Regurgitation Severity: Usefulness of Qualitative and Semiquantitative Techniques. Echocardiography 2005; 22:748-69. [PMID: 16194170 DOI: 10.1111/j.1540-8175.2005.00170.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this report, we review the advantages, limitations, and optimal utilization of various transthoracic and transesophageal echocardiographic (TTE and TEE) methods used for assessing mitral regurgitation (MR) as published in full-length, peer-reviewed articles since the color Doppler era began in 1984. In addition, comparison is made to other imaging modalities including catheter-based, magnetic resonance and surgical assessment of MR. Although left ventricular (LV) angiography has been traditionally used for validation of various TTE methods and is time-honored, its considerable limitations preclude it from being a real "gold standard." Based on the reviewed literature, no clear "gold standard" for the assessment of MR can be identified at present, but newly emerging TTE and TEE techniques, such as three-dimensional color Doppler, may have the potential to overcome some of the limitations of the two-dimensional methods.
Collapse
Affiliation(s)
- Deepak Khanna
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham, Birmingham, Alabama 35249, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Recent advances in the field of three-dimensional (3D) echocardiography have allowed improved visualization of cardiac structures. These advances have also provided valuable insights into cardiac function. The purpose of this review is to describe the recent developments in 3D echocardiography in assessing valvular heart disease. RECENT FINDINGS Application of 3D echocardiography to valvular heart disease has improved with advances made in both the hardware and software components of 3D ultrasound systems. The most significant advancement has been the development of a matrix transducer that is capable of rapid real-time 3D acquisition and rendering. There have been many studies evaluating 3D echocardiographic assessment of mitral valve disease, aortic valve disease, as well as congenital heart disease using both real-time 3D transthoracic echocardiography (TTE) as well as off-line reconstructed 3D images from transesophageal echocardiography (TEE) using post image processing. More recent studies have combined the structural 3D information with color Doppler 3D imaging, providing qualitative functional information. SUMMARY Developments in the field of 3D ultrasound imaging have allowed better qualitative assessment of valvular structures. The addition of color flow Doppler to the 3D imaging has provided improved visualization of regurgitant lesions and holds great promise for improved quantitative assessment of such lesions. The ongoing miniaturization of transducers and improvements in hardware and software components of ultrasound systems will certainly enhance both the ease of image acquisition as well as image quality, which should result in more precise quantitation of valvular dysfunction. However, clinical benefits of 3D echocardiography are yet to be demonstrated in properly conducted clinical trials, which are needed for wider acceptance of this technique.
Collapse
Affiliation(s)
- Omid Salehian
- Echocardiography Laboratory, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
28
|
|
29
|
Tsujino H, Jones M, Qin JX, Sitges M, Cardon LA, Morehead AL, Zetts AD, Bauer F, Kim YJ, Hang XY, Greenberg N, Thomas JD, Shiota T. Combination of pulsed-wave Doppler and real-time three-dimensional color Doppler echocardiography for quantifying the stroke volume in the left ventricular outflow tract. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:1441-1446. [PMID: 15588954 DOI: 10.1016/j.ultrasmedbio.2004.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 08/25/2004] [Accepted: 08/31/2004] [Indexed: 05/24/2023]
Abstract
Real-time three-dimensional (3-D) color Doppler echocardiography (RT3D) is capable of quantifying flow. However, low temporal resolution limits its application to stroke volume (SV) measurements. The aim of the present study was, therefore, to develop a reliable method to quantify SV. In animal experiments, cross-sectional images of the LV outflow tract were selected from the RT3D data to calculate peak flow rates (Q(p3D)). Conventional pulsed-wave (PW) Doppler was performed to measure the velocity-time integral (VTI) and the peak velocity (V(p)). By assuming that the flow is proportional to the velocity temporal waveform, SV was calculated as alpha x Q(p3D) x VTI/V(p), where alpha is a temporal correction factor. There was an excellent correlation between the reference flow meter and RT3D SV (mean difference = -1. 3 mL, y = 1. 05 x -2. 5, r = 0. 94, p < 0. 01). The new method allowed accurate SV estimations without any geometric assumptions of the spatial velocity distributions.
Collapse
Affiliation(s)
- Hiroyuki Tsujino
- Cardiovascular Imaging Center, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Important recent developments have occurred in echocardiography that are already being used clinically. Portable ultrasound devices that weigh less than five pounds are capable of performing a complete bedside echo exam. An intracardiac echocardiographic catheter has recently been introduced that can be placed intracardiac via a vein and navigated within right heart chambers to obtain detailed anatomical landmarks that guide catheter based interventional procedures such as intracardiac ablation and closure of atrial septal defects and patent foramen ovale. Tissue Doppler imaging is finding its role in detecting mechanical asynchrony in patients with congestive heart failure who might benefit from biventricular pacing. The availability of real-time 3D echocardiography has for the first time made assessment of complex cardiac anatomy possible. This review discusses each of these new developments and their potential impact on the practice of echocardiography and cardiology in general.
Collapse
Affiliation(s)
- Tasneem Z Naqvi
- Cardiac Non-Invasive Laboratory, Division of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| |
Collapse
|
31
|
Acar P, Roux D, Dulac Y, Rougé P, Aggoun Y. Transthoracic three-dimensional echocardiography prior to closure of atrial septal defects in children. Cardiol Young 2003; 13:58-63. [PMID: 12691290 DOI: 10.1017/s1047951103000118] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Our aims were to use transthoracic three-dimensional echocardiography to assess the morphology of atrial septal defects in children prior to closure, and to compare the three-dimensional echocardiographic data with transcatheter and surgical findings. METHODS AND RESULTS We used transthoracic three-dimensional echocardiography in 62 consecutive patients, aged from 2 to 18 years, with atrial septal defects, measuring the maximal diameter and the extent of the rims. Subsequent to the study, we referred 42 patients for transcatheter closure, the rims being measured at greater than 4 mm. We found a good correlation between the maximal diameter of the defect as measured at transthoracic three-dimensional echocardiography and using a balloon (y = 3.45 - 0.73x; r = 0.78; p < 0.0001), the mean difference between the measurements being 2.4 +/- 2.8 mm. Successful closure with the Amplatzer septal occluder, having a mean size of 22 +/- 4 mm, was achieved in 95% of the patients. Of the original cohort, 20 patients were referred for surgical closure. In these patients, the inferior rim had been deemed insufficient in 5, the postero-superior rim in 6, and the postero-inferior rim in 9. Complete agreement was found when the deficiency of the rim as judged using transthoracic three-dimensional echocardiography was compared with intraoperative findings. The correlation between measurements of the deficiency of the rim achieved by transthoracic three-dimensional echocardiography and at surgery was excellent (y = 0.2 + 0.98x; r = 0.93; p < 0.0001), the mean difference between the measurements being no more than 0.6 +/- 0.4 mm. CONCLUSIONS Transthoracic three-dimensional echocardiography proved accurate in measuring the maximal diameter and rims of atrial septal defects within the oval fossa. This non-invasive method will be valuable in selecting children for transcatheter or surgical closure of such defects.
Collapse
Affiliation(s)
- Philippe Acar
- Unité de Cardiologie Pédiatrique, Hôpital des Enfants, Toulouse, France.
| | | | | | | | | |
Collapse
|
32
|
Sitges M, Jones M, Shiota T, Qin JX, Tsujino H, Bauer F, Kim YJ, Agler DA, Cardon LA, Zetts AD, Panza JA, Thomas JD. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience. J Am Soc Echocardiogr 2003; 16:38-45. [PMID: 12514633 DOI: 10.1067/mje.2003.37] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.
Collapse
Affiliation(s)
- Marta Sitges
- Cardiovascular Imaging Center, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lange A, Palka P, Donnelly J, Burstow D. Quantification of mitral regurgitation orifice area by 3-dimensional echocardiography: comparison with effective regurgitant orifice area by PISA method and proximal regurgitant jet diameter. Int J Cardiol 2002; 86:87-98. [PMID: 12243853 DOI: 10.1016/s0167-5273(02)00196-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The evaluation of mitral regurgitation (MR) by 3-dimensional (3D) echo has generally been performed by reconstruction of Doppler regurgitant jets but there are little data on measuring anatomic regurgitant orifice area (AROA) directly from 3D mitral valve (MV) reconstructions. METHODS AND RESULTS Transoesophageal echo (TOE) 3D images were acquired from 38 unselected patients (age 59+/-11 years, ten in atrial fibrillation) with various degrees of MR. In all patients MV was reconstructed en face from the left atrium (LA) and the left ventricle (LV). AROA was measured by planimetry from 3D pictures and compared to the effective regurgitant orifice area (EROA) by proximal isovelocity surface area and proximal MR jet width from 2D echo. AROA was measured in 95% of patients from LA, 89% from LV and in 84% from both LA and LV. Good correlation was found between EROA and AROA measured from both LA (r=0.97, P<0.0001) and LV (r=0.87, P<0.0001). The mean difference between LA-AROA and EROA was -3.01+/-6.12 mm(2) and -7.18+/-13.84 mm(2) for LV-AROA (P<0.01, respectively). An acceptable correlation was found between the proximal MR jet width and AROA from LA (r=0.71, P<0.0001) and LV perspective (r=0.68, P<0.0001). AROA>or=25 mm(2) differentiated mild MR (graded 1-2) from moderately severe (graded 3-4) with 80-90% accuracy. CONCLUSIONS 3D TOE provides important quantitative information on both the mechanism and the severity of MR in an unselected group of patients. AROA enables quantification of MR with excellent agreement with the accepted clinical method of proximal flow convergence.
Collapse
Affiliation(s)
- Aleksandra Lange
- Department of Echocardiography, The Prince Charles Hospital, Brisbane, Australia.
| | | | | | | |
Collapse
|
34
|
Wolf I, Hastenteufel M, De Simone R, Vetter M, Glombitza G, Mottl-Link S, Vahl CF, Meinzer HP. ROPES: a semiautomated segmentation method for accelerated analysis of three-dimensional echocardiographic data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2002; 21:1091-1104. [PMID: 12564877 DOI: 10.1109/tmi.2002.804432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Echocardiography (cardiac ultrasound) is today the predominant technique for quantitative assessment of cardiac function and valvular heart lesions. Segmentation of cardiac structures is required to determine many important diagnostic parameters. As the heart is a moving organ, reliable information can be obtained only from three-dimensional (3-D) data over time (3-D + time = 4-D). Due to their size, the resulting four-dimensional (4-D) data sets are not reasonably accessible to simple manual segmentation methods. Automatic segmentation often yields unsatisfactory results in a clinical environment, especially for ultrasonic images. We describe a semiautomated segmentation algorithm (ROPES) that is able to greatly reduce the time necessary for user interaction and its application to extract various parameters from 4-D echocardiographic data. After searching for candidate contour points, which have to fulfill a multiscale edge criterion, the candidates are connected by minimizing a cost function to line segments that then are connected to form a closed contour. The contour is automatically checked for plausibility. If necessary, two correction methods that can also be used interactively are applied (fitting of other line segments into the contour and searching for additional candidates with a relaxed criterion). The method is validated using in vivo transesophageal echocardiographic data sets.
Collapse
Affiliation(s)
- Ivo Wolf
- Division of Medical and Biological Informatics, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
VanAuker MD, Chandra M, Shirani J, Strom JA. Jet eccentricity: a misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis. J Am Soc Echocardiogr 2001; 14:853-62. [PMID: 11547270 DOI: 10.1067/mje.2001.113648] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Characterization of the severity of aortic stenosis relies on accurate measurement of the pressure gradient across the valve and the valve area. Pressure gradients measured by Doppler ultrasound based on the clinical form of the Bernoulli equation often overestimate pressure gradients by catheter as the result of pressure recovery. Doppler techniques measure the velocity of the vena contracta of the stenotic jet. This corresponds to the maximal pressure gradient and the minimal effective valve area. Pressure recovery can be characterized by analysis of the spread of the stenotic jet downstream of the valve as it fills the aorta and should be influenced by the shape of the velocity profile of the decaying jet. In this study, we addressed the hypothesis that the site of complete pressure recovery (the point at which the jet fully expands to the size of the aorta), the effective valve area, and the maximal pressure gradient are affected by jet eccentricity. To accomplish this, we developed a computational model of aortic stenosis that provides detailed velocity and pressure information in the vicinity of the valve. The results show that the width of the eccentric wall jet decreased and maximal velocity increased with greater jet eccentricity. Furthermore, for a constant anatomic area, the effective valve area decreased, the distance to complete pressure recovery increased, and the maximal pressure gradient increased with the degree of eccentricity. Failure to take this into account could fortuitously drive Doppler and catheter measurements toward agreement because the distal pressure sensor will not record the fully recovered pressure. Therefore the pressure gradient across a stenotic valve depends on jet eccentricity. The spread of the wall jet after attachment must be characterized to develop a robust method for the prediction of pressure recovery.
Collapse
Affiliation(s)
- M D VanAuker
- Department of Medicine, State University of New York Health Science Center at Brooklyn, New York, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Accurate evaluation of mitral regurgitation (MR) severity remains a challenging task in clinical cardiology. The importance of proper quantification of regurgitation cannot be underestimated because a delayed decision to replace or repair a defective valve may lead to worsening ventricular function and increased perioperative and long-term mortality. In this review we discuss both recent developments in the quantification of MR as well as new insights into the pathophysiology and progression of this lesion.
Collapse
Affiliation(s)
- W Mazur
- Section of Cardiology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
37
|
Lange A, Palka P, Burstow DJ, Godman MJ. Three-dimensional echocardiography: historical development and current applications. J Am Soc Echocardiogr 2001; 14:403-12. [PMID: 11337688 DOI: 10.1067/mje.2001.113147] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three-dimensional (3D) echocardiography facilitates spatial recognition of intracardiac structures, potentially enhancing diagnostic confidence of conventional echocardiography. The accuracy of 3D images has been validated in vitro and in vivo. In vitro, a detail 1.0 mm in dimension and 2 details separated by 1.0 mm can be identified from a volume-rendered 3D image. In vitro 3D volume measurements are underestimated by approximately 4.0 mL. In vivo, left ventricular volume measurements correlate highly with both cineventriculography (limits of agreement +/-18 mL for end diastole and +/-10 mL for end systole) and magnetic resonance imaging, including measurements for patients with functionally single ventricles. Studies on congenital heart lesions have shown good accuracy and good reproducibility of dynamic "surgical" reconstructions of septal defects, aortoseptal continuity, atrioventricular junction, and both left and right ventricular outflow tract morphology. Transthoracic 3D echocardiography was shown feasible in 81% to 96% of patients with congenital heart defects and provided additional information to that available from conventional echocardiography in 36% of patients, mainly in more detailed description of mitral valve morphology, aortoseptal continuity, and atrial septum. In patients with mitral valve insufficiency, 3D echocardiography was shown to be accurate in the quantification of the dynamic mechanism of mitral regurgitation and in the assessment of mitral commissures in patients with mitral stenosis. This includes not only valve tissue reconstruction but also color flow intracardiac jets. Three-dimensional reconstructions of the aortic valve were achieved in 77% of patients, with an accuracy of 90%. In conclusion, the role of 3D echocardiography, which continues to evolve, shows promise in the assessment of congenital and acquired heart disease.
Collapse
Affiliation(s)
- A Lange
- Department of Cardiology, The Prince Charles Hospital, Chermside, Brisbane, Australia.
| | | | | | | |
Collapse
|
38
|
Guo Z, Boughner DR, Dietrich JM, Pflugfelder PW, Durand LG, Loew M, Fenster A. Quantitative assessment of in vitro jets based on three-dimensional color Doppler reconstruction. ULTRASOUND IN MEDICINE & BIOLOGY 2001; 27:235-243. [PMID: 11316532 DOI: 10.1016/s0301-5629(00)00337-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3-D) color Doppler imaging of flow jets was performed to investigate the effects of flow rate and orifice size on jet volumes. Flow jets were generated using a flow model to simulate mitral regurgitation. This flow model consisted of a ventricular chamber, a valvular plate and an atrial chamber. Steady flow was driven through circular orifices having diameters of 2.5, 3.5, 4.5, and 6 mm, respectively, with flow rates of 5, 10, 15, 20, and 25 mL/s to form free jets in the atrial chamber. An ATL Ultramark 9 HDI system was used to perform 3-D color Doppler imaging of the flow jets. A transesophageal probe was rotated by a stepper motor to create 3-D color Doppler images of the jets. The color jet volumes for different hemodynamic conditions were measured and then compared with the theoretical predictions. Results showed that the jet volume estimated from the 3-D color Doppler was directly proportional to the flow rate and inversely proportional to the orifice size. The estimated jet volumes correlated well (r > 0.95) with theoretical predictions. This study supports the use of color jet volume as a parameter to quantify mitral regurgitation.
Collapse
Affiliation(s)
- Z Guo
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Tsujino H, Jones M, Shiota T, Qin JX, Greenberg NL, Cardon LA, Morehead AJ, Zetts AD, Travaglini A, Bauer F, Panza JA, Thomas JD. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract. ULTRASOUND IN MEDICINE & BIOLOGY 2001; 27:69-74. [PMID: 11295272 DOI: 10.1016/s0301-5629(00)00270-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.
Collapse
Affiliation(s)
- H Tsujino
- Cardiovascular Imaging Center, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
De Simone R, Glombitza G, Vahl CF, Meinzer HP, Hagl S. Three-dimensional color Doppler reconstruction of intracardiac blood flow in patients with different heart valve diseases. Am J Cardiol 2000; 86:1343-8. [PMID: 11113410 DOI: 10.1016/s0002-9149(00)01239-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An improved perception of the magnitude and dynamics of intracardiac flow disturbances has been made possible by the advent of 3-dimensional (3-D) color Doppler, a new diagnostic procedure developed at our institution. This study describes the new insights derived from 3-D reconstruction of color Doppler flow patterns in patients with different heart valve diseases. The color Doppler flow data from 153 multiplanar transesophageal or transthoracic echocardiographic examinations has been obtained from 133 patients with heart valve disease; 73 patients had mitral regurgitation, 15 had mitral stenosis, 18 had aortic regurgitation, 26 had aortic stenosis, and 21 patients had tricuspid regurgitation. Four patients had pulmonary regurgitation associated with mitral valve disease. The 3-D reconstructions of color Doppler flow signals were accomplished by means of the "Heidelberg Raytracing model," developed at our institution. The 3-D color Doppler reconstructions were obtained in all patients. The 3-D images revealed for the first time the complex spatial distribution of the blood flow abnormalities in the heart chambers caused by different heart valve diseases. New patterns of intracardiac blood flow disturbances were observed and classified. Three-dimensional color Doppler provides a unique noninvasive method that can be easily applied for studying intracardiac blood flow disturbances in clinical practice.
Collapse
Affiliation(s)
- R De Simone
- University of Heidelberg and German Cancer Research Institute.
| | | | | | | | | |
Collapse
|
41
|
De Simone R, Glombitza G, Vahl CF, Meinzer HP, Hagl S. Three-dimensional color Doppler flow reconstruction and its clinical applications. Echocardiography 2000; 17:765-71. [PMID: 11153028 DOI: 10.1111/j.1540-8175.2000.tb01235.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The visualization and quantification of intracardiac blood flow have always been a challenging task for the cardiologist. The advent of color Doppler flow imaging substantially enhanced the clinical diagnosis of heart valve disease. Three-dimensional (3-D) color Doppler, a new diagnostic procedure, refines the diagnostic value of color Doppler by providing unique spatial and temporal information about the actual extension, direction, origin, and size of intracardiac flows. Here, we describe the procedure for 3-D color Doppler reconstruction of intracardiac blood flow velocities and reveal the varied findings in different heart pathologies that cause blood flow disturbances. An automated procedure for the segmentation of turbulent and laminar flows, which allows for the measurement of mitral regurgitant jet volumes, is one of the first 3-D quantitative approaches to the clinical assessment of mitral valve regurgitation. The major technical advances of this procedure include the direct use of digital color Doppler velocity data and an automatic voxel count of the turbulent jet flows. Three-dimensional color Doppler not only can disclose the spatial complex geometry of intracardiac blood flow disturbances but also can quantitatively assess the severity of mitral valve regurgitation.
Collapse
|
42
|
Gunasegaran K, Yao J, De Castro S, Nesser HJ, Pandian NG. Three-dimensional transesophageal echocardiography (TEE) and other future directions. Cardiol Clin 2000; 18:893-910. [PMID: 11236172 DOI: 10.1016/s0733-8651(05)70186-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As faster imaging systems enter the market, three-dimensional echocardiography is gearing up to become a useful tool in assisting the clinician to image the heart in many innovative projections. What started out as a novel idea of displaying a three-dimensional anatomic picture of the heart now provides a multitude of views of the heart and its structures. Information gained from anatomic and dynamic data has helped clinicians and surgeons in making clinical decisions. In the future, this imaging modality may become a routine imaging modality for assessing cardiac pathology and may serve to increase understanding of the dynamics of the heart.
Collapse
Affiliation(s)
- K Gunasegaran
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
43
|
Hozumi T, Yoshikawa J. Three-dimensional echocardiography using a muliplane transesophageal probe: the clinical applications. Echocardiography 2000; 17:757-64. [PMID: 11153027 DOI: 10.1111/j.1540-8175.2000.tb01234.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The use of multiplane transesophageal echocardiography has provided three-dimensional image sets of the heart from multiple two-dimensional images with high-image quality through rotation of the transducer without changing its position (rotational scanning). We discuss the methods, clinical applications, and current limitations of this three-dimensional technique.
Collapse
Affiliation(s)
- T Hozumi
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
44
|
Bruining N, Lancée C, Roelandt JR, Bom N. Three-dimensional echocardiography paves the way toward virtual reality. ULTRASOUND IN MEDICINE & BIOLOGY 2000; 26:1065-1074. [PMID: 11053740 DOI: 10.1016/s0301-5629(00)00256-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The heart is a three-dimensional (3-D) object and, with the help of 3-D echocardiography (3-DE), it can be shown in a realistic fashion. This capability decreases variability in the interpretation of complex pathology among investigators. Therefore, it is likely that the method will become the standard echocardiography examination in the future. The availability of volumetric data sets allows retrieval of an infinite number of cardiac cross-sections. This results in more accurate and reproducible measurements of valve areas, cardiac mass and cavity volumes by obviating geometric assumptions. Typical 3-DE parameters, such as ejection fraction, flow jets, myocardial perfusion and LV wall curvature, may become important diagnostic parameters based on 3-DE. However, the freedom of an infinite number of cross-sections of the heart can result in an often-encountered problem of being "lost in space" when an observer works on a 3-DE image data set. Virtual reality computing techniques in the form of a virtual heart model can be useful by providing spatial "cardiac" information. With the recent introduction of relatively low cost portable echo devices, it is envisaged that use of diagnostic ultrasound (US) will be further boosted. This, in turn, will require further teaching facilities. Coupling of a cardiac model with true 3-D echo data in a virtual reality setting may be the answer.
Collapse
Affiliation(s)
- N Bruining
- Thoraxcentre, Department of Cardiology, Erasmus Medical Centre Rotterdam, Erasmus University, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
deGroot C, Drangova M, Fenster A, Zhu S, Pflugfelder PW, Boughner DR. Evaluation of 3-D colour Doppler ultrasound for the measurement of proximal isovelocity surface area. ULTRASOUND IN MEDICINE & BIOLOGY 2000; 26:989-999. [PMID: 10996699 DOI: 10.1016/s0301-5629(00)00245-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3-D) colour Doppler ultrasound (US) enables flow rate estimation across a diseased valve without the need for a priori geometric assumptions. This study quantitatively evaluates the accuracy of 3-D colour Doppler US for measuring the flow rate (8. 3-75 mL/s) through a valve using the proximal flow convergence field. Flow rate measurements by this 3-D technique underestimate flow through finite circular orifices due to two major sources of error: 1. surface area slicing technique (18.3% +/- 3.8%) and 2. Doppler angle effect (41.0% +/- 1.5%). Combined total underestimation is 51% +/- 3.3%. To utilize 3-D US, the development of an improved proximal isovelocity surface area (PISA) measurement technique and a correction factor for the Doppler angle effect is required.
Collapse
Affiliation(s)
- C deGroot
- John P. Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Anesthesiologists are increasingly using transesophageal echocardiography in both cardiac and noncardiac cases. In cardiac anesthesia, considerable progress has been made in the evaluation of mitral valvular disease. Transesophageal echocardiography has also become more useful in the hemodynamic evaluation of patients undergoing coronary artery bypass grafting. It is particularly valuable in minimally invasive surgery and in heart surgery to correct congenital defects.
Collapse
Affiliation(s)
- M G D'Souza
- College of Physicians and Surgeons, Columbia University, and Department of Anesthesiology, St. Luke's-Roosevelt Hospital Center, New York, New York, USA.
| | | |
Collapse
|
47
|
Abstract
While the recent evolution of guidelines for arterial hypertension also includes the need to evaluate coexistent cardiovascular risk factors and target organ damage in the base work-up for arterial hypertension, it does not include echocardiography systematically, because there is no evidence that information on LV geometry and function can modify management strategy in every circumstance, and there is concern about the technical variability of repeated echocardiographic examinations in the individual patient. The present issue of the Journal publishes a paper showing that adherence to the 1993 World Health Organization - International Society of Hypertension recommendations leaves untreated a proportion of patients with 'mild hypertension' who instead would have been treated if decision was also based on echocardiographic information on LV geometry. These findings challenge the most recent positions of national Societies, reserving the indication for echocardiography to patients with high risk (the vast majority). The present study appears indeed to reinforce the notion that echocardiographic examination might be very important in patients in whom, based on guidelines adherence, no pharmacological treatment would be required, whereas, based on the present evidence, echocardiographic information might be less important and perhaps superfluous for decision making in patients assigned to a high risk score, for whom aggressive treatment has been already scheduled.
Collapse
Affiliation(s)
- G de Simone
- Department of Clinical and Experimental Medicine, Federico II University Hospital, School of Medicine, Naples, Italy.
| |
Collapse
|