1
|
Wang T, Zhao H, Zhang Y, Liu Y, Liu J, Chen G, Duan K, Li Z, Hui HPJ, Yan J. A novel extracellular vesicles production system harnessing matrix homeostasis and macrophage reprogramming mitigates osteoarthritis. J Nanobiotechnology 2024; 22:79. [PMID: 38419097 PMCID: PMC10903078 DOI: 10.1186/s12951-024-02324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that significantly impairs quality of life. There is a pressing need for innovative OA therapies. While small extracellular vesicles (sEVs) show promising therapeutic effects against OA, their limited yield restricts clinical translation. Here, we devised a novel production system for sEVs that enhances both their yield and therapeutic properties. By stimulating mesenchymal stem cells (MSCs) using electromagnetic field (EMF) combined with ultrasmall superparamagnetic iron oxide (USPIO) particles, we procured an augmented yield of EMF-USPIO-sEVs. These vesicles not only activate anabolic pathways but also inhibit catabolic activities, and crucially, they promote M2 macrophage polarization, aiding cartilage regeneration. In an OA mouse model triggered by anterior cruciate ligament transection surgery, EMF-USPIO-sEVs reduced OA severity, and augmented matrix synthesis. Moreover, they decelerated OA progression through the microRNA-99b/MFG-E8/NF-κB signaling axis. Consequently, EMF-USPIO-sEVs present a potential therapeutic option for OA, acting by modulating matrix homeostasis and macrophage polarization.
Collapse
Affiliation(s)
- Tianqi Wang
- Departments of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanshi Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jialin Liu
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, 64600, China
| | - Ge Chen
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ke Duan
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, 646000, China
| | - Zhong Li
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hoi Po James Hui
- Departments of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Tissue Engineering Program, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Jiyuan Yan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Moretti L, Bizzoca D, Geronimo A, Abbaticchio AM, Moretti FL, Carlet A, Fischetti F, Moretti B. Targeting Adenosine Signalling in Knee Chondropathy: The Combined Action of Polydeoxyribonucleotide and Pulsed Electromagnetic Fields: A Current Concept Review. Int J Mol Sci 2023; 24:10090. [PMID: 37373237 PMCID: PMC10298276 DOI: 10.3390/ijms241210090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Chondropathy of the knee is one of the most frequent degenerative cartilage pathologies with advancing age. Scientific research has, in recent years, advanced new therapies that target adenosine A2 receptors, which play a significant role in human health against many disease states by activating different protective effects against cell sufferance and damage. Among these, it has been observed that intra-articular injections of polydeoxyribonucleotides (PDRN) and Pulsed Electromagnetic Fields (PEMF) can stimulate the adenosine signal, with significant regenerative and healing effects. This review aims to depict the role and therapeutic modulation of A2A receptors in knee chondropathy. Sixty articles aimed at providing data for our study were included in this review. The present paper highlights how intra-articular injections of PDRN create beneficial effects by reducing pain and improving functional clinical scores, thanks to their anti-inflammatory action and the important healing and regenerating power of the stimulation of cell growth, production of collagen, and the extracellular matrix. PEMF therapy is a valid option in the conservative treatment of different articular pathologies, including early OA, patellofemoral pain syndrome, spontaneous osteonecrosis of the knee (SONK), and in athletes. PEMF could also be used as a supporting therapy after an arthroscopic knee procedure total knee arthroplasty to reduce the post-operative inflammatory state. The proposal of new therapeutic approaches capable of targeting the adenosine signal, such as the intra-articular injection of PDRN and the use of PEMF, has shown excellent beneficial results compared to conventional treatments. These are presented as an extra weapon in the fight against knee chondropathy.
Collapse
Affiliation(s)
- Lorenzo Moretti
- Orthopaedics Unit—UOSD Vertebral Surgery, AOU Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Davide Bizzoca
- Orthopaedics Unit—UOSD Vertebral Surgery, AOU Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
- Ph.D. Course in Public Health, Clinical Medicine and Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessandro Geronimo
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | | | - Francesco Luca Moretti
- National Centre for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, 00161 Rome, Italy
| | - Arianna Carlet
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Fischetti
- Departement DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Biagio Moretti
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
3
|
Zhang C, Wang G, Lin H, Shang Y, Liu N, Zhen Y, An Y. Cartilage 3D bioprinting for rhinoplasty using adipose-derived stem cells as seed cells: Review and recent advances. Cell Prolif 2023; 56:e13417. [PMID: 36775884 PMCID: PMC10068946 DOI: 10.1111/cpr.13417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/14/2023] Open
Abstract
Nasal deformities due to various causes affect the aesthetics and use of the nose, in which case rhinoplasty is necessary. However, the lack of cartilage for grafting has been a major problem and tissue engineering seems to be a promising solution. 3D bioprinting has become one of the most advanced tissue engineering methods. To construct ideal cartilage, bio-ink, seed cells, growth factors and other methods to promote chondrogenesis should be considered and weighed carefully. With continuous progress in the field, bio-ink choices are becoming increasingly abundant, from a single hydrogel to a combination of hydrogels with various characteristics, and more 3D bioprinting methods are also emerging. Adipose-derived stem cells (ADSCs) have become one of the most popular seed cells in cartilage 3D bioprinting, owing to their abundance, excellent proliferative potential, minimal morbidity during harvest and lack of ethical considerations limitations. In addition, the co-culture of ADSCs and chondrocytes is commonly used to achieve better chondrogenesis. To promote chondrogenic differentiation of ADSCs and construct ideal highly bionic tissue-engineered cartilage, researchers have used a variety of methods, including adding appropriate growth factors, applying biomechanical stimuli and reducing oxygen tension. According to the process and sequence of cartilage 3D bioprinting, this review summarizes and discusses the selection of hydrogel and seed cells (centered on ADSCs), the design of printing, and methods for inducing the chondrogenesis of ADSCs.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongying Lin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Littman J, Aaron RK. Stimulation of Chondrogenesis in a Developmental Model of Endochondral Bone Formation by Pulsed Electromagnetic Fields. Int J Mol Sci 2023; 24:3275. [PMID: 36834690 PMCID: PMC9967535 DOI: 10.3390/ijms24043275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Notable characteristics of the skeleton are its responsiveness to physical stimuli and its ability to remodel secondary to changing biophysical environments and thereby fulfill its physiological roles of stability and movement. Bone and cartilage cells have many mechanisms to sense physical cues and activate a variety of genes to synthesize structural molecules to remodel their extracellular matrix and soluble molecules for paracrine signaling. This review describes the response of a developmental model of endochondral bone formation which is translationally relevant to embryogenesis, growth, and repair to an externally applied pulsed electromagnetic field (PEMF). The use of a PEMF allows for the exploration of morphogenesis in the absence of distracting stimuli such as mechanical load and fluid flow. The response of the system is described in terms of the cell differentiation and extracellular matrix synthesis in chondrogenesis. Emphasis is placed upon dosimetry of the applied physical stimulus and some of the mechanisms of tissue response through a developmental process of maturation. PEMFs are used clinically for bone repair and have other potential clinical applications. These features of tissue response and signal dosimetry can be extrapolated to the design of clinically optimal stimulation.
Collapse
Affiliation(s)
| | - Roy K. Aaron
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
5
|
Hung CT, Racine-Avila J, Pellicore MJ, Aaron R. Biophysical Modulation of Mesenchymal Stem Cell Differentiation in the Context of Skeletal Repair. Int J Mol Sci 2022; 23:ijms23073919. [PMID: 35409277 PMCID: PMC8998876 DOI: 10.3390/ijms23073919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
A prominent feature of the skeleton is its ability to remodel in response to biophysical stimuli and to repair under varied biophysical conditions. This allows the skeleton considerable adaptation to meet its physiological roles of stability and movement. Skeletal cells and their mesenchymal precursors exist in a native environment rich with biophysical signals, and they sense and respond to those signals to meet organismal demands of the skeleton. While mechanical strain is the most recognized of the skeletal biophysical stimuli, signaling phenomena also include fluid flow, hydrostatic pressure, shear stress, and ion-movement-related electrokinetic phenomena including, prominently, streaming potentials. Because of the complex interactions of these electromechanical signals, it is difficult to isolate the significance of each. The application of external electrical and electromagnetic fields allows an exploration of the effects of these stimuli on cell differentiation and extra-cellular matrix formation in the absence of mechanical strain. This review takes a distinctly translational approach to mechanistic and preclinical studies of differentiation and skeletal lineage commitment of mesenchymal cells under biophysical stimulation. In vitro studies facilitate the examination of isolated cellular responses while in vivo studies permit the observation of cell differentiation and extracellular matrix synthesis.
Collapse
Affiliation(s)
- Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; (C.T.H.); (M.J.P.)
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Jennifer Racine-Avila
- Department of Orthopedics, Alpert Medical School of Brown University, Providence, RI 02905, USA;
| | - Matthew J. Pellicore
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; (C.T.H.); (M.J.P.)
| | - Roy Aaron
- Department of Orthopedics, Alpert Medical School of Brown University, Providence, RI 02905, USA;
- Correspondence: ; Tel.: +1-401-274-9660
| |
Collapse
|
6
|
Yan J, Liu C, Tu C, Zhang R, Tang X, Li H, Wang H, Ma Y, Zhang Y, Wu H, Sheng G. Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits. Stem Cell Res Ther 2021; 12:572. [PMID: 34774092 PMCID: PMC8590294 DOI: 10.1186/s13287-021-02638-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cartilage damage is a common medical issue in clinical practice. Complete cartilage repair remains a significant challenge owing to the inferior quality of regenerative tissue. Safe and non-invasive magnetic therapy combined with tissue engineering to repair cartilage may be a promising breakthrough. METHODS In this study, a composite scaffold made of Hydroxyapatite-Collagen type-I (HAC) and PLGA-PEG-PLGA thermogel was produced to match the cartilage and subchondral layers in osteochondral defects, respectively. Bone marrow mesenchymal stem cells (BMSC) encapsulated in the thermogel were stimulated by an electromagnetic field (EMF). Effect of EMF on the proliferation and chondrogenic differentiation potential was evaluated in vitro. 4 mm femoral condyle defect was constructed in rabbits. The scaffolds loaded with BMSCs were implanted into the defects with or without EMF treatment. Effects of the combination treatment of the EMF and composite scaffold on rabbit osteochondral defect was detected in vivo. RESULTS In vitro experiments showed that EMF could promote proliferation and chondrogenic differentiation of BMSCs partly by activating the PI3K/AKT/mTOR and Wnt1/LRP6/β-catenin signaling pathway. In vivo results further confirmed that the scaffold with EMF enhances the repair of osteochondral defects in rabbits, and, in particular, cartilage repair. CONCLUSION Hydrogel-Hydroxyapatite-Monomeric Collagen type-I scaffold with low-frequency EMF treatment has the potential to enhance osteochondral repair.
Collapse
Affiliation(s)
- Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Chang Tu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ruizhuo Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Huaixi Wang
- Department of Spine and Spinal Cord Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan, Zhengzhou, People's Republic of China
| | - Yongzhuang Ma
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yingchi Zhang
- Department of Traumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Moretti L, Bizzoca D, Giancaspro GA, Cassano GD, Moretti F, Setti S, Moretti B. Biophysical Stimulation in Athletes' Joint Degeneration: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111206. [PMID: 34833424 PMCID: PMC8619315 DOI: 10.3390/medicina57111206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease and the main cause of pain and disability in elderly people. OA currently represents a significant social health problem, since it affects 250 million individuals worldwide, mainly adults aged over 65. Although OA is a multifactorial disease, depending on both genetic and environmental factors, it is reported that joint degeneration has a higher prevalence in former athletes. Repetitive impact and loading, joint overuse and recurrent injuries followed by a rapid return to the sport might explain athletes' predisposition to joint articular degeneration. In recent years, however, big efforts have been made to improve the prevention and management of sports injuries and to speed up the athletes' return-to-sport. Biophysics is the study of biological processes and systems using physics-based methods or based on physical principles. Clinical biophysics has recently evolved as a medical branch that investigates the relationship between the human body and non-ionizing physical energy. A physical stimulus triggers a biological response by regulating specific intracellular pathways, thus acting as a drug. Preclinical and clinical trials have shown positive effects of biophysical stimulation on articular cartilage, subchondral bone and synovia. This review aims to assess the role of pulsed electromagnetic fields (PEMFs) and extracorporeal shockwave therapy (ESWT) in the prevention and treatment of joint degeneration in athletes.
Collapse
Affiliation(s)
- Lorenzo Moretti
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Davide Bizzoca
- PhD. Course in Public Health, Clinical Medicine and Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
- Correspondence:
| | - Giovanni Angelo Giancaspro
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Giuseppe Danilo Cassano
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Francesco Moretti
- National Center for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Stefania Setti
- IGEA Spa-Clinical Biophysics, via Parmenide, 10/A, 41012 Carpi (Mo), Italy;
| | - Biagio Moretti
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| |
Collapse
|
8
|
Evaluation of the PTEN and circRNA-CDR1as Gene Expression Changes in Gastric Cancer and Normal Cell Lines Following the Exposure to Weak and Moderate 50 Hz Electromagnetic Fields. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.111079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Attention to the electromagnetic exposure as a targeted tumor therapy has been recently increasing. Objectives: The aim of the current study was to investigate the effect of continuous and discontinuous electromagnetic fields on cell viability as well as phosphatase and tensin homolog (PTEN) and circular (circ)-RNA CDR1as genes expression in the normal and gastric cancer (GC) cell lines. Methods: After preparing gastric cancer cell lines (AGS) and normal cells (HU02 line), they were exposed to magnetic flux densities of 0.25, 0.5, 1, and 2 mT continuously and discontinuously (1h on/1h off) for 18 hours. The 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate cell viability. In addition, after designing the primers, the expression of the PTEN and circ-CDR1as genes was studied using the real-time polymerase chain reaction (real-time-PCR) technique. The results were analyzed using SPSS software version 25. Results: The exposed normal and tumor cells to discontinuous electromagnetic fields resulted in increasing of cell survival rate in both normal and tumor cells. In contrast, the exposure of continuous electromagnetic field showed no effect on the viability of the normal and tumor cells at intensities of 0.25, 0.5, and 1 mT. The electromagnetic field showed a significant effect on the expression of the circ-CDR1as gene and this effect depended on the intensity of the electromagnetic field used and the cell type. We have found that the activity of PTEN gene in the normal and tumor cells increased and decreased with increasing intensity of discontinuous electromagnetic field, respectively. Conclusions: In general, the effect of electromagnetic field on gastric cancer seems to depend on the kind of exposure as well as an extent of intensity and can be used for cancer therapeutic purposes. However, more research is needed on this subject.
Collapse
|
9
|
Effect of Muscle Cell Preservation on Viability and Differentiation of Hamstring Tendon Graft In Vitro. Cells 2021; 10:cells10040740. [PMID: 33801626 PMCID: PMC8065441 DOI: 10.3390/cells10040740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
Muscle tissue is often removed during hamstring tendon graft preparation for anterior cruciate ligament (ACL) reconstruction. The purpose of the study was to test whether preservation of muscle remnants on a tendon graft is beneficial to the graft healing process following ACL reconstruction. Co-culturing of tendon-derived cells (TDCs) and muscle-derived cells (MDCs) was performed at various ratios, and their potential for cell viability and multilineage differentiation was compared to a single TDC cell group. Ligamentous and chondrogenic differentiation was most enhanced when a small population of MDCs was co-cultured with TDCs (6:2 co-culture group). Cell viability and osteogenic differentiation were proportionally enhanced with increasing MDC population size. MDCs co-cultured with TDCs possess both the ability to enhance cell viability and differentiate into other cell lineages.
Collapse
|
10
|
Fu L, Li P, Li H, Gao C, Yang Z, Zhao T, Chen W, Liao Z, Peng Y, Cao F, Sui X, Liu S, Guo Q. The Application of Bioreactors for Cartilage Tissue Engineering: Advances, Limitations, and Future Perspectives. Stem Cells Int 2021; 2021:6621806. [PMID: 33542736 PMCID: PMC7843191 DOI: 10.1155/2021/6621806] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering (TE) has brought new hope for articular cartilage regeneration, as TE can provide structural and functional substitutes for native tissues. The basic elements of TE involve scaffolds, seeded cells, and biochemical and biomechanical stimuli. However, there are some limitations of TE; what most important is that static cell culture on scaffolds cannot simulate the physiological environment required for the development of natural cartilage. Recently, bioreactors have been used to simulate the physical and mechanical environment during the development of articular cartilage. This review aims to provide an overview of the concepts, categories, and applications of bioreactors for cartilage TE with emphasis on the design of various bioreactor systems.
Collapse
Affiliation(s)
- Liwei Fu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Pinxue Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Cangjian Gao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhen Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tianyuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhiyao Liao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fuyang Cao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Stefani RM, Barbosa S, Tan AR, Setti S, Stoker AM, Ateshian GA, Cadossi R, Vunjak-Novakovic G, Aaron RK, Cook JL, Bulinski JC, Hung CT. Pulsed electromagnetic fields promote repair of focal articular cartilage defects with engineered osteochondral constructs. Biotechnol Bioeng 2020; 117:1584-1596. [PMID: 31985051 PMCID: PMC8845061 DOI: 10.1002/bit.27287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/14/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Clark T. Hung
- Columbia University, New York, NY
- Clark T. Hung, 351 Engineering Terrace Building, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, Tel: (212) 854-6542, Fax: (212) 854-8725,
| |
Collapse
|
12
|
Pulsed Electromagnetic Field Stimulation of Bone Healing and Joint Preservation: Cellular Mechanisms of Skeletal Response. JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS GLOBAL RESEARCH AND REVIEWS 2020; 4:e1900155. [PMID: 33970582 PMCID: PMC7434032 DOI: 10.5435/jaaosglobal-d-19-00155] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The US FDA has approved pulsed electromagnetic fields (PEMFs) as a safe and effective treatment for nonunions of bone. Despite its clinical use, the mechanisms of action of electromagnetic stimulation of the skeleton have been elusive. Recently, cell membrane receptors have been identified as the site of action of PEMF and provide a mechanistic rationale for clinical use. This review highlights key processes in cell responses to PEMF as follows: (1) signal transduction through A2A and A3 adenosine cell membrane receptors and (2) dose-response effects on the synthesis of structural and signaling extracellular matrix (ECM) components. Through these actions, PEMF can increase the structural integrity of bone and cartilage ECM, enhancing repair, and alter the homeostatic balance of signaling cytokines, producing anti-inflammatory effects. PEMFs exert a proanabolic effect on the bone and cartilage matrix and a chondroprotective effect counteracting the catabolic effects of inflammation in the joint environment. Understanding of PEMF membrane targets, and of the specific intracellular pathways involved, culminating in the synthesis of ECM proteins and reduction in inflammatory cytokines, should enhance confidence in the clinical use of PEMF and the identification of clinical conditions likely to be affected by PEMF exposure.
Collapse
|
13
|
Zhang B, Xie Y, Ni Z, Chen L. Effects and Mechanisms of Exogenous Electromagnetic Field on Bone Cells: A Review. Bioelectromagnetics 2020; 41:263-278. [PMID: 32159242 DOI: 10.1002/bem.22258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
Osteoporosis, fractures, and other bone diseases or injuries represent serious health problems in modern society. A variety of treatments including drugs, surgeries, physical therapies, etc. have been used to prevent or delay the progression of these diseases/injuries with limited effects. Electromagnetic field (EMF) has been used to non-invasively treat bone diseases, such as fracture and osteoporosis, for many years. However, because a variety of cellular and molecular events can be affected by EMF with various parameters, the precise bioeffects and underlying mechanisms of specific EMF on bone cells are still obscure. Here, we summarize the common therapeutic parameters (frequency and intensity) of major types of EMF used to treat bone cells taken from 32 papers we selected from the PubMed database published in English from 1991 to 2018. Briefly, pulse EMF promotes the proliferation of osteoblasts when its frequency is 7.5-15 Hz or 50-75 Hz and the intensity is 0.40-1.55 mT or 3.8-4 mT. Sinusoidal EMF, with 0.9-4.8 mT and 45-60 Hz, and static magnetic field with 0.1-0.4 mT or 400 mT, can promote osteoblast differentiation and maturation. Finally, we summarize the latest advances on the molecular signaling pathways influenced by EMF in osteoblasts and osteoclasts. A variety of molecules such as adenosine receptors, calcium channels, BMP2, Notch, Wnt1, etc., can be influenced by EMF in osteoblasts. For osteoclasts, EMF affects RANK, NF-κB, MAPK, etc. We speculate that EMF with different frequencies and intensities exert distinct bioeffects on specific bone cells. More high-quality work is required to explore the detailed effects and underlying mechanisms of EMF on bone cells/skeleton to optimize the application of EMF on bone diseases/injuries. Bioelectromagnetics. 2020;41:263-278 © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Center of Bone Metabolism and Repair, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Center of Rehabilitation, Xingcheng Sanatorium of PLA Strategic Support Force, Xingcheng, China
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Center of Bone Metabolism and Repair, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Center of Bone Metabolism and Repair, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Center of Bone Metabolism and Repair, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
14
|
Hesari R, Keshvarinia M, Kabiri M, Rad I, Parivar K, Hoseinpoor H, Tavakoli R, Soleimani M, Kouhkan F, Zamanlui S, Hanaee-Ahvaz H. Combination of low intensity electromagnetic field with chondrogenic agent induces chondrogenesis in mesenchymal stem cells with minimal hypertrophic side effects. Electromagn Biol Med 2020; 39:154-165. [PMID: 32131644 DOI: 10.1080/15368378.2020.1737809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: There are different methods to develop in vitro neo-chondral tissues from adipose-derived stem cells (ADSCs). Application of electromagnetic field (EMF) on ADSCs is one of popular approaches, which results in chondrogenesis. If chondrogenic impact of EMF on ADSCs is supposed to be generalized as a protocol in translational medicine field, possible emergence of early or late hypertrophic maturation, mineralization and inflammatory side effects in chondrogenically differentiating ADSCs should be considered.Methods: The advent of chondrogenic and hypertrophic markers by differentiated cells under standard, platelet-rich plasma (PRP)-based or EMF treatments were monitored. Along with monitoring the expressions of chondrogenic markers, inflammatory and hypertrophic markers, VEGF/TNFα secretion, calcium deposition and ALP activity were evaluated.Results: Accordingly, treatment with %5 PRP results in higher GAG production, enhanced SOX9 transcription, lowered TNFα and VEGF secretions compared to other treatments. Although PRP up-regulates miR-146a and miR-199a in early and late stages of chondrogenesis, respectively, application of EMF + PRP down regulates miR-101 and -145 while up-regulates miR-140 and SOX9 expression.Conclusion: Comparing our results with previous reports suggests that presented EMF-ELF in this study with f = 50 Hz, EMF intensity of less than 30 mT, and 5% PRP (v/v), would facilitate chondrogenesis via mesenchymal stem cells with minor inflammation and hypertrophic maturation.Abbreviations: MSCs: mesenchymal stem cells; TGFβ: transforming growth factor-beta; PRP: platelet-rich plasma; ELF-EMF: extremely low-frequency electromagnetic fields; GAGs: glycosaminoglycans; ADSCs: adipose-derived stem cells; VEGF: vascular endothelial growth factor; TNFα: tumor necrosis factor alpha; ALP: alkaline phosphatase.
Collapse
Affiliation(s)
- Roya Hesari
- Institute of Materials and Biomaterials, Tehran, Iran
| | - Mina Keshvarinia
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Iman Rad
- Stemcell Technology Research Center, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | | | | | - Masoud Soleimani
- Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | | | - Soheila Zamanlui
- Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
15
|
Hesari R, Keshvarinia M, Kabiri M, Rad I, Parivar K, Hoseinpoor H, Tavakoli R, Soleimani M, Kouhkan F, Zamanluee S, Hanaee-Ahvaz H. Comparative impact of platelet rich plasma and transforming growth factor-β on chondrogenic differentiation of human adipose derived stem cells. ACTA ACUST UNITED AC 2019; 10:37-43. [PMID: 31988855 PMCID: PMC6977594 DOI: 10.15171/bi.2020.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 10/12/2019] [Indexed: 12/21/2022]
Abstract
![]()
Introduction: Transforming growth factor-beta (TGF-β) is known as standard chondrogenic differentiation agent, even though it comes with undesirable side effects such as early hypertrophic maturation, mineralization, and secretion of inflammatory/angiogenic factors. On the other hand, platelet-rich plasma (PRP) is found to have a chondrogenic impact on mesenchymal stem cell proliferation and differentiation, with no considerable side effects. Therefore, we compared chondrogenic impact of TGF-β and PRP on adipose-derived stem cells (ADSCs), to see if PRP could be introduced as an alternative to TGF-β.
Methods: Differentiation of ADSCs was monitored using a couple of methods including glycosaminoglycan production, miRNAs expression, vascular endothelial growth factor (VEGF)/tumor necrosis factor alpha (TNFα) secretion, alkaline phosphatase (ALP) and calcium content assays.
Results: Accordingly, the treatment of differentiating cells with 5% (v/v) PRP resulted in higher glycosaminoglycan production, enhanced SOX9 transcription, and lowered TNFα and VEGF secretion compared to the control and TGF-β groups. Besides, the application of PRP to the media up-regulated miR-146a and miR-199a in early and late stages of chondrogenesis, respectively.
Conclusion: PRP induces in vitro chondrogenesis, as well as TGF-β with lesser inflammatory and hypertrophic side effects.
Collapse
Affiliation(s)
- Roya Hesari
- Institute of Materials and Biomaterials, Tehran, Iran
| | - Mina Keshvarinia
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Iman Rad
- Stem Cell Technology Research Center, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Soheila Zamanluee
- Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
16
|
Wang T, Xie W, Ye W, He C. Effects of electromagnetic fields on osteoarthritis. Biomed Pharmacother 2019; 118:109282. [PMID: 31387007 DOI: 10.1016/j.biopha.2019.109282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA), characterized by joint malfunction and chronic disability, is the most common form of arthritis. The pathogenesis of OA is unclear, yet studies have shown that it is due to an imbalance between the synthesis and decomposition of chondrocytes, cell matrices and subchondral bone, which leads to the degeneration of articular cartilage. Currently, there are many therapies that can be used to treat OA, including the use of pulsed electromagnetic fields (PEMFs). PEMFs stimulate proliferation of chondrocytes and exert a protective effect on the catabolic environment. Furthermore, this technique is beneficial for subchondral trabecular bone microarchitecture and the prevention of subchondral bone loss, ultimately blocking the progression of OA. However, it is still unknown whether PEMFs could be used to treat OA in the clinic. Furthermore, the deeper signaling pathways underlying the mechanism by which PEMFs influence OA remain unclear.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Xie
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenwen Ye
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Costantini E, Sinjari B, D'Angelo C, Murmura G, Reale M, Caputi S. Human Gingival Fibroblasts Exposed to Extremely Low-Frequency Electromagnetic Fields: In Vitro Model of Wound-Healing Improvement. Int J Mol Sci 2019; 20:ijms20092108. [PMID: 31035654 PMCID: PMC6540598 DOI: 10.3390/ijms20092108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/23/2019] [Accepted: 04/25/2019] [Indexed: 01/24/2023] Open
Abstract
Several clinical studies have suggested the impact of sinusoidal and pulsed electromagnetic fields in quickening wound repair processes and tissue regeneration. The clinical use of extremely low-frequency electromagnetic fields could represent a novel frontier in tissue repair and oral health, with an interesting clinical perspective. The present study aimed to evaluate the effect of an extremely low-frequency sinusoidal electromagnetic field (SEMF) and an extremely low-frequency pulsed electromagnetic field (PEMF) with flux densities of 1 mT on a model of oral healing process using gingival fibroblasts. An in vitro mechanical injury was produced to evaluate wound healing, migration, viability, metabolism, and the expression of selected cytokines and protease genes in fibroblasts exposed to or not exposed to the SEMF and the PEMF. Interleukin 6 (IL-6), transforming growth factor beta 1 (TGF-β), metalloproteinase 2 (MMP-2), monocyte chemoattractant protein 1 (MCP-1), inducible nitric oxide synthase (iNOS), and heme oxygenase 1 (HO-1) are involved in wound healing and tissue regeneration, favoring fibroblast proliferation, chemotaxis, and activation. Our results show that the exposure to each type of electromagnetic field increases the early expression of IL-6, TGF-β, and iNOS, driving a shift from an inflammatory to a proliferative phase of wound repair. Additionally, a later induction of MMP-2, MCP-1, and HO-1 was observed after electromagnetic field exposure, which quickened the wound-healing process. Moreover, electromagnetic field exposure influenced the proliferation, migration, and metabolism of human gingival fibroblasts compared to sham-exposed cells. This study suggests that exposure to SEMF and PEMF could be an interesting new non-invasive treatment option for wound healing. However, additional studies are needed to elucidate the best exposure conditions to provide the desired in vivo treatment efficacy.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Bruna Sinjari
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Chiara D'Angelo
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Giovanna Murmura
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
18
|
Vaca-González JJ, Guevara JM, Moncayo MA, Castro-Abril H, Hata Y, Garzón-Alvarado DA. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage. Cartilage 2019; 10:157-172. [PMID: 28933195 PMCID: PMC6425540 DOI: 10.1177/1947603517730637] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. DESIGN Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. RESULTS It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. CONCLUSION The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.
Collapse
Affiliation(s)
- Juan J. Vaca-González
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Johana M. Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Miguel A. Moncayo
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Hector Castro-Abril
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Yoshie Hata
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
| | - Diego A. Garzón-Alvarado
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
19
|
Mahaki H, Tanzadehpanah H, Jabarivasal N, Sardanian K, Zamani A. A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagn Biol Med 2018; 38:84-95. [PMID: 30518268 DOI: 10.1080/15368378.2018.1545668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) is produced extensively in modern technologies. Numerous in vitro and in vivo studies have shown that ELF-EMF has both stimulatory and inhibitory effects on the immune system response. This review was conducted on effects of ELF-EMF on cytokines of innate and adaptive immunity. Mechanisms of ELF-EMF, which may modulate immune cell responses, were also studied. Physical and biological parameters of ELF-EMF can interact with each other to create beneficial or harmful effect on the immune cell responses by interfering with the inflammatory or anti-inflammatory cytokines. According to the studies, it is supposed that short-term (2-24 h/d up to a week) exposure of ELF-EMF with strong density may increase innate immune response due to an increase of innate immunity cytokines. Furthermore, long-term (2-24 h/d up to 8 years) exposure to low-density ELF-EMF may cause a decrease in adaptive immune response, especially in Th1 subset.
Collapse
Affiliation(s)
- Hanie Mahaki
- a Department of Immunology, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran.,b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Hamid Tanzadehpanah
- b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Naghi Jabarivasal
- c Department of Medical Physics , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Khosro Sardanian
- a Department of Immunology, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran.,b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Alireza Zamani
- a Department of Immunology, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran.,d Molecular Immunology Research Group, Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
20
|
Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:216-237. [PMID: 30740512 PMCID: PMC6366645 DOI: 10.1007/s40883-018-0064-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022]
Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, substrate stimuli, etc., to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.
Collapse
|
21
|
Dikina AD, Lai BP, Cao M, Zborowski M, Alsberg E. Magnetic field application or mechanical stimulation via magnetic microparticles does not enhance chondrogenesis in mesenchymal stem cell sheets. Biomater Sci 2018; 5:1241-1245. [PMID: 28589998 DOI: 10.1039/c7bm00061h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using a novel magnetic field bioreactor, this work evaluated the chondrogenesis of scaffold-free human mesenchymal stem cell sheets in response to static and variable magnetic fields, as well as mechanical stimulation via 4.4 μm magnetic particles. Neither static nor variable magnetic fields generated by 1.44-1.45 T permanent magnets affected cartilage formation. Notably, magnetic field-induced mechanical stimulation by magnetic particles, which applied forces to the cells and ECM statically (4.39 pN) or cyclically (1.06-63.6 pN; 16.7 mHz), also did not affect cartilage formation.
Collapse
Affiliation(s)
- A D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
22
|
Koziorowska A, Romerowicz-Misielak M, Sołek P, Koziorowski M. Extremely low frequency variable electromagnetic fields affect cancer and noncancerous cells in vitro differently: Preliminary study. Electromagn Biol Med 2018. [PMID: 29513614 DOI: 10.1080/15368378.2017.1408021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The exposure to extremely low frequency electromagnetic field (ELF-EMF) may result in various changes at the cellular level. To identify the effect of ELF-EMF exposure on viability of cells, cancer cells (U87-MG; 143B) and noncancerous cells (BJ; HEK) in exponential growth phase were exposed or sham-exposed to different values of frequency (2, 20, 30, 50 and 60 Hz), different shapes (sinusoidal, square and triangular) and time of exposure (0.5, 1, 2, 3 h) to electromagnetic field. After exposure, viability of cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). We found a different effect of exposition of cancer and noncancerous cells to ELF-EMF on viability of cells. This preliminary study revealed that electro magentic field(EMF) might serve as a potential tool for manipulating viability of cells.
Collapse
Affiliation(s)
- Anna Koziorowska
- a Faculty of Mathematics and Natural Sciences , University of Rzeszow , Rzeszow , Poland.,b Laboratory of Bioelectromagnetism, Institute of Biotechnology , University of Rzeszow , Rzeszow , Poland
| | - Maria Romerowicz-Misielak
- b Laboratory of Bioelectromagnetism, Institute of Biotechnology , University of Rzeszow , Rzeszow , Poland
| | - Przemysław Sołek
- c Department of Physiology and Reproduction of Animals, Institute of Biotechnology , University of Rzeszow , Rzeszow , Poland
| | - Marek Koziorowski
- c Department of Physiology and Reproduction of Animals, Institute of Biotechnology , University of Rzeszow , Rzeszow , Poland
| |
Collapse
|
23
|
Yoo J, Lee E, Kim HY, Youn DH, Jung J, Kim H, Chang Y, Lee W, Shin J, Baek S, Jang W, Jun W, Kim S, Hong J, Park HJ, Lengner CJ, Moh SH, Kwon Y, Kim J. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy. NATURE NANOTECHNOLOGY 2017; 12:1006-1014. [PMID: 28737745 DOI: 10.1038/nnano.2017.133] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 06/09/2017] [Indexed: 05/22/2023]
Abstract
Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Junsang Yoo
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BK21 plus program), Dongguk University, Seoul 100-715, Republic of Korea
| | - Euiyeon Lee
- Laboratory of Protein Engineering, Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 45158, Republic of Korea
| | - Dong-Ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, 2177, Dalgubeol Boulevard, Jung-gu, Daegu 41940, Republic of Korea
| | - Junghyun Jung
- Department of Life Science, Dongguk University, Seoul 188-26, Republic of Korea
| | - Hongwon Kim
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BK21 plus program), Dongguk University, Seoul 100-715, Republic of Korea
| | - Yujung Chang
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BK21 plus program), Dongguk University, Seoul 100-715, Republic of Korea
| | - Wonwoong Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Jaein Shin
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BK21 plus program), Dongguk University, Seoul 100-715, Republic of Korea
| | - Soonbong Baek
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BK21 plus program), Dongguk University, Seoul 100-715, Republic of Korea
| | - Wonhee Jang
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, 2177, Dalgubeol Boulevard, Jung-gu, Daegu 41940, Republic of Korea
| | - Won Jun
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, 2177, Dalgubeol Boulevard, Jung-gu, Daegu 41940, Republic of Korea
| | - Soochan Kim
- Department of Electrical and Electronic Engineering, Hankyong National University, Kyonggi-do 456-749, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Hi-Joon Park
- Studies of Translational Acupuncture Research (STAR), Acupuncture &Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sang Hyun Moh
- BIO-FD&C Co. 509-511, Smart Valley A, 30 Songdomirai-ro, Incheon 21990, Republic of Korea
| | - Youngeun Kwon
- Laboratory of Protein Engineering, Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BK21 plus program), Dongguk University, Seoul 100-715, Republic of Korea
| |
Collapse
|
24
|
Kwon HJ, Lee GS, Chun H. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Sci Rep 2016; 6:39302. [PMID: 28004813 PMCID: PMC5177962 DOI: 10.1038/srep39302] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/21/2016] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels, thereby inducing differentiation of MSCs into hyaline chondrogenic cells without the addition of exogenous growth factors. ES also induced MSC condensation and subsequent chondrogenesis by driving Ca2+/ATP oscillations, which are known to be essential for prechondrogenic condensation. In subsequent experiments, the effects of ES on ATP oscillations and chondrogenesis were dependent on extracellular ATP signaling via P2X4 receptors, and ES induced significant increases in TGF-β1 and BMP2 expression. However, the inhibition of TGF-β signaling blocked ES-driven condensation, whereas the inhibition of BMP signaling did not, indicating that TGF-β signaling but not BMP signaling mediates ES-driven condensation. These findings may contribute to the development of electrotherapeutic strategies for cartilage repair using MSCs.
Collapse
Affiliation(s)
- Hyuck Joon Kwon
- Department of Physical Therapy and Rehabilitation, College of Health Science, Eulji University, Gyeonggi, Republic of Korea
| | - Gyu Seok Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Honggu Chun
- Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Anbarasan S, Baraneedharan U, Paul SFD, Kaur H, Rangaswami S, Bhaskar E. Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study. Indian J Orthop 2016; 50:87-93. [PMID: 26955182 PMCID: PMC4759881 DOI: 10.4103/0019-5413.173522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pulsed electromagnetic field (PEMF) is used to treat bone and joint disorders for over 30 years. Recent studies demonstrate a significant effect of PEMF on bone and cartilage proliferation, differentiation, synthesis of extracellular matrix (ECM) and production of growth factors. The aim of this study is to assess if PEMF of low frequency, ultralow field strength and short time exposure have beneficial effects on in-vitro cultured human chondrocytes. MATERIALS AND METHODS Primary human chondrocytes cultures were established using articular cartilage obtained from knee joint during joint replacement surgery. Post characterization, the cells were exposed to PEMF at frequencies ranging from 0.1 to 10 Hz and field intensities ranging from 0.65 to 1.95 μT for 60 min/day for 3 consecutive days to analyze the viability, ECM component synthesis, proliferation and morphology related changes post exposure. Association between exposure doses and cellular effects were analyzed with paired't' test. RESULTS In-vitro PEMF exposure of 0.1 Hz frequency, 1.95 μT and duration of 60 min/day for 3 consecutive days produced the most favorable response on chondrocytes viability (P < 0.001), ECM component production (P < 0.001) and multiplication. Exposure of identical chondrocyte cultures to PEMFs of 0.65 μT field intensity at 1 Hz frequency resulted in less significant response. Exposure to 1.3 μT PEMFs at 10 Hz frequency does not show any significant effects in different analytical parameters. CONCLUSIONS Short duration PEMF exposure may represent a new therapy for patients with Osteoarthritis (OA).
Collapse
Affiliation(s)
- Selvam Anbarasan
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India,Address for correspondence: Mr. Selvam Anbarasan, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India. E-mail:
| | | | - Solomon FD Paul
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Harpreet Kaur
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Subramoniam Rangaswami
- Department of Orthopaedics, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Emmanuel Bhaskar
- Department of General Medicine, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
26
|
Wang W, Li W, Song M, Wei S, Liu C, Yang Y, Wu H. Effects of electromagnetic fields on the metabolism of lubricin of rat chondrocytes. Connect Tissue Res 2015; 57:152-60. [PMID: 26631347 DOI: 10.3109/03008207.2015.1121249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electromagnetic fields (EMFs) can improve pain, stiffness and physical function in osteoarthritis (OA) patients and have been proposed for the treatment of OA. However, the precise mechanisms involved in this process are still not fully understood. In the present study, we investigated the effects of exposure for different durations with 75 Hz, 2.3 mT sinusoidal EMFs (SEMFs) on the metabolism of lubricin of rat chondrocytes cultured in vitro. Our results showed that SEMFs exposure promoted lubricin synthesis in a time-dependent manner, and the expression of transforming growth factor (TGF)-β1 was also enhanced after SEMFs treatment. The up-regulation effect of the expression of lubricin under SEMF was partly reduced by SB431542, an inhibitor of TGF-RI kinase. The Smad pathway was also investigated in our study. Smad2 synthesis was higher in EMF-exposed condition than in controls, whereas no effects were observed on inhibitory Smads (Smad6 and Smad7) production. Altogether, these data suggest that SEMF exposure can promote lubricin synthesis of rat chondrocytes in a time-dependent manner and that the TGF-β/Smads signaling pathway plays a partial role.
Collapse
Affiliation(s)
- Wei Wang
- a Department of Orthopedics, Tongji Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,b Department of Orthopedics, WuHan Orthopedics Hospital/Puai Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Wenkai Li
- a Department of Orthopedics, Tongji Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Mingyu Song
- a Department of Orthopedics, Tongji Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Sheng Wei
- a Department of Orthopedics, Tongji Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Chaoxu Liu
- a Department of Orthopedics, Tongji Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yong Yang
- a Department of Orthopedics, Tongji Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Hua Wu
- a Department of Orthopedics, Tongji Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
27
|
Effects of PEMF on patients with osteoarthritis: Results of a prospective, placebo-controlled, double-blind study. Bioelectromagnetics 2015; 36:576-85. [DOI: 10.1002/bem.21942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022]
|
28
|
Dündar Ü, Aşık G, Ulaşlı AM, Sınıcı Ş, Yaman F, Solak Ö, Toktaş H, Eroğlu S. Assessment of pulsed electromagnetic field therapy with Serum YKL-40 and ultrasonography in patients with knee osteoarthritis. Int J Rheum Dis 2015; 19:287-93. [DOI: 10.1111/1756-185x.12565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ümit Dündar
- Department of Physical Medicine and Rehabilitation; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Gülşah Aşık
- Department of Microbiology; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Alper Murat Ulaşlı
- Department of Physical Medicine and Rehabilitation; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Şükrü Sınıcı
- Department of Physical Medicine and Rehabilitation; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Fatima Yaman
- Department of Physical Medicine and Rehabilitation; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Özlem Solak
- Department of Physical Medicine and Rehabilitation; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Hasan Toktaş
- Department of Physical Medicine and Rehabilitation; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Selma Eroğlu
- Department of Physical Medicine and Rehabilitation; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| |
Collapse
|
29
|
Caliskan SG, Bilgin MD, Kozaci LD. Effect of Pulsed Electromagnetic Field on MMP-9 and TIMP-1 Levels in Chondrosarcoma Cells Stimulated with IL-1β. Asian Pac J Cancer Prev 2015; 16:2701-5. [DOI: 10.7314/apjcp.2015.16.7.2701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Brady MA, Waldman SD, Ethier CR. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:20-33. [PMID: 25065615 DOI: 10.1089/ten.teb.2013.0760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.
Collapse
Affiliation(s)
- Mariea A Brady
- 1 Department of Bioengineering, Imperial College London , London, United Kingdom
| | | | | |
Collapse
|
31
|
Fu M, Liu J, Huang G, Huang Z, Zhang Z, Wu P, Wang B, Yang Z, Liao W. Impaired ossification coupled with accelerated cartilage degeneration in developmental dysplasia of the hip: evidences from μCT arthrography in a rat model. BMC Musculoskelet Disord 2014; 15:339. [PMID: 25294293 PMCID: PMC4289046 DOI: 10.1186/1471-2474-15-339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/29/2014] [Indexed: 12/14/2022] Open
Abstract
Background Developmental dysplasia of the hip (DDH) always leads to cartilage degeneration and osteoarthritis of the hip joint. However, the diagnosis of early cartilage degeneration in DDH is still a clinical challenge. This study aims to investigate the dynamic changes of bone and cartilage in the hip of a rat model of DDH and to explore the potential application of microcomputed tomography (μCT) arthrography to detect early cartilage degeneration in DDH. Methods Newborn Wistar rats were used to induce DDH by hindlimb swaddling. The bone and cartilage of the hip in model and control group were analyzed by μCT arthrography and histology examination at postnatal day 10, week 4, 6 and 8. Results Hip dysplasia developed with age, became obvious at postnatal week 6 and further progressed at week 8. μCT analysis showed that bone mineral density (BMD) and bone volume density (bone volume over total volume, BV/TV) of the femoral head and neck region (FHNR) in model group were both significantly lower than those in control group, and they increased dramatically from postnatal week 4 to week 6 but maintained at a similar level at week 8. Contrast-enhanced μCT (CE-μCT) arthrography and histology data showed age-dependent increase in cartilage attenuation (CA) and decrease in safranin O staining intensity (SI) in model group, respectively. Moreover, the model group revealed remarkably higher CA and lower SI than control group, respectively. In addition, significant changes of CA and SI were both observed from postnatal week 6 to week 8 in model group. A strong linear correlation (r2 = 0.789, P <0.001) was found between CA and SI in model group. Furthermore, BMD was negatively correlated with SI (t = -2.683, P <0.05), whereas specific bone surface (bone surface over bone volume, BS/BV) was positively correlated with SI (t =4.501, P <0.01), in model group. Conclusions Impaired ossification coupled with continuous loss of sGAG in cartilage matrix was found in the dysplasia hip during the disease progression of DDH. Cartilage degeneration in the dysplasia hip may occur early at childhood, accelerated with age and become irreversible at young adult stage. All these abnormal changes could be quantitatively assessed by μCT arthrography. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-339) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Fu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, No, 58 Zhongshan 2nd road, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Amin HD, Brady MA, St-Pierre JP, Stevens MM, Overby DR, Ethier CR. Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field. Tissue Eng Part A 2014; 20:1612-20. [PMID: 24506272 DOI: 10.1089/ten.tea.2013.0307] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue-engineering strategies for the treatment of osteoarthritis would benefit from the ability to induce chondrogenesis in precursor cells. One such cell source is bone marrow-derived stromal cells (BMSCs). Here, we examined the effects of moderate-strength static magnetic fields (SMFs) on chondrogenic differentiation in human BMSCs in vitro. Cells were cultured in pellet form and exposed to several strengths of SMFs for various durations. mRNA transcript levels of the early chondrogenic transcription factor SOX9 and the late marker genes ACAN and COL2A1 were determined by reverse transcription-polymerase chain reaction, and production of the cartilage-specific macromolecules sGAG, collage type 2 (Col2), and proteoglycans was determined both biochemically and histologically. The role of the transforming growth factor (TGF)-β signaling pathway was also examined. Results showed that a 0.4 T magnetic field applied for 14 days elicited a strong chondrogenic differentiation response in cultured BMSCs, so long as TGF-β3 was also present, that is, a synergistic response of a SMF and TGF-β3 on BMSC chondrogenic differentiation was observed. Further, SMF alone caused TGF-β secretion in culture, and the effects of SMF could be abrogated by the TGF-β receptor blocker SB-431542. These data show that moderate-strength magnetic fields can induce chondrogenesis in BMSCs through a TGF-β-dependent pathway. This finding has potentially important applications in cartilage tissue-engineering strategies.
Collapse
Affiliation(s)
- Harsh D Amin
- 1 Department of Bioengineering, Imperial College London , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
A clinical study on the effect of electric stimulation on segment transfer distraction osteogenesis for mandibular reconstruction. ACTA ACUST UNITED AC 2014. [DOI: 10.1097/01.omx.0000438070.85123.a8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Hilz FM, Ahrens P, Grad S, Stoddart MJ, Dahmani C, Wilken FL, Sauerschnig M, Niemeyer P, Zwingmann J, Burgkart R, von Eisenhart-Rothe R, Südkamp NP, Weyh T, Imhoff AB, Alini M, Salzmann GM. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering. Bioelectromagnetics 2013; 35:116-28. [PMID: 24203577 DOI: 10.1002/bem.21822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/16/2013] [Indexed: 12/21/2022]
Abstract
Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.
Collapse
Affiliation(s)
- Florian M Hilz
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany; AO Research Institute, Davos, Switzerland; Clinic of Orthopaedics and Sport Orthopaedics, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reihani Kermani H, Pourghazi M, Mahani SE. Effects of pulsed electromagnetic field on intervertebral disc cell apoptosis in rats. Electromagn Biol Med 2013; 33:246-9. [DOI: 10.3109/15368378.2013.843059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hamed Reihani Kermani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences
KermanIran
| | - Mehdi Pourghazi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences
KermanIran
| | - Saeed Esmaeili Mahani
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman
KermanIran
| |
Collapse
|
36
|
Brady MA, Vaze R, Amin HD, Overby DR, Ethier CR. The design and development of a high-throughput magneto-mechanostimulation device for cartilage tissue engineering. Tissue Eng Part C Methods 2013; 20:149-59. [PMID: 23721097 DOI: 10.1089/ten.tec.2013.0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To recapitulate the in vivo environment and create neo-organoids that replace lost or damaged tissue requires the engineering of devices, which provide appropriate biophysical cues. To date, bioreactors for cartilage tissue engineering have focused primarily on biomechanical stimulation. There is a significant need for improved devices for articular cartilage tissue engineering capable of simultaneously applying multiple biophysical (electrokinetic and mechanical) stimuli. We have developed a novel high-throughput magneto-mechanostimulation bioreactor, capable of applying static and time-varying magnetic fields, as well as multiple and independently adjustable mechanical loading regimens. The device consists of an array of 18 individual stations, each of which uses contactless magnetic actuation and has an integrated Hall Effect sensing system, enabling the real-time measurements of applied field, force, and construct thickness, and hence, the indirect measurement of construct mechanical properties. Validation tests showed precise measurements of thickness, within 14 μm of gold standard calliper measurements; further, applied force was measured to be within 0.04 N of desired force over a half hour dynamic loading, which was repeatable over a 3-week test period. Finally, construct material properties measured using the bioreactor were not significantly different (p=0.97) from those measured using a standard materials testing machine. We present a new method for articular cartilage-specific bioreactor design, integrating combinatorial magneto-mechanostimulation, which is very attractive from functional and cost viewpoints.
Collapse
Affiliation(s)
- Mariea A Brady
- 1 Department of Bioengineering, Imperial College London , South Kensington, London, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Corallo C, Battisti E, Albanese A, Vannoni D, Leoncini R, Landi G, Gagliardi A, Landi C, Carta S, Nuti R, Giordano N. Proteomics of human primary osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF EMFs) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF). Electromagn Biol Med 2013; 33:3-10. [PMID: 23713417 DOI: 10.3109/15368378.2013.782316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Osteoarthritis (OA) is the most frequent joint disease, characterized by degradation of extracellular matrix and alterations in chondrocyte metabolism. Some authors reported that electromagnetic fields (EMFs) can positively interfere with patients affected by OA, even though the nature of the interaction is still debated. Human primary osteoarthritic chondrocytes isolated from the femoral heads of OA-patients undergoing to total hip replacement, were cultured in vitro and exposed 30 min/day for two weeks to extremely-low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF) with variable frequencies, intensities and waveforms. Sham-exposed (S.E.) cells served as control group. Cell viability was measured at days 2, 7 and 14. After two weeks, cell lysates were processed using a proteomic approach. Chondrocyte exposed to ELF and TAMMEF system demonstrated different viability compared to untreated chondrocytes (S.E.). Proteome analysis of 2D-Electrophoresis and protein identification by mass spectrometry showed different expression of proteins derived from nucleus, cytoplasm and organelles. Function analysis of the identified proteins showed changes in related-proteins metabolism (glyceraldeyde-3-phosphate-dehydrogenase), stress response (Mn-superoxide-dismutase, heat-shock proteins), cytoskeletal regulation (actin), proteinase inhibition (cystatin-B) and inflammation regulatory functions (S100-A10, S100-A11) among the experimental groups (ELF, TAMMEF and S.E.). In conclusion, EMFs do not cause damage to chondrocytes, besides stimulate safely OA-chondrocytes and are responsible of different protein expression among the three groups. Furthermore, protein analysis of OA-chondrocytes treated with ELF and the new TAMMEF systems could be useful to clarify the pathogenetic mechanisms of OA by identifying biomarkers of the disease.
Collapse
Affiliation(s)
- Claudio Corallo
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sadoghi P, Leithner A, Dorotka R, Vavken P. Effect of pulsed electromagnetic fields on the bioactivity of human osteoarthritic chondrocytes. Orthopedics 2013; 36:e360-5. [PMID: 23464958 DOI: 10.3928/01477447-20130222-27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low-frequency pulsed electromagnetic fields (PEMFs) are used for the treatment of human osteoarthritic cells in vivo without knowledge of underling principles. The authors evaluated the effect of PEMFs on human chondrocytes of the osteoarthritic knee in vitro. Biopsies of the cut femoral condyles after total knee arthroplasty were kept in a standard cell culture medium consisting of Dulbecco's modified Eagle's medium: nutrient mixture F-12, 10% fetal calf serum, PenStrept (Mediatech, Inc, Manassas, Virginia), and ascorbic acid for 4 days and randomly split into an exposed group (PEMF for 4 hours daily for 4 days at 75 Hz and 1.6 mT) and a control group. Both groups were retained for biochemical and polymerase chain reaction analysis (glycosaminoglycan and DNA levels). A P value less than .05 was considered significant.DNA analysis revealed no differences between groups and no increase in content after exposure (P=.88 and .66, respectively). The increase of glycosaminoglycans was 0.4±1.6 ng (95% confidence interval [CI], 1.4 to 0.5) and -0.5±1.8 ng (95% CI, 0.6 to -1.5) in the exposed and control groups, respectively, with no significant difference (P=.24). A smaller decrease of glycosaminoglycan and DNA levels was observed over 4 days in the exposed group compared with the control group, with no statistical significance. The authors concluded that low-frequency PEMFs do not significantly influence the biosynthetic activity of explantcultures of human osteoarthritic cells in vitro. Nevertheless, they may be suitable as an adjuvant to a larger treatment regimen.
Collapse
Affiliation(s)
- Patrick Sadoghi
- Department of Orthopedic Surgery, Medical University of Graz, Graz, Austria
| | | | | | | |
Collapse
|
39
|
van Eekeren ICM, Reilingh ML, van Dijk CN. Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. Sports Med 2013; 42:857-70. [PMID: 22963224 DOI: 10.1007/bf03262299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An osteochondral defect (OD) is a lesion involving the articular cartilage and the underlying subchondral bone. ODs of the talus can severely impact on the quality of life of patients, who are usually young and athletic. The primary treatment for ODs that are too small for fixation, consists of arthroscopic debridement and bone marrow stimulation. This article delineates levels of activity, determines times for return to activity and reviews the factors that affect rehabilitation after arthroscopic debridement and bone marrow stimulation of a talar OD. Articles for review were obtained from a search of the MEDLINE database up to January 2012 using the search headings 'osteochondral defects', 'bone marrow stimulation', 'sports/activity', 'rehabilitation', various other related factors and 'talus'. English-, Dutch- and German-language studies were evaluated.The review revealed that there is no consensus in the existing literature about rehabilitation times or return-to-sports activity times, after treatment with bone marrow stimulation of ODs in the talus. Furthermore, scant research has been conducted on these issues. The literature also showed that potential factors that aid rehabilitation could include youth, lower body mass index, smaller OD size, mobilization and treatment with growth factors, platelet-rich plasma, biphosphonates, hyaluronic acid and pulse electromagnetic fields. However, most studies have been conducted in vitro or on animals. We propose a scheme, whereby return-to-sports activity is divided into four phases of increasing intensity: walking, jogging, return to non-contact sports (running without swerving) and return to contact sports (running with swerving and collision). We also recommend that research, conducted on actual sportsmen, of recovery times after treatment of talar ODs is warranted.
Collapse
Affiliation(s)
- Inge C M van Eekeren
- Orthopedic Research Centre Amsterdam, Department of Orthopedic Surgery, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
40
|
Corallo C, Volpi N, Franci D, Vannoni D, Leoncini R, Landi G, Guarna M, Montella A, Albanese A, Battisti E, Fioravanti A, Nuti R, Giordano N. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: a comparative study. Rheumatol Int 2012; 33:1567-75. [PMID: 23263545 DOI: 10.1007/s00296-012-2600-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 12/08/2012] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease, characterized by matrix degradation and changes in chondrocyte morphology and metabolism. Literature reported that electromagnetic fields (EMFs) can produce benefits in OA patients, even if EMFs mechanism of action is debated. Human osteoarthritic chondrocytes isolated from femoral heads were cultured in vitro in bidimensional (2-D) flasks and in three-dimensional (3-D) alginate beads to mimic closely cartilage environment in vivo. Cells were exposed 30 min/day for 2 weeks to extremely low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic field (TAMMEF) with variable frequencies, intensities, and waveforms. Cell viability was measured at days 7 and 14, while healthy-cell density, heavily vacuolized (hv) cell density, and cluster density were measured by light microscopy only for 3-D cultures after treatments. Cell morphology was observed for 2-D and 3-D cultures by transmission electron microscopy (TEM). Chondrocyte exposure to TAMMEF enhances cell viability at days 7 and 14 compared to ELF. Light microscopy analysis showed that TAMMEF enhances healthy-cell density, reduces hv-cell density and clustering, compared to ELF. Furthermore, TEM analysis showed different morphology for 2-D (fibroblast-like) and 3-D (rounded shape) cultures, confirming light microscopy results. In conclusion, EMFs are effective and safe for OA chondrocytes. TAMMEF can positively interfere with OA chondrocytes representing an innovative non-pharmacological approach to treat OA.
Collapse
Affiliation(s)
- Claudio Corallo
- Department of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, University of Siena, Ospedale S. Maria alle Scotte, Viale Bracci, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Collard JF, Lazar C, Nowé A, Hinsenkamp M. Statistical validation of the acceleration of the differentiation at the expense of the proliferation in human epidermal cells exposed to extremely low frequency electric fields. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 111:37-45. [PMID: 23257322 DOI: 10.1016/j.pbiomolbio.2012.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 11/26/2022]
Abstract
An acceleration of differentiation at the expense of proliferation is observed in our previous publications and in the literature after exposure of various biological models to low frequency and low-amplitude electric and electromagnetic fields. This observation is related with a significant modification of genes expression. We observed and compared over time this modification. This study use microarray data obtained on epidermis cultures harvested from human abdominoplasty exposed to ELF electric fields. This protocol is repeated with samples collected on three different healthy patients. The sampling over time allows comparison of the effect of the stimulus at a given time with the evolution of control group. After 4 days, we observed a significant difference of the genes expression between control (D4C) and stimulated (D4S) (p < 0.05). On the control between day 4 and 7, we observed another group of genes with significant difference (p < 0.05) in their expression. We identify the common genes between these two groups and we select from them those expressing no difference between stimulate at 4 days (D4S) and control after 7 days (D7C). The same analysis was performed with D4S-D4C-D12C and D7S-D7C-D12C. The lists of genes which follow this pattern show acceleration in their expressions under stimulation appearing on control at a later time. In this list, genes such as DKK1, SPRR3, NDRG4, and CHEK1 are involved in cell proliferation or differentiation. Numerous other genes are also playing a function in mitosis, cell cycle or in the DNA replication transcription and translation.
Collapse
Affiliation(s)
- J-F Collard
- Laboratoire de Recherche en Orthopédie Traumatologie (LROT), Hôpital Erasme, Université Libre de Bruxelles (ULB), 808, route de Lennik, B-1070 Brussels, Belgium
| | | | | | | |
Collapse
|
42
|
van Eekeren IC, Reilingh ML, van Dijk CN. Rehabilitation and Return-to-Sports Activity after Debridement and Bone Marrow Stimulation of Osteochondral Talar Defects. Sports Med 2012. [DOI: 10.2165/11635420-000000000-00000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Ganguly K, McRury ID, Goodwin PM, Morgan RE, Augé WK. Targeted In Situ Biosynthetic Transcriptional Activation in Native Surface-Level Human Articular Chondrocytes during Lesion Stabilization. Cartilage 2012; 3:141-55. [PMID: 26069627 PMCID: PMC4297128 DOI: 10.1177/1947603511426881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Safe articular cartilage lesion stabilization is an important early surgical intervention advance toward mitigating articular cartilage disease burden. While short-term chondrocyte viability and chondrosupportive matrix modification have been demonstrated within tissue contiguous to targeted removal of damaged articular cartilage, longer term tissue responses require evaluation to further clarify treatment efficacy. The purpose of this study was to examine surface chondrocyte responses within contiguous tissue after lesion stabilization. METHODS Nonablation radiofrequency lesion stabilization of human cartilage explants obtained during knee replacement was performed for surface fibrillation. Time-dependent chondrocyte viability, nuclear morphology and cell distribution, and temporal response kinetics of matrix and chaperone gene transcription indicative of differentiated chondrocyte function were evaluated in samples at intervals to 96 hours after treatment. RESULTS Subadjacent surface articular cartilage chondrocytes demonstrated continued viability for 96 hours after treatment, a lack of increased nuclear fragmentation or condensation, persistent nucleic acid production during incubation reflecting cellular assembly behavior, and transcriptional up-regulation of matrix and chaperone genes indicative of retained biosynthetic differentiated cell function. CONCLUSIONS The results of this study provide further evidence of treatment efficacy and suggest the possibility to manipulate or induce cellular function, thereby recruiting local chondrocytes to aid lesion recovery. Early surgical intervention may be viewed as a tissue rescue, allowing articular cartilage to continue displaying biological responses appropriate to its function rather than converting to a tissue ultimately governed by the degenerative material property responses of matrix failure. Early intervention may positively impact the late changes and reduce disease burden of damaged articular cartilage.
Collapse
Affiliation(s)
| | | | | | | | - Wayne K. Augé
- NuOrtho Surgical Inc., Fall River, MA, USA,Center for Orthopaedic and Sports Performance Research Inc., Santa Fe, NM, USA
| |
Collapse
|
44
|
Jaberi FM, Keshtgar S, Tavakkoli A, Pishva E, Geramizadeh B, Tanideh N, Jaberi MM. A moderate-intensity static magnetic field enhances repair of cartilage damage in rabbits. Arch Med Res 2011; 42:268-73. [PMID: 21820604 DOI: 10.1016/j.arcmed.2011.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Electromagnetic fields have been proposed to enhance healing of cartilage defects by stimulation of chondrocyte proliferation, proteoglycan synthesis as well as decreasing pain and improving motion in osteoarthritic patients. However, the effects of a moderate-intensity static magnetic field on cartilage repair have not been investigated. This study tries to determine the effects of a moderate-intensity permanent magnetic field of 40 mT on cartilage repair. METHODS Defects of 3 mm in diameter and 6 mm in depth were made on the weight bearing surface of the right medial femoral condyle of 30 rabbits. The animals were divided randomly into three equal groups (magnet, sham and control). In the magnet group, cylindrical permanent magnets were implanted subcutaneously medial to the medial femoral condyle, while in the sham group the cylindrical ceramic were not magnetized, and nothing was implanted in controls. After 12 weeks of observation, Mankin's microscopic scoring was done on all specimens, and irregularity of surface characteristics, cell colonization, hypocellularity, cartilage matrix formation, and presence of empty lacunae were investigated. RESULTS Each of these characteristics showed significant differences in magnet group relative to control and sham groups (p <0.05). Mankin's score was 1.6 ± 0.6 in magnet group, 7.2 ± 1.6 in sham group and 7.7 ± 1 in control group (p <0.001). CONCLUSIONS [corrected] In this animal study, microscopic Mankin's scoring depicted histological improvement in cartilage of magnet group.
Collapse
Affiliation(s)
- Fereidoon M Jaberi
- Bone & Joint Diseases Research Center, Shiraz University of Medical Sciences, Iran
| | | | | | | | | | | | | |
Collapse
|
45
|
Jay GD, Elsaid KA, Kelly KA, Anderson SC, Zhang L, Teeple E, Waller K, Fleming BC. Prevention of cartilage degeneration and gait asymmetry by lubricin tribosupplementation in the rat following anterior cruciate ligament transection. ACTA ACUST UNITED AC 2011; 64:1162-71. [PMID: 22127873 DOI: 10.1002/art.33461] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate whether cartilage degeneration is prevented or minimized in a rat model of anterior cruciate ligament (ACL) injury following a single dose-escalated intraarticular injection of lubricin derived from human synoviocytes in culture. METHODS Unilateral ACL transection (ACLT) of the right hind limb was performed in Lewis rats (n = 56). Control animals underwent a capsulotomy alone, leaving the ACL intact (n = 11). Intraarticular injections (50 μl/injection) of phosphate buffered saline (PBS; n = 14 rats) and human synoviocyte lubricin (1,600 μg/ml; n = 14 rats) were performed on day 7 postsurgery. Animals were killed on day 70 postsurgery. Histologic specimens were immunoprobed for lubricin and sulfated glycosaminoglycans. Urinary C-telopeptide of type II collagen (CTX-II) levels were measured on days 35 and 70 postsurgery. Hind limb maximum applied force was determined using a variable resistor walkway to monitor quadruped gait asymmetries. RESULTS Increased immunostaining for lubricin in the superficial zone and on the surface of cartilage was observed in lubricin-treated and control animals but not in PBS-treated or untreated animals with ACLT. On days 35 and 70 after surgery, urinary CTX-II levels in human synoviocyte lubricin-treated animals were lower than in untreated and PBS-treated animals (P < 0.005 and P < 0.001, respectively). Animals with ACLT treated with human synoviocyte lubricin and control animals distributed their weight equally between hind limbs compared to PBS-treated or untreated animals (P < 0.01). CONCLUSION Our findings indicate that a single intraarticular injection of concentrated lubricin following ACLT reduces type II collagen degradation and improves weight bearing in the affected rat joint. These findings support the practice of tribosupplementation with lubricin for retarding cartilage degeneration and possibly the development of posttraumatic osteoarthritis.
Collapse
|
46
|
Effects of low-energy NMR on posttraumatic osteoarthritis: observations in a rabbit model. Arch Orthop Trauma Surg 2011; 131:863-8. [PMID: 21063883 DOI: 10.1007/s00402-010-1205-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Indexed: 02/09/2023]
Abstract
OBJECTIVE To evaluate a possible beneficial effect of low-energy nuclear magnetic resonance (NMR) on cartilage in moderate and severe posttraumatic osteoarthrosis in the rabbit using a macroscopic and a histological grading system. DESIGN Following transection of the anterior cruciate ligament of both knees in 24 skeletally mature New Zealand White rabbits, we observed different stages of osteoarthrosis (OA) 6 and 12 weeks postoperatively. Animals were randomized into four groups: Group 1 (eight animals) was treated after 6 weeks by NMR (magnetic field: 20-40 G, interference field: 2.35 mT, 100 kHz; MBST Device, MedTec, Germany), with 1 h of treatment for seven consecutive days. Group 2 was treated in the same pattern after 12 weeks. The sham-operated groups 3 and 4 received no treatment. Seven days after the last treatment, OA was macroscopically graded and hyaline cartilage of the load bearing area was evaluated histologically according to the Mankin scale. RESULTS Macroscopically, there was less OA in group 1 (p < 0.01), but did not reveal significance in group 2 (p = 0.11) compared to the sham groups. There was no significant difference in the Mankin score in both of the treated groups compared to the control groups (group 1: p = 0.36; group 2: p = 0.81). CONCLUSIONS The results showed some beneficial macroscopic effect in mild OA with less macroscopic OA signs in the treated animals but without a histological effect in the Mankin scale. There was no effect found in the pattern later OA. On behalf of these results, NMR for the treatment of posttraumatic OA cannot be recommended at this point of time.
Collapse
|
47
|
Ongaro A, Pellati A, Masieri FF, Caruso A, Setti S, Cadossi R, Biscione R, Massari L, Fini M, De Mattei M. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 2011; 32:543-51. [PMID: 21412809 DOI: 10.1002/bem.20663] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/14/2011] [Indexed: 11/11/2022]
Abstract
This study investigated the effects of pulsed electromagnetic fields (PEMFs) on proteoglycan (PG) metabolism of human articular cartilage explants from patients with osteoarthritis (OA). Human cartilage explants, recovered from lateral and medial femoral condyles, were classified according to the International Cartilage Repair Society (ICRS) and graded based on Outerbridge scores. Explants cultured in the absence and presence of IL-1β were treated with PEMF (1.5 mT, 75 Hz) or IGF-I alone or in combination for 1 and 7 days. PG synthesis and release were determined. Results showed that explants derived from lateral and medial condyles scored OA grades I and III, respectively. In OA grade I explants, after 7 days exposure, PEMF and IGF-I significantly increased (35) S-sulfate incorporation 49% and 53%, respectively, compared to control, and counteracted the inhibitory effect of IL 1β (0.01 ng/ml). The combined exposure to PEMF and IGF-I was additive in all conditions. Similar results were obtained in OA grade III cartilage explants. In conclusion, PEMF and IGF-I augment cartilage explant anabolic activities, increase PG synthesis, and counteract the catabolic activity of IL-1β in OA grades I and III. We hypothesize that both IGF-I and PEMF have chondroprotective effects on human articular cartilage, particularly in early stages of OA.
Collapse
Affiliation(s)
- Alessia Ongaro
- Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee HM, Kwon UH, Kim H, Kim HJ, Kim B, Park JO, Moon ES, Moon SH. Pulsed electromagnetic field stimulates cellular proliferation in human intervertebral disc cells. Yonsei Med J 2010; 51:954-9. [PMID: 20879066 PMCID: PMC2995961 DOI: 10.3349/ymj.2010.51.6.954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The purpose of this study is to investigate the mechanism of cellular proliferation of electromagnetic field (EMF) on human intervertebral disc (IVD) cells. MATERIALS AND METHODS Human IVD cells were cultured three-dimensionally in alginate beads. EMF was exposed to IVD cells with 650 Ω, 1.8 millitesla magnetic flux density, 60 Hz sinusoidal wave. Cultures were divided into a control and EMF group. Cytotoxicity, DNA synthesis and proteoglycan synthesis were measured by MTT assay, [(3)H]-thymidine, and [(35)S]-sulfate incorporation. To detect phenotypical expression, reverse transcription-polymerase chain reactions (RT-PCR) were performed for aggrecan, collagen type I, and type II mRNA expression. To assess action mechanism of EMF, IVD cells were exposed to EMF with N(G)-Monomethyl-L-arginine (NMMA) and acetylsalicylic acid (ASA). RESULTS There was no cytotoxicity in IVD cells with the EMF group in MTT assay. Cellular proliferation was observed in the EMF group (p < 0.05). There was no difference in newly synthesized proteoglycan normalized by DNA synthesis between the EMF group and the control. Cultures with EMF showed no significant change in the expression of aggrecan, type I, and type II collagen mRNA compared to the control group. Cultures with NMMA (blocker of nitric oxide) or ASA (blocker of prostaglandin E2) exposed to EMF demonstrated decreased DNA synthesis compared to control cultures without NMMA or ASA (p < 0.05). CONCLUSION EMF stimulated DNA synthesis in human IVD cells while no significant effect on proteoglycan synthesis and chondrogenic phenotype expressions. DNA synthesis was partially mediated by nitric oxide and prostaglandin E2. EMF can be utilized to stimulate proliferation of IVD cells, which may provide efficient cell amplification in cell therapy to degenerative disc disease.
Collapse
Affiliation(s)
- Hwan-Mo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Un-Hye Kwon
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyang Kim
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Joong Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Boram Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Oh Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Soo Moon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seong-Hwan Moon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Gavénis K, Andereya S, Schmidt-Rohlfing B, Mueller-Rath R, Silny J, Schneider U. Millicurrent stimulation of human articular chondrocytes cultivated in a collagen type-I gel and of human osteochondral explants. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 10:43. [PMID: 20691044 PMCID: PMC2921357 DOI: 10.1186/1472-6882-10-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/06/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Here we investigate the effect of millicurrent treatment on human chondrocytes cultivated in a collagen gel matrix and on human osteochondral explants. METHODS Human chondrocytes from osteoarthritic knee joints were enzymatically released and transferred into a collagen type-I gel. Osteochondral explants and cell-seeded gel samples were cultivated in-vitro for three weeks. Samples of the verum groups were stimulated every two days by millicurrent treatment (3 mA, sinusoidal signal of 312 Hz amplitude modulated by two super-imposed signals of 0.28 Hz), while control samples remained unaffected. After recovery, collagen type-I, type-II, aggrecan, interleukin-1beta, IL-6, TNFalpha and MMP13 were examined by immunohistochemistry and by real time PCR. RESULTS With regard to the immunostainings 3 D gel samples and osteochondral explants did not show any differences between treatment and control group. The expression of all investigated genes of the 3 D gel samples was elevated following millicurrent treatment. While osteochondral explant gene expression of col-I, col-II and Il-1beta was nearly unaffected, aggrecan gene expression was elevated. Following millicurrent treatment, IL-6, TNFalpha, and MMP13 gene expression decreased. In general, the standard deviations of the gene expression data were high, resulting in rarely significant results. CONCLUSIONS We conclude that millicurrent stimulation of human osteoarthritic chondrocytes cultivated in a 3 D collagen gel and of osteochondral explants directly influences cell metabolism.
Collapse
|
50
|
Jay GD, Fleming BC, Watkins BA, McHugh KA, Anderson SC, Zhang LX, Teeple E, Waller KA, Elsaid KA. Prevention of cartilage degeneration and restoration of chondroprotection by lubricin tribosupplementation in the rat following anterior cruciate ligament transection. ARTHRITIS AND RHEUMATISM 2010; 62:2382-91. [PMID: 20506144 PMCID: PMC2921027 DOI: 10.1002/art.27550] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate whether cartilage degeneration is prevented or minimized following intraarticular injections of lubricin derived from human synoviocytes in culture, recombinant human PRG4 (rhPRG4), or human synovial fluid (SF) in a rat model of anterior cruciate ligament (ACL) injury. METHODS Unilateral ACL transection (ACLT) was performed in Lewis rats (n = 45). Nine animals were left untreated. The remaining rats were given intraarticular injections (50 microl/injection) of either phosphate buffered saline (PBS) (n = 9), human synoviocyte lubricin (200 microg/ml; n = 9), rhPRG4 (200 microg/ml; n = 9), or human SF lubricin (200 microg/ml; n = 9) twice weekly beginning on day 7 after injury. Joints were harvested on day 32 after injury. Histologic analysis was performed using Safranin O-fast green staining, and articular cartilage degeneration was graded using the Osteoarthritis Research Society International (OARSI)-modified Mankin criteria. Histologic specimens were immunoprobed for lubricin and sulfated glycosaminoglycans. A 24-hour urine collection was performed on days 17 and 29 postinjury, and urinary C-terminal telopeptide of type II collagen (CTX-II) levels were measured. RESULTS Treatment with human synoviocyte lubricin resulted in significantly lower OARSI scores for cartilage degeneration compared with no treatment or PBS treatment (P < 0.05). Increased immunostaining for lubricin in the superficial zone chondrocytes and on the surface of cartilage was observed in lubricin-treated, but not untreated or PBS-treated, joints. On day 17, urinary CTX-II levels in human synoviocyte lubricin- and human SF lubricin-treated animals were significantly lower than those in untreated animals (P = 0.005 and P = 0.002, respectively) and in PBS-treated animals (P = 0.002 and P < 0.001, respectively). CONCLUSION After treatment with any of the 3 types of lubricin evaluated in this study, a reduction in cartilage damage following ACLT was evident, combined with a reduction in type II collagen degradation. Our findings indicate that intraarticular lubricin injection following an ACL injury may be beneficial in retarding the degeneration of cartilage and the development of posttraumatic OA.
Collapse
Affiliation(s)
- Gregory D Jay
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|