1
|
Yang Y, García-Cruzado M, Zeng H, Camprubí-Ferrer L, Bahatyrevich-Kharitonik B, Bachiller S, Deierborg T. LPS priming before plaque deposition impedes microglial activation and restrains Aβ pathology in the 5xFAD mouse model of Alzheimer's disease. Brain Behav Immun 2023; 113:228-247. [PMID: 37437821 DOI: 10.1016/j.bbi.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Microglia have an innate immunity memory (IIM) with divergent functions in different animal models of neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized by chronic neuroinflammation, neurodegeneration, tau tangles and β-amyloid (Aβ) deposition. Systemic inflammation has been implicated in contributing to the progression of AD. Multiple reports have demonstrated unique microglial signatures in AD mouse models and patients. However, the proteomic profiles of microglia modified by IIM have not been well-documented in an AD model. Therefore, in the present study, we investigate whether lipopolysaccharide (LPS)-induced IIM in the pre-clinical stage of AD alters the microglial responses and shapes the neuropathology. We accomplished this by priming 5xFAD and wild-type (WT) mice with an LPS injection at 6 weeks (before the robust development of plaques). 140 days later, we evaluated microglial morphology, activation, the microglial barrier around Aβ, and Aβ deposition in both 5xFAD primed and unprimed mice. Priming induced decreased soma size of microglia and reduced colocalization of PSD95 and Synaptophysin in the retrosplenial cortex. Priming appeared to increase phagocytosis of Aβ, resulting in fewer Thioflavin S+ Aβ fibrils in the dentate gyrus. RIPA-soluble Aβ 40 and 42 were significantly reduced in Primed-5xFAD mice leading to a smaller size of MOAB2+ Aβ plaques in the prefrontal cortex. We also found that Aβ-associated microglia in the Primed-5xFAD mice were less activated and fewer in number. After priming, we also observed improved memory performance in 5xFAD. To further elucidate the molecular mechanism underlying these changes, we performed quantitative proteomic analysis of microglia and bone marrow monocytes. A specific pattern in the microglial proteome was revealed in primed 5xFAD mice. These results suggest that the imprint signatures of primed microglia display a distinctive phenotype and highlight the potential for a beneficial adaption of microglia when intervention occurs in the pre-clinical stage of AD.
Collapse
Affiliation(s)
- Yiyi Yang
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden.
| | - Marta García-Cruzado
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Hairuo Zeng
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Bazhena Bahatyrevich-Kharitonik
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, Spain; Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden.
| |
Collapse
|
2
|
Chatanaka MK, Sohaei D, Diamandis EP, Prassas I. Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer's disease pathogenesis. Crit Rev Clin Lab Sci 2023; 60:398-426. [PMID: 36941789 DOI: 10.1080/10408363.2023.2187342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
The amyloid hypothesis has so far been at the forefront of explaining the pathogenesis of Alzheimer's Disease (AD), a progressive neurodegenerative disorder that leads to cognitive decline and eventual death. Recent evidence, however, points to additional factors that contribute to the pathogenesis of this disease. These include the neurovascular hypothesis, the mitochondrial cascade hypothesis, the inflammatory hypothesis, the prion hypothesis, the mutational accumulation hypothesis, and the autoimmunity hypothesis. The purpose of this review was to briefly discuss the factors that are associated with autoimmunity in humans, including sex, the gut and lung microbiomes, age, genetics, and environmental factors. Subsequently, it was to examine the rise of autoimmune phenomena in AD, which can be instigated by a blood-brain barrier breakdown, pathogen infections, and dysfunction of the glymphatic system. Lastly, it was to discuss the various ways by which immune system dysregulation leads to AD, immunomodulating therapies, and future directions in the field of autoimmunity and neurodegeneration. A comprehensive account of the recent research done in the field was extracted from PubMed on 31 January 2022, with the keywords "Alzheimer's disease" and "autoantibodies" for the first search input, and "Alzheimer's disease" with "IgG" for the second. From the first search, 19 papers were selected, because they contained recent research on the autoantibodies found in the biofluids of patients with AD. From the second search, four papers were selected. The analysis of the literature has led to support the autoimmune hypothesis in AD. Autoantibodies were found in biofluids (serum/plasma, cerebrospinal fluid) of patients with AD with multiple methods, including ELISA, Mass Spectrometry, and microarray analysis. Through continuous research, the understanding of the synergistic effects of the various components that lead to AD will pave the way for better therapeutic methods and a deeper understanding of the disease.
Collapse
Affiliation(s)
- Miyo K Chatanaka
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Dorsa Sohaei
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
3
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Kouter K, Nikolac Perkovic M, Nedic Erjavec G, Milos T, Tudor L, Uzun S, Mimica N, Pivac N, Videtic Paska A. Difference in Methylation and Expression of Brain-Derived Neurotrophic Factor in Alzheimer's Disease and Mild Cognitive Impairment. Biomedicines 2023; 11:235. [PMID: 36830773 PMCID: PMC9953261 DOI: 10.3390/biomedicines11020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Due to the increasing number of progressive dementias in the population, numerous studies are being conducted that seek to determine risk factors, biomarkers and pathological mechanisms that could help to differentiate between normal symptoms of aging, mild cognitive impairment (MCI) and dementia. The aim of this study was to investigate the possible association of levels of BDNF and COMT gene expression and methylation in peripheral blood cells with the development of Alzheimer's disease (AD). Our results revealed higher expression levels of BDNF (p < 0.001) in MCI subjects compared to individuals diagnosed with AD. However, no difference in COMT gene expression (p = 0.366) was detected. DNA methylation of the CpG islands and other sequences with potential effects on gene expression regulation revealed just one region (BDNF_9) in the BDNF gene (p = 0.078) with marginally lower levels of methylation in the AD compared to MCI subjects. Here, we show that the level of BDNF expression in the periphery is decreased in subjects with AD compared to individuals with MCI. The combined results from the gene expression analysis and DNA methylation analysis point to the potential of BDNF as a marker that could help distinguish between MCI and AD patients.
Collapse
Affiliation(s)
- Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Alja Videtic Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
6
|
Carlyle BC, Kitchen RR, Mattingly Z, Celia AM, Trombetta BA, Das S, Hyman BT, Kivisäkk P, Arnold SE. Technical Performance Evaluation of Olink Proximity Extension Assay for Blood-Based Biomarker Discovery in Longitudinal Studies of Alzheimer's Disease. Front Neurol 2022; 13:889647. [PMID: 35734478 PMCID: PMC9207419 DOI: 10.3389/fneur.2022.889647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
The core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers; amyloid-β (Aß), total tau (t-tau), and phosphorylated tau (p-tau181), are strong indicators of the presence of AD pathology, but do not correlate well with disease progression, and can be difficult to implement in longitudinal studies where repeat biofluid sampling is required. As a result, blood-based biomarkers are increasingly being sought as alternatives. In this study, we aimed to evaluate a promising blood biomarker discovery technology, Olink Proximity Extension Assays for technical reproducibility characteristics in order to highlight the advantages and disadvantages of using this technology in biomarker discovery in AD. We evaluated the performance of five Olink Proteomic multiplex proximity extension assays (PEA) in plasma samples. Three technical control samples included on each plate allowed calculation of technical variability. Biotemporal stability was measured in three sequential annual samples from 54 individuals with and without AD. Coefficients of variation (CVs), analysis of variance (ANOVA), and variance component analyses were used to quantify technical and individual variation over time. We show that overall, Olink assays are technically robust, with the largest experimental variation stemming from biological differences between individuals for most analytes. As a powerful illustration of one of the potential pitfalls of using a multi-plexed technology for discovery, we performed power calculations using the baseline samples to demonstrate the size of study required to overcome the need for multiple test correction with this technology. We show that the power of moderate effect size proteins was strongly reduced, and as a result investigators should strongly consider pooling resources to perform larger studies using this multiplexed technique where possible.
Collapse
Affiliation(s)
- Becky C. Carlyle
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Robert R. Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Zoe Mattingly
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Amanda M. Celia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bianca A. Trombetta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pia Kivisäkk
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Steven E. Arnold
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Steven E. Arnold
| |
Collapse
|
7
|
Therapeutic potential of neurotrophic factors in Alzheimer's Disease. Mol Biol Rep 2021; 49:2345-2357. [PMID: 34826049 DOI: 10.1007/s11033-021-06968-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. AD is accompanied with the dysregulation of specific neurotrophic factors (NTFs) and their receptors, which plays a critical role in neuronal degeneration. NTFs are small proteins with therapeutic potential for human neurodegenerative diseases. These growth factors are categorized into four families: neurotrophins, neurokines, the glial cell line-derived NTF family of ligands, and the newly discovered cerebral dopamine NTF/mesencephalic astrocyte-derived NTF family. NTFs are capable of preventing cell death in degenerative conditions and can increase the neuronal growth and function in these disorders. Nevertheless, the adverse side effects of NTFs delivery and poor diffusion of these factors in the brain restrict the efficacy of NTFs therapy in clinical situations. MATERIALS AND METHODS In this review, we focus on the current advances in the use of NTFs to treat AD and summarize previous experimental and clinical studies for supporting the protective and therapeutic effects of these factors. CONCLUSION Based on reports, NTFs are considered as new and promising candidates for treating AD and AD-associated cognitive impairment.
Collapse
|
8
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
9
|
Nomura S, Monobe M, Ema K, Yoshida K, Yamashita S, Ogino A, Nesumi A. Effects of a Tea Cultivar "MK5601" on Behaviors and Hippocampal Neurotrophin-3 Levels in Middle-Aged Mice. J Nutr Sci Vitaminol (Tokyo) 2021; 67:170-179. [PMID: 34193676 DOI: 10.3177/jnsv.67.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dietary factors are thought to play an important role in the prevention of cognition diseases and depression in late life. In the present study, we compared the effects between the theogallin-rich tea cultivar, "MK5601" and a common Japanese tea cultivar, "Yabukita" on behaviors and hippocampal neurotrophin levels in experimental animals. Middle-aged mice (aged 8 mo) were given either of the tea infusions or water ad libitum for 4 mo. In the novel object location test, the middle-aged mice drinking water or "Yabukita" performed worse than young mice (aged 2-3 mo) although the middle-aged mice drinking "MK5601" retained spatial memory at the same level as the young mice. We also found that the middle-aged mice drinking "MK5601" showed high levels of neurotrophin-3 in the hippocampus. In conclusion, the "MK5601" tea infusion appears to be effective in preventing age-related changes in cognitive function, as compared with a common Japanese tea cultivar.
Collapse
Affiliation(s)
- Sachiko Nomura
- Tea Research Division, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO)
| | - Manami Monobe
- Tea Research Division, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO)
| | - Kaori Ema
- Tea Research Division, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO)
| | - Katsuyuki Yoshida
- Tea Research Division, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO)
| | - Shuya Yamashita
- Tea Research Division, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO)
| | - Akiko Ogino
- Tea Research Division, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO)
| | - Atsushi Nesumi
- Tea Research Division, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
10
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Ke X, Huang Y, Fu Q, Lane RH, Majnik A. Adverse Maternal Environment Alters MicroRNA-10b-5p Expression and Its Epigenetic Profile Concurrently with Impaired Hippocampal Neurogenesis in Male Mouse Hippocampus. Dev Neurosci 2021; 43:95-105. [PMID: 33940573 DOI: 10.1159/000515750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
An adverse maternal environment (AME) predisposes adult offspring toward cognitive impairment in humans and mice. However, the underlying mechanisms remain poorly understood. Epigenetic changes in response to environmental exposure may be critical drivers of this change. Epigenetic regulators, including microRNAs, have been shown to affect cognitive function by altering hippocampal neurogenesis which is regulated in part by brain-derived neurotropic factor (BDNF). We sought to investigate the effects of AME on miR profile and their epigenetic characteristics, as well as neurogenesis and BDNF expression in mouse hippocampus. Using our mouse model of AME which is composed of maternal Western diet and prenatal environmental stress, we found that AME significantly increased hippocampal miR-10b-5p levels. We also found that AME significantly decreased DNA methylation and increased accumulations of active histone marks H3 lysine (K) 4me3, H3K14ac, and -H3K36me3 at miR-10b promoter. Furthermore, AME significantly decreased hippocampal neurogenesis by decreasing cell numbers of Ki67+ (proliferation marker), NeuroD1+ (neuronal differentiation marker), and NeuN+ (mature neuronal marker) in the dentate gyrus (DG) region concurrently with decreased hippocampal BDNF protein levels. We speculate that the changes in epigenetic profile at miR-10b promoter may contribute to upregulation of miR-10b-5p and subsequently lead to decreased BDNF levels in a model of impaired offspring hippocampal neurogenesis and cognition in mice.
Collapse
Affiliation(s)
- Xingrao Ke
- Children Mercy Research Institute, Children's Mercy, Kansas City, Missouri, USA
| | - Yingliu Huang
- Department of Neurology, Hainan Provincial People's Hospital, Haikou, China
| | - Qi Fu
- Children Mercy Research Institute, Children's Mercy, Kansas City, Missouri, USA
| | - Robert H Lane
- Children Mercy Research Institute, Children's Mercy, Kansas City, Missouri, USA
| | - Amber Majnik
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Neuroprotective Biomarkers and Cognitive Function in a Long-Term Prospective Population-based Study of Aging US Adults. Alzheimer Dis Assoc Disord 2020; 34:31-39. [PMID: 31385821 DOI: 10.1097/wad.0000000000000341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Relationships between brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF-1), aldosterone, and cognition in aging were evaluated in the population-based Epidemiology of Hearing Loss Study (1993 to present). METHODS Beginning in 1998 to 2000, cognitive impairment was assessed by report of physician diagnoses and the Mini-Mental State Examination. In 2009 to 2010 and 2013 to 2016, information was collected on diagnosis of mild cognitive impairment/dementia. Decline in cognitive function was assessed by principal component analysis from additional tests administered during 2009 to 2010 and 2013 to 2016. BDNF, IGF-1, and aldosterone were measured in serum collected in 1998 to 2000. RESULTS There were 1970 participants (mean age=66.9 y; 59.1% female) without cognitive impairment at baseline. Among women, low BDNF was associated with 16-year incident cognitive impairment [hazard ratio=1.76; 95% confidence interval (CI)=1.04, 2.98]. Among men, increasing IGF-1 was associated with decreased risk [per SD: relative risk (RR)=0.57; 95% CI=0.35, 0.92], whereas increasing aldosterone levels were associated with increased risk (per SD: RR=1.28; 95% CI=1.01, 1.62) for 5-year incident mild cognitive impairment/dementia. Overall, low BDNF was associated with increased risk (RR=1.52; 95% CI=1.02, 2.26) for 5-year cognitive decline. CONCLUSION Low levels of serum BDNF and IGF-1 were associated with poorer cognition during aging. There may be differential biomarker effects by sex.
Collapse
|
13
|
Abstract
Cognitive decline and neurodegenerative diseases pose a significant burden on healthcare resources both in developed and developing countries which is a major socio-economic and healthcare concern. Alzheimer's disease is the most common form of progressive neurodegenerative dementia of the aged brain. Aluminum is a constituent of antacids, deodorants, kitchenware and food additives which allows easy access into the body posing risk to development of senile dementia of Alzheimer's type. Virgin coconut oil was declared as a potential cognitive strengthener. Assessment of cognitive and memory-enhancing effects of virgin coconut oil in senile and young rats to gain vital insights into its effective use in the prevention of neurodegeneration in dementia/Alzheimer's disease-like manifestations and alleviate cognitive dysfunction and learning impairment with neuronal damage imparted by daily oral intake of aluminum. Alzheimer's disease-like symptoms and memory impairment were experimentally induced using oral anhydrous aluminum chloride given daily for five successive weeks in young and old age albino rats. Treatment groups received virgin coconut oil to assess protection during the experimental period. Behavioral test, Morris water maze was conducted before/after induction/treatment. At the end of the experimental period, cholinergic, dopaminergic, noradrenergic and serotonergic neurotransmission as well as brain-derived neurotrophic factor were being investigated, in addition to immunochemical and histopathological examination of targeted brain regions. Virgin coconut oil significantly improved cholinergic activity and monoaminergic neurotransmission. Moreover, immunochemical and histopathological examination revealed marked protection with virgin coconut oil against aluminum-induced Alzheimer's disease-like pathology and cognitive deficit.
Collapse
|
14
|
Lee AK, Khaled H, Chofflet N, Takahashi H. Synaptic Organizers in Alzheimer's Disease: A Classification Based on Amyloid-β Sensitivity. Front Cell Neurosci 2020; 14:281. [PMID: 32982693 PMCID: PMC7492772 DOI: 10.3389/fncel.2020.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
Synaptic pathology is one of the major hallmarks observed from the early stage of Alzheimer’s disease (AD), leading to cognitive and memory impairment characteristic of AD patients. Synaptic connectivity and specificity are regulated by multiple trans-bindings between pre- and post-synaptic organizers, the complex of which exerts synaptogenic activity. Neurexins (NRXs) and Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are the major presynaptic organizers promoting synaptogenesis through their distinct binding to a wide array of postsynaptic organizers. Recent studies have shown that amyloid-β oligomers (AβOs), a major detrimental molecule in AD, interact with NRXs and neuroligin-1, an NRX-binding postsynaptic organizer, to cause synaptic impairment. On the other hand, LAR-RPTPs and their postsynaptic binding partners have no interaction with AβOs, and their synaptogenic activity is maintained even in the presence of AβOs. Here, we review the current evidence regarding the involvement of synaptic organizers in AD, with a focus on Aβ synaptic pathology, to propose a new classification where NRX-based and LAR-RPTP-based synaptic organizing complexes are classified into Aβ-sensitive and Aβ-insensitive synaptic organizers, respectively. We further discuss how their different Aβ sensitivity is involved in Aβ vulnerability and tolerance of synapses for exploring potential therapeutic approaches for AD.
Collapse
Affiliation(s)
- Alfred Kihoon Lee
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Ismail NA, Leong Abdullah MFI, Hami R, Ahmad Yusof H. A narrative review of brain-derived neurotrophic factor (BDNF) on cognitive performance in Alzheimer's disease. Growth Factors 2020; 38:210-225. [PMID: 33427532 DOI: 10.1080/08977194.2020.1864347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is highly expressed in the brain. It influences neuronal survival, growth and acts as a control centre for neurotransmitters. It also plays a crucial role in learning and memory. Current evidence indicates that BDNF may be a possible neurotrophic factor that controls cognitive functions under normal and neuropathological conditions. Recent findings indicate a reduction in cognitive performance in individuals with Alzheimer's disease (AD). This relationship between cognitive performance and AD is important for investigating both the time they overlap and the pathophysiological mechanism in each case. Therefore, this study reviewed the existing knowledge about BDNF and cognitive performance in the AD population. The findings support the idea that this tropic factor may be a potential biomarker for evaluating the changes in cognitive performance in AD.
Collapse
Affiliation(s)
- Noor Azila Ismail
- Institut Perubatan dan Pengigian Termaju, Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Mohammad Farris Iman Leong Abdullah
- Institut Perubatan dan Pengigian Termaju, Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Rohayu Hami
- Institut Perubatan dan Pengigian Termaju, Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Hazwani Ahmad Yusof
- Institut Perubatan dan Pengigian Termaju, Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
16
|
Bharani KL, Ledreux A, Gilmore A, Carroll SL, Granholm AC. Serum pro-BDNF levels correlate with phospho-tau staining in Alzheimer's disease. Neurobiol Aging 2020; 87:49-59. [PMID: 31882186 DOI: 10.1016/j.neurobiolaging.2019.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Disruption of brain-derived neurotrophic factor (BDNF) biosynthesis and/or signaling has been implicated in the pathogenesis of Alzheimer's disease (AD). We used postmortem brain and fluid samples from 20 patients with variable severity of AD and 11 controls to investigate whether BDNF levels in serum and brain tissue correlated with hippocampal pathology. Total BDNF, precursor BDNF (pro-BDNF), and mature BDNF were measured in cerebrospinal fluid, serum, and 3 postmortem brain regions. Histological markers for AD pathology, the BDNF cognate receptor (TrkB), and glia were measured in the hippocampus (HIP). Lower pro-BDNF levels were observed in the entorhinal and frontal cortices in AD cases compared with controls. AD cases also exhibited significantly lower staining densities of the cognate BDNF receptor TrkB in the HIP compared with controls, and TrkB staining was inversely correlated with both Amylo-Glo and pTau staining in the same region, suggesting a relationship between the density of the cognate BDNF receptor and accumulation of AD pathology. In addition, higher serum pro-BDNF levels correlated with lower HIP pro-BDNF levels and higher pTau staining in the HIP. Total BDNF levels in cortical regions were also negatively correlated with Amylo-Glo staining in the HIP suggesting that reduced BDNF cortical levels might influence hippocampal amyloid accumulation. These results strongly suggest that altered BDNF and TrkB receptors are involved in AD pathology and therefore warrant investigations into therapies involving the BDNF pathway.
Collapse
Affiliation(s)
- Krishna L Bharani
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ann-Charlotte Granholm
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA.
| |
Collapse
|
17
|
Abstract
Alzheimer's disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer's disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer's disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer's disease etiology, whose modulation might be beneficial for Alzheimer's disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer's disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer's disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer's disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer's disease.
Collapse
|
18
|
Groves N, O’Keeffe I, Lee W, Toft A, Blackmore D, Bandhavkar S, Coulson EJ, Bartlett PF, Jhaveri DJ. Blockade of TrkB but not p75
NTR
activates a subpopulation of quiescent neural precursor cells and enhances neurogenesis in the adult mouse hippocampus. Dev Neurobiol 2020; 79:868-879. [DOI: 10.1002/dneu.22729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/25/2019] [Accepted: 12/27/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Natalie Groves
- Mater Research Institute The University of Queensland Brisbane Queensland Australia
| | - Imogen O’Keeffe
- Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Wendy Lee
- Mater Research Institute The University of Queensland Brisbane Queensland Australia
| | - Alexandra Toft
- Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Daniel Blackmore
- Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Saurabh Bandhavkar
- Mater Research Institute The University of Queensland Brisbane Queensland Australia
| | - Elizabeth J. Coulson
- Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences The University of Queensland Brisbane Queensland Australia
| | - Perry F. Bartlett
- Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Dhanisha J. Jhaveri
- Mater Research Institute The University of Queensland Brisbane Queensland Australia
- Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
19
|
Bawari S, Tewari D, Argüelles S, Sah AN, Nabavi SF, Xu S, Vacca RA, Nabavi SM, Shirooie S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148:104458. [DOI: 10.1016/j.phrs.2019.104458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
20
|
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [PMID: 31440144 PMCID: PMC6692714 DOI: 10.3389/fncel.2019.00363] [Citation(s) in RCA: 738] [Impact Index Per Article: 147.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic changes related to learning and memory. The expression of BDNF is highly regulated, and can lead to great variability in BDNF levels in healthy subjects. Changes in BDNF expression are associated with both normal and pathological aging and also psychiatric disease, in particular in structures important for memory processes such as the hippocampus and parahippocampal areas. Some interventions like exercise or antidepressant administration enhance the expression of BDNF in normal and pathological conditions. In this review, we will describe studies from rodents and humans to bring together research on how BDNF expression is regulated, how this expression changes in the pathological brain and also exciting work on how interventions known to enhance this neurotrophin could have clinical relevance. We propose that, although BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases because of its disregulation common to many pathological conditions, it could be thought of as a marker that specifically relates to the occurrence and/or progression of the mnemonic symptoms that are common to many pathological conditions.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Zanoni
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
21
|
Balietti M, Giuli C, Conti F. Peripheral Blood Brain-Derived Neurotrophic Factor as a Biomarker of Alzheimer's Disease: Are There Methodological Biases? Mol Neurobiol 2018; 55:6661-6672. [PMID: 29330839 PMCID: PMC6061178 DOI: 10.1007/s12035-017-0866-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Mounting evidence that alterations in brain-derived neurotrophic factor (BDNF) levels and signaling may be involved in the etiopathogenesis of Alzheimer's disease (AD) has suggested that its blood levels could be used as a biomarker of the disease. However, higher, lower, or unchanged circulating BDNF levels have all been described in AD patients compared to healthy controls. Although the reasons for such different findings are unclear, methodological issues are likely to be involved. The heterogeneity of participant recruitment criteria and the lack of control of variables that influence circulating BDNF levels regardless of dementia (depressive symptoms, medications, lifestyle, lack of overlap between serum and plasma, and experimental aspects) are likely to bias result and prevent study comparability. The present work reviews a broad panel of factors, whose close control could help reduce the inconsistency of study findings, and offers practical advice on their management. Research directed at elucidating the weight of each of these variables and at standardizing analytical methodologies is urgently needed.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, INRCA, Via Birarelli 8, 60121, Ancona, Italy.
| | - Cinzia Giuli
- Geriatrics Operative Unit, INRCA, Fermo, 63023, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA, Via Birarelli 8, 60121, Ancona, Italy
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, 60126, Italy
| |
Collapse
|
22
|
Postmortem Brain, Cerebrospinal Fluid, and Blood Neurotrophic Factor Levels in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Mol Neurosci 2018; 65:289-300. [PMID: 29956088 DOI: 10.1007/s12031-018-1100-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023]
Abstract
Accumulating evidence suggest that aberrations of neurotrophic factors are involved in the etiology and pathogenesis of Alzheimer's disease (AD), but clinical data were inconsistent. Therefore, a meta-analysis on neurotrophic factor levels in AD is necessary. We performed a systematic review of blood, CSF, and post-mortem brain neurotrophic factor levels in patients with AD compared with controls and quantitatively summarized the clinical data in blood and CSF with a meta-analytical technique. A systematic search of PubMed and Web of Science identified 98 articles in this study (with samples more than 9000). Random effects meta-analysis demonstrated that peripheral blood BDNF levels were significantly decreased in AD patients compared with controls. However, blood NGF, IGF, and VEGF did not show significant differences between cases and controls. In CSF, random effects meta-analysis showed significantly deceased BDNF and increased NGF levels in patients with AD, whereas IGF and VEGF did not show significant differences between the AD group and control group. In addition, 23 post-mortem studies were included in the systematic review. Although data from post-mortem brains were not always consistent across studies, most studies suggested decreased BDNF and increased (pro)NGF levels in hippocampus and neocortex of patients with AD. These results provide strong clinical evidence that AD is accompanied by an aberrant neurotrophin profile, and future investigations into neurotrophins as biomarkers (especially CSF BDNF and NGF) and therapeutic targets for AD may be warranted.
Collapse
|
23
|
Balietti M, Giuli C, Fattoretti P, Fabbietti P, Papa R, Postacchini D, Conti F. Effect of a Comprehensive Intervention on Plasma BDNF in Patients with Alzheimer's Disease. J Alzheimers Dis 2018; 57:37-43. [PMID: 28222525 PMCID: PMC5345639 DOI: 10.3233/jad-161168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A comprehensive intervention (CI) on patients with Alzheimer’s disease was assessed by measuring plasmabrain-derived neurotrophic factor (pBDNF) and ADAS-Cog score (ADAS-Cogscore) before, immediately after (FU1), and 6 (FU2) and 24 months (FU3) after the CI. Baseline pBDNF was higher in patients with moderate AD (but not mild AD) than in healthy controls. At FU1, pBDNF and ADAS-Cogscore decreased significantly. At FU2 and FU3, patients’ cognitive status worsened and pBDNF further increased versus baseline, suggesting that CI interruption may be a stress event that prevents return to homeostasis. CI exerted positive short-term effects, but more information is needed on long-term consequences.
Collapse
Affiliation(s)
| | | | | | | | - Roberta Papa
- Center of Socio-economic Gerontological Research, INRCA, Ancona, Italy
| | | | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA, Ancona, Italy.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
24
|
Forsberg SL, Ilieva M, Maria Michel T. Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. Transl Psychiatry 2018; 8:14. [PMID: 29317608 PMCID: PMC5802583 DOI: 10.1038/s41398-017-0062-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/04/2023] Open
Abstract
Autism spectrum disorders (ASD) affect 1 in 68 children in the US according to the Centers for Disease Control and Prevention (CDC). It is characterized by impairments in social interactions and communication, restrictive and repetitive patterns of behaviors, and interests. Owing to disease complexity, only a limited number of treatment options are available mainly for children that alleviate but do not cure the debilitating symptoms. Studies confirm a genetic link, but environmental factors, such as medications, toxins, and maternal infection during pregnancy, as well as birth complications also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms.
Collapse
Affiliation(s)
- Sheena Louise Forsberg
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mirolyuba Ilieva
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Tanja Maria Michel
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Psychiatry, Psychiatry in the region of Southern Denmark, Odense, Denmark
- Odense Center for Applied Neuroscience BRIDGE, University of Southern Denmark, Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
25
|
Xu X, Garcia J, Ewalt R, Nason S, Pozzo-Miller L. The BDNF val-66-met Polymorphism Affects Neuronal Morphology and Synaptic Transmission in Cultured Hippocampal Neurons from Rett Syndrome Mice. Front Cell Neurosci 2017; 11:203. [PMID: 28751857 PMCID: PMC5508027 DOI: 10.3389/fncel.2017.00203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/27/2017] [Indexed: 12/02/2022] Open
Abstract
Brain-derived neurotrophic factor (Bdnf) has been implicated in several neurological disorders including Rett syndrome (RTT), an X-linked neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2). The human BDNF gene has a single nucleotide polymorphism (SNP)—a methionine (met) substitution for valine (val) at codon 66—that affects BDNF’s trafficking and activity-dependent release and results in cognitive dysfunction. Humans that are carriers of the met-BDNF allele have subclinical memory deficits and reduced hippocampal volume and activation. It is still unclear whether this BDNF SNP affects the clinical outcome of RTT individuals. To evaluate whether this BDNF SNP contributes to RTT pathophysiology, we examined the consequences of expression of either val-BDNF or met-BDNF on dendrite and dendritic spine morphology, and synaptic function in cultured hippocampal neurons from wildtype (WT) and Mecp2 knockout (KO) mice. Our findings revealed that met-BDNF does not increase dendritic growth and branching, dendritic spine density and individual spine volume, and the number of excitatory synapses in WT neurons, as val-BDNF does. Furthermore, met-BDNF reduces dendritic complexity, dendritic spine volume and quantal excitatory synaptic transmission in Mecp2 KO neurons. These results suggest that the val-BDNF variant contributes to RTT pathophysiology, and that BDNF-based therapies should take into consideration the BDNF genotype of the RTT individuals.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurobiology, Civitan International Research Center, University of Alabama at BirminghamBirmingham, AL, United States
| | - Jordi Garcia
- Department of Neurobiology, Civitan International Research Center, University of Alabama at BirminghamBirmingham, AL, United States
| | - Rachel Ewalt
- Department of Neurobiology, Civitan International Research Center, University of Alabama at BirminghamBirmingham, AL, United States
| | - Shelly Nason
- Department of Neurobiology, Civitan International Research Center, University of Alabama at BirminghamBirmingham, AL, United States
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama at BirminghamBirmingham, AL, United States
| |
Collapse
|
26
|
Bassani TB, Bonato JM, Machado MMF, Cóppola-Segovia V, Moura ELR, Zanata SM, Oliveira RMMW, Vital MABF. Decrease in Adult Neurogenesis and Neuroinflammation Are Involved in Spatial Memory Impairment in the Streptozotocin-Induced Model of Sporadic Alzheimer's Disease in Rats. Mol Neurobiol 2017. [PMID: 28623617 DOI: 10.1007/s12035-017-0645-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early impairments in cerebral glucose metabolism and insulin signaling pathways may participate in the pathogenesis of the sporadic form of Alzheimer's disease (sAD). Intracerebroventricular (ICV) injections of low doses of streptozotocin (STZ) are used to mimic sAD and study these alterations in rodents. Streptozotocin causes impairments in insulin signaling and has been reported to trigger several alterations in the brain, such as oxidative stress, neuroinflammation, and dysfunctions in adult neurogenesis, which may be involved in cognitive decline and are features of human AD. The aim of the present study was to assess the influence of neuroinflammation on the process of adult neurogenesis and consequent cognitive deficits in the STZ-ICV model of sAD in Wistar rats. Streptozotocin caused an acute and persistent neuroinflammatory response, reflected by reactive microgliosis and astrogliosis in periventricular areas and the dorsal hippocampus, accompanied by a marked reduction of the proliferation of neural stem cells in the dentate gyrus of the hippocampus and subventricular zone. Streptozotocin also reduced the survival, differentiation, and maturation of newborn neurons, resulting in impairments in short-term and long-term spatial memory. These results support the hypothesis that neuroinflammation has a detrimental effect on neurogenesis, and both neuroinflammation and impairments in neurogenesis contribute to cognitive deficits in the STZ-ICV model of sAD.
Collapse
Affiliation(s)
- Taysa Bervian Bassani
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, 81540-990, Brazil.
| | - Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Meira M F Machado
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, 81540-990, Brazil
| | | | - Eric L R Moura
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, 81540-990, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Rúbia M M W Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, 81540-990, Brazil
| |
Collapse
|
27
|
Pytka K, Młyniec K, Podkowa K, Podkowa A, Jakubczyk M, Żmudzka E, Lustyk K, Sapa J, Filipek B. The role of melatonin, neurokinin, neurotrophic tyrosine kinase and glucocorticoid receptors in antidepressant-like effect. Pharmacol Rep 2017; 69:546-554. [DOI: 10.1016/j.pharep.2017.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
|
28
|
Lukiw WJ, Rogaev EI. Genetics of Aggression in Alzheimer's Disease (AD). Front Aging Neurosci 2017; 9:87. [PMID: 28443016 PMCID: PMC5385328 DOI: 10.3389/fnagi.2017.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a terminal, age-related neurological syndrome exhibiting progressive cognitive and memory decline, however AD patients in addition exhibit ancillary neuropsychiatric symptoms (NPSs) and these include aggression. In this communication we provide recent evidence for the mis-regulation of a small family of genes expressed in the human hippocampus that appear to be significantly involved in expression patterns common to both AD and aggression. DNA array- and mRNA transcriptome-based gene expression analysis and candidate gene association and/or genome-wide association studies (CGAS, GWAS) of aggressive attributes in humans have revealed a surprisingly small subset of six brain genes that are also strongly associated with altered gene expression patterns in AD. These genes encoded on five different chromosomes (chr) include the androgen receptor (AR; chrXq12), brain-derived neurotrophic factor (BDNF; chr11p14.1), catechol-O-methyl transferase (COMT; chr22q11.21), neuronal specific nitric oxide synthase (NOS1; chr12q24.22), dopamine beta-hydroxylase (DBH chr9q34.2) and tryptophan hydroxylase (TPH1, chr11p15.1 and TPH2, chr12q21.1). Interestingly, (i) the expression of three of these six genes (COMT, DBH, NOS1) are highly variable; (ii) three of these six genes (COMT, DBH, TPH1) are involved in DA or serotonin metabolism, biosynthesis and/or neurotransmission; and (iii) five of these six genes (AR, BDNF, COMT, DBH, NOS1) have been implicated in the development, onset and/or propagation of schizophrenia. The magnitude of the expression of genes implicated in aggressive behavior appears to be more pronounced in the later stages of AD when compared to MCI. These recent genetic data further indicate that the extent of cognitive impairment may have some bearing on the degree of aggression which accompanies the AD phenotype.
Collapse
Affiliation(s)
- Walter J. Lukiw
- Louisiana State University (LSU) Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA
- Department of Ophthalmology, Louisiana State University Health Science CenterNew Orleans, LA, USA
- Department of Neurology, Louisiana State University Health Science CenterNew Orleans, LA, USA
- Bollinger Professor of Alzheimer’s disease (AD), Louisiana State University Health Sciences CenterNew Orleans, LA, USA
| | - Evgeny I. Rogaev
- Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, Russia
- Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical SchoolWorcester, MA, USA
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State UniversityMoscow, Russia
| |
Collapse
|
29
|
Qin XY, Cao C, Cawley NX, Liu TT, Yuan J, Loh YP, Cheng Y. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer's disease: a meta-analysis study (N=7277). Mol Psychiatry 2017; 22:312-320. [PMID: 27113997 DOI: 10.1038/mp.2016.62] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
Studies suggest that dysfunction of brain-derived neurotrophic factor (BDNF) is a possible contributor to the pathology and symptoms of Alzheimer's disease (AD). Several studies report reduced peripheral blood levels of BDNF in AD, but findings are inconsistent. This study sought to quantitatively summarize the clinical BDNF data in patients with AD and mild cognitive impairment (MCI, a prodromal stage of AD) with a meta-analytical technique. A systematic search of Pubmed, PsycINFO and the Cochrane Library identified 29 articles for inclusion in the meta-analysis. Random-effects meta-analysis showed that patients with AD had significantly decreased baseline peripheral blood levels of BDNF compared with healthy control (HC) subjects (24 studies, Hedges' g=-0.339, 95% confidence interval (CI)=-0.572 to -0.106, P=0.004). MCI subjects showed a trend for decreased BDNF levels compared with HC subjects (14 studies, Hedges' g=-0.201, 95% CI=-0.413 to 0.010, P=0.062). No differences were found between AD and MCI subjects in BDNF levels (11 studies, Hedges' g=0.058, 95% CI=-0.120 to 0.236, P=0.522). Interestingly, the effective sizes and statistical significance improved after excluding studies with reported medication in patients (between AD and HC: 18 studies, Hedges' g=-0.492, P<0.001; between MCI and HC: 11 studies, Hedges' g=-0.339, P=0.003). These results strengthen the clinical evidence that AD or MCI is accompanied by reduced peripheral blood BDNF levels, supporting an association between the decreasing levels of BDNF and the progression of AD.
Collapse
Affiliation(s)
- X-Y Qin
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - C Cao
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - N X Cawley
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - T-T Liu
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - J Yuan
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Y P Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Y Cheng
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Oddone F, Roberti G, Micera A, Busanello A, Bonini S, Quaranta L, Agnifili L, Manni G. Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages. PLoS One 2017; 12:e0168565. [PMID: 28068360 PMCID: PMC5221757 DOI: 10.1371/journal.pone.0168565] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/03/2016] [Indexed: 12/19/2022] Open
Abstract
Purpose To investigate the serum levels of Brain Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) in patients affected by primary open angle glaucoma with a wide spectrum of disease severity compared to healthy controls and to explore their relationship with morphological and functional glaucoma parameters. Materials and Methods 45 patients affected by glaucoma at different stages and 15 age-matched healthy control subjects underwent visual field testing, peripapillary retinal nerve fibre layer thickness measurement using Spectral Domain Optical Coherence Tomography and blood collection for both neurotrophins detection by Enzyme-Linked Immunosorbent Assay. Statistical analysis and association between biostrumental and biochemical data were investigated. Results Serum levels of BDNF in glaucoma patients were significantly lower than those measured in healthy controls (261.2±75.0 pg/ml vs 313.6±79.6 pg/ml, p = 0.03). Subgroups analysis showed that serum levels of BDNF were significantly lower in early (253.8±40.7 pg/ml, p = 0.019) and moderate glaucoma (231.3±54.3 pg/ml, p = 0.04) but not in advanced glaucoma (296.2±103.1 pg/ml, p = 0.06) compared to healthy controls. Serum levels of NGF in glaucoma patients were significantly lower than those measured in the healthy controls (4.1±1 pg/mL vs 5.5±1.2 pg/mL, p = 0.01). Subgroups analysis showed that serum levels of NGF were significantly lower in early (3.5±0.9 pg/mL, p = 0.0008) and moderate glaucoma (3.8±0.7 pg/ml, p<0.0001) but not in advanced glaucoma (5.0±0.7 pg/ml, p = 0.32) compared to healthy controls. BDNF serum levels were not related to age, visual field mean deviation or retinal nerve fibre layer thickness either in glaucoma or in controls while NGF levels were significantly related to visual field mean deviation in the glaucoma group (r2 = 0.26, p = 0.004). Conclusions BDNF and NGF serum levels are reduced in the early and moderate glaucoma stages, suggesting the possibility that both factors could be further investigated as potential circulating biomarkers for the early detection of glaucoma.
Collapse
Affiliation(s)
| | | | | | | | - Stefano Bonini
- Department of Ophthalmology, Campus Bio-Medico University, Rome, Italy
| | - Luciano Quaranta
- Section of Ophthalmology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University of Brescia, Brescia, Italy
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | |
Collapse
|
31
|
Mitre M, Mariga A, Chao MV. Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2017; 131:13-23. [PMID: 27908981 PMCID: PMC5295469 DOI: 10.1042/cs20160044] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/18/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are prominent regulators of neuronal survival, growth and differentiation during development. While trophic factors are viewed as well-understood but not innovative molecules, there are many lines of evidence indicating that BDNF plays an important role in the pathophysiology of many neurodegenerative disorders, depression, anxiety and other psychiatric disorders. In particular, lower levels of BDNF are associated with the aetiology of Alzheimer's and Huntington's diseases. A major challenge is to explain how neurotrophins are able to induce plasticity, improve learning and memory and prevent age-dependent cognitive decline through receptor signalling. This article will review the mechanism of action of neurotrophins and how BDNF/tropomyosin receptor kinase B (TrkB) receptor signaling can dictate trophic responses and change brain plasticity through activity-dependent stimulation. Alternative approaches for modulating BDNF/TrkB signalling to deliver relevant clinical outcomes in neurodegenerative and neuropsychiatric disorders will also be described.
Collapse
Affiliation(s)
- Mariela Mitre
- Neuroscience and Physiology and Psychiatry, New York University School of Medicine, New York, NY 10016, U.S.A.
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
| | - Abigail Mariga
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
- Departments of Cell Biology, New York University School of Medicine, New York, NY 10016, U.S.A
| | - Moses V Chao
- Neuroscience and Physiology and Psychiatry, New York University School of Medicine, New York, NY 10016, U.S.A
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
- Departments of Cell Biology, New York University School of Medicine, New York, NY 10016, U.S.A
| |
Collapse
|
32
|
Mariga A, Mitre M, Chao MV. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol Dis 2017; 97:73-79. [PMID: 27015693 PMCID: PMC5295364 DOI: 10.1016/j.nbd.2016.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/20/2016] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease.
Collapse
Affiliation(s)
- Abigail Mariga
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Mariela Mitre
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Moses V Chao
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| |
Collapse
|
33
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
34
|
Corrigan F, Arulsamy A, Teng J, Collins-Praino LE. Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. J Neurotrauma 2016; 34:971-986. [PMID: 27630018 DOI: 10.1089/neu.2016.4589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death worldwide, affecting as many as 54,000,000-60,000,000 people annually. TBI is associated with significant impairments in brain function, impacting cognitive, emotional, behavioral, and physical functioning. Although much previous research has focused on the impairment immediately following injury, TBI may have much longer-lasting consequences, including neuropsychiatric disorders and cognitive impairment. TBI, even mild brain injury, has also been recognized as a significant risk factor for the later development of dementia and Alzheimer's disease. Although the link between TBI and dementia is currently unknown, several proposed mechanisms have been put forward, including alterations in glucose metabolism, excitotoxicity, calcium influx, mitochondrial dysfunction, oxidative stress, and neuroinflammation. A treatment for the devastating long-term consequences of TBI is desperately needed. Unfortunately, however, no such treatment is currently available, making this a major area of unmet medical need. Increasing the level of neurotrophic factor expression in key brain areas may be one potential therapeutic strategy. Of the neurotrophic factors, granulocyte-colony stimulating factor (G-CSF) may be particularly effective for preventing the emergence of long-term complications of TBI, including dementia, because of its ability to reduce apoptosis, stimulate neurogenesis, and increase neuroplasticity.
Collapse
Affiliation(s)
- Frances Corrigan
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Alina Arulsamy
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Jason Teng
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| |
Collapse
|
35
|
Fukuda M, Takatori A, Nakamura Y, Suganami A, Hoshino T, Tamura Y, Nakagawara A. Effects of novel small compounds targeting TrkB on neuronal cell survival and depression-like behavior. Neurochem Int 2016; 97:42-8. [DOI: 10.1016/j.neuint.2016.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/14/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022]
|
36
|
Lenart L, Hodrea J, Hosszu A, Koszegi S, Zelena D, Balogh D, Szkibinszkij E, Veres-Szekely A, Wagner L, Vannay A, Szabo AJ, Fekete A. The role of sigma-1 receptor and brain-derived neurotrophic factor in the development of diabetes and comorbid depression in streptozotocin-induced diabetic rats. Psychopharmacology (Berl) 2016; 233:1269-78. [PMID: 26809458 DOI: 10.1007/s00213-016-4209-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/08/2016] [Indexed: 11/26/2022]
Abstract
RATIONALE Depression is highly prevalent in diabetes (DM). Brain-derived neurotrophic factor (BDNF) which is mainly regulated by the endoplasmic reticulum chaperon sigma-1 receptor (S1R) plays a relevant role in the development of depression. OBJECTIVES We studied the dose-dependent efficacy of S1R agonist fluvoxamine (FLU) in the prevention of DM-induced depression and investigated the significance of the S1R-BDNF pathway. METHODS We used streptozotocin to induce DM in adult male rats that were treated for 2 weeks p.o. with either different doses of FLU (2 or 20 mg/bwkg) or FLU + S1R antagonist NE100 (1 mg/bwkg) or vehicle. Healthy controls were also enrolled. Metabolic, behaviour, and neuroendocrine changes were determined, and S1R and BDNF levels were measured in the different brain regions. RESULTS In DM rats, immobility time was increased, adrenal glands were enlarged, and thymuses were involuted. FLU in 20 mg/bwkg, but not in 2 mg/bwkg dosage, ameliorated depression-like behaviour. S1R and BDNF protein levels were decreased in DM, while FLU induced SIR-BDNF production. NE100 suspended all effects of FLU. CONCLUSIONS We suggest that disturbed S1R-BDNF signaling in the brain plays a relevant role in DM-induced depression. The activation of this cascade serves as an additional target in the prevention of DM-associated depression.
Collapse
Affiliation(s)
- Lilla Lenart
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, 1083, Budapest, Hungary
| | - Judit Hodrea
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Sandor Koszegi
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dora Zelena
- Institute of Experimental Medicine, Budapest, Hungary
| | - Dora Balogh
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, 1083, Budapest, Hungary
| | - Edgar Szkibinszkij
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Apor Veres-Szekely
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Laszlo Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Vannay
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, 1083, Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, 1083, Budapest, Hungary.
| |
Collapse
|
37
|
Kadri F, LaPlante A, De Luca M, Doyle L, Velasco-Gonzalez C, Patterson JR, Molina PE, Nelson S, Zea A, Parsons CH, Peruzzi F. Defining Plasma MicroRNAs Associated With Cognitive Impairment In HIV-Infected Patients. J Cell Physiol 2016; 231:829-36. [PMID: 26284581 PMCID: PMC4758906 DOI: 10.1002/jcp.25131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023]
Abstract
Human Immunodeficiency Virus (HIV)-infected individuals are at increased risk for developing neurocognitive disorders and depression. These conditions collectively affect more than 50% of people living with HIV/AIDS and adversely impact adherence to HIV therapy. Thus, identification of early markers of neurocognitive impairment could lead to interventions that improve psychosocial functioning and slow or reverse disease progression through improved treatment adherence. Evidence has accumulated for the role and function of microRNAs in normal and pathological conditions. We have optimized a protocol to profile microRNAs in body fluids. Using this methodology, we have profiled plasma microRNA expression for 30 age-matched, HIV-infected (HIV(+) ) patients and identified highly sensitive and specific microRNA signatures distinguishing HIV(+) patients with cognitive impairment from those without cognitive impairment. These results justify follow-on studies to determine whether plasma microRNA signatures can be used as a screening or prognostic tool for HIV(+) patients with neurocognitive impairment. J. Cell. Physiol. 231: 829-836, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ferdous Kadri
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
- Department of Microbiology, Immunology and Parasitology, New Orleans, LA 70112, USA
| | - Andrea LaPlante
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Mariacristina De Luca
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Lisa Doyle
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Cruz Velasco-Gonzalez
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Jonathan R. Patterson
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | | | - Steve Nelson
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Arnold Zea
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Christopher H. Parsons
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Francesca Peruzzi
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
- Correspondence: Francesca Peruzzi, LSU Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA 70112, , Tel: (504) 210-2978, Fax: (504) 210-2970
| |
Collapse
|
38
|
Standardized Herbal Formula PM012 Decreases Cognitive Impairment and Promotes Neurogenesis in the 3xTg AD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2015; 53:5401-12. [PMID: 26446019 DOI: 10.1007/s12035-015-9458-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease for which there is currently no effective treatment. This study investigated whether treatment with the herbal formula PM012 would improve the cognitive function and the pathological features of AD in 3xTg-AD mice. The cognitive function of 3xTg-AD mice was assessed using the Morris water maze test and positron-emission tomography (PET) with 18 F-2 fluoro-2-deoxy-D-glucose ([F-18] FDG) neuroimaging. The levels of the amyloid beta (Aβ) deposits in the hippocampus were evaluated by immunohistochemistry. Neurogenesis was assessed by quantitative labeling with the DNA marker bromodeoxyuridine (BrdU) and the newborn neuron marker doublecortin (DCX). PM012 treatment significantly ameliorated memory deficit in AD mice, as shown by shortened escape latencies and increased time spent in the target zone during probe tests. In addition, PM012 significantly decreased Aβ deposits, up-regulated the expression of brain-derived neurotrophic factor (BDNF), increased neurogenesis, and improved brain glucose metabolism in the 3xTg-AD mice. These results suggest that PM012 could be a promising treatment for AD.
Collapse
|
39
|
Phosphodiesterase-4 inhibitors ameliorates cognitive deficits in deoxycorticosterone acetate induced hypertensive rats via cAMP/CREB signaling system. Brain Res 2015; 1622:279-91. [PMID: 26168894 DOI: 10.1016/j.brainres.2015.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
Abstract
Phosphodiesterase-4 (PDE-4) inhibitors promote memory by blocking the degradation of cAMP. Existing evidence also shows that neuronal survival and plasticity are dependent on the phosphorylation of cAMP-response element-binding protein. In this regard, PDE-4 inhibitors have also been shown to reverse pharmacologically and genetically induced memory impairment in animal models. In the present study, the authors examined the effect of both rolipram and roflumilast (PDE-4 inhibitors) on the impairment of learning and memory observed in hypertensive rats. Deoxycorticosterone acetate (DOCA) salt hypertensive model was used to induce learning and memory deficits. The mRNA expression of different PDE-4 subtypes along with the protein levels of pCREB and BDNF in the hippocampus was quantified. Systolic blood pressure was significantly increased in DOCA salt hypertensive rats when compared to sham operated rats. This effect was reversed by clonidine, an α2 receptor agonist, while PDE-4 inhibitors did not. PDE-4 inhibitors significantly improved the time-induced memory deficits in object recognition task (ORT). In DOCA salt hypertensive rats, the gene expression of PDE-4B and PDE-4D was significantly increased. Furthermore, both pCREB and BDNF showed decreased levels of expression in hypertensive rats in comparison to sham operated rats. Repeated administration of PDE-4 inhibitors significantly decreased both PDE-4B and PDE-4D with an increase in the expression of pCREB and BDNF in hypersensitive rats. Also, rolipram, roflumilast and roflumilast N-oxide showed a linear increase in the plasma and brain concentrations after ORT. Our present findings suggested that PDE-4 inhibitors ameliorate hypertension-induced learning impairment via cAMP/CREB signaling that regulates BDNF expression downstream in the rat hippocampus.
Collapse
|
40
|
Hachisu M, Konishi K, Hosoi M, Tani M, Tomioka H, Inamoto A, Minami S, Izuno T, Umezawa K, Horiuchi K, Hori K. Beyond the Hypothesis of Serum Anticholinergic Activity in Alzheimer's Disease: Acetylcholine Neuronal Activity Modulates Brain-Derived Neurotrophic Factor Production and Inflammation in the Brain. NEURODEGENER DIS 2015; 15:182-7. [DOI: 10.1159/000381531] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Rudnitskaya EA, Maksimova KY, Muraleva NA, Logvinov SV, Yanshole LV, Kolosova NG, Stefanova NA. Beneficial effects of melatonin in a rat model of sporadic Alzheimer's disease. Biogerontology 2014; 16:303-16. [PMID: 25515660 DOI: 10.1007/s10522-014-9547-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/05/2014] [Indexed: 01/20/2023]
Abstract
Melatonin synthesis is disordered in patients with Alzheimer's disease (AD). To determine the role of melatonin in the pathogenesis of AD, suitable animal models are needed. The OXYS rats are an experimental model of accelerated senescence that has also been proposed as a spontaneous rat model of AD-like pathology. In the present study, we demonstrate that disturbances in melatonin secretion occur in OXYS rats at 4 months of age. These disturbances occur simultaneously with manifestation of behavioral abnormalities against the background of neurodegeneration and alterations in hormonal status but before the signs of amyloid-β accumulation. We examined whether oral administration of melatonin could normalize the melatonin secretion and have beneficial effects on OXYS rats before progression to AD-like pathology. The results showed that melatonin treatment restored melatonin secretion in the pineal gland of OXYS rats as well as the serum levels of growth hormone and IGF-1, the level of BDNF in the hippocampus and the healthy state of hippocampal neurons. Additionally, melatonin treatment of OXYS rats prevented an increase in anxiety and the decline of locomotor activity, of exploratory activity, and of reference memory. Thus, melatonin may be involved in AD progression, whereas oral administration of melatonin could be a prophylactic strategy to prevent or slow down the progression of some features of AD pathology.
Collapse
|
42
|
Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy. Mol Neurobiol 2014; 52:1477-1493. [PMID: 25354497 DOI: 10.1007/s12035-014-8958-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.
Collapse
|
43
|
Faria MC, Gonçalves GS, Rocha NP, Moraes EN, Bicalho MA, Gualberto Cintra MT, Jardim de Paula J, José Ravic de Miranda LF, Clayton de Souza Ferreira A, Teixeira AL, Gomes KB, Carvalho MDG, Sousa LP. Increased plasma levels of BDNF and inflammatory markers in Alzheimer's disease. J Psychiatr Res 2014; 53:166-72. [PMID: 24576746 DOI: 10.1016/j.jpsychires.2014.01.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/19/2013] [Accepted: 01/30/2014] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Neurotrophic factors and inflammatory markers may play considerable roles in AD. In this study we measured, through Enzyme-Linked Immunosorbent Assay, the plasma levels of brain derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF) and neuronal growth factor (NGF), as well as tumor necrosis factor-alpha soluble receptors, sTNFR1 and sTNFR2, and soluble intercellular adhesion molecule 1 (sICAM-1), in 50 AD patients, 37 patients with mild cognitive impairment (MCI) and 56 healthy elderly controls. BDNF levels, expressed as median and interquartile range, were higher for AD patients (2545.3, 1497.4-4153.4 pg/ml) compared to controls (1503.8, 802.3-2378.4 pg/ml), P < 0.001. sICAM-1 was also higher in AD patients. sTNFR1 levels were increased in AD when compared to controls and also to MCI. GDNF, NGF and sTNFR2 levels showed no significant differences among the studied groups. The increase in BDNF might reflect a compensatory mechanism against early neurodegeneration and seems to be related to inflammation. sTNFR1 appears to mark not only the inflammatory state but also differentiates between MCI and AD, which may be an additional tool for differentiating degrees of cognitive impairment.
Collapse
Affiliation(s)
- Mayara Chaves Faria
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av.Antonio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Santos Gonçalves
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av.Antonio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Natália Pessoa Rocha
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edgar Nunes Moraes
- Ambulatório de Idosos do Instituto Jenny de Andrade Faria do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Aparecida Bicalho
- Ambulatório de Idosos do Instituto Jenny de Andrade Faria do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Túlio Gualberto Cintra
- Ambulatório de Idosos do Instituto Jenny de Andrade Faria do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jonas Jardim de Paula
- Ambulatório de Idosos do Instituto Jenny de Andrade Faria do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís Felipe José Ravic de Miranda
- Ambulatório de Idosos do Instituto Jenny de Andrade Faria do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Antônio Lúcio Teixeira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av.Antonio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av.Antonio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
44
|
Li X, Guo F, Zhang Q, Huo T, Liu L, Wei H, Xiong L, Wang Q. Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the APP/PS1 transgenic mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:37. [PMID: 24447795 PMCID: PMC3907495 DOI: 10.1186/1472-6882-14-37] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 01/10/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a severe neurodegenerative disease for which there is currently no effective treatment. The purpose of this study was to investigate whether repeated electroacupuncture (EA) stimulation would improve cognitive function and the pathological features of AD in amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice. METHODS Cognitive function of APP/PS1 double transgenic mice was assessed using the Morris water maze test before and after EA treatment. Levels of amyloid β-peptide (Aβ) deposits in the hippocampus and cortex were evaluated by immunofluorescence, western blot and enzyme-linked immunosorbent assay. Expression of brain-derived neurotrophic factor (BDNF) was also examined by immunofluorescence and western blot. The neurogenesis was labeled by the DNA marker bromodeoxyuridine. RESULTS EA stimulation significantly ameliorated the learning and memory deficits of AD mice by shortening escape latency and increasing the time spent in the target zone during the probe test. Additionally, decreased Aβ deposits and increased BDNF expression and neurogenesis in the hippocampus and cortex of EA-treated AD mice were detected. The same change was detected in wild-type mice after EA treatment compared with wild-type mice without EA treatment. CONCLUSIONS Repeated EA stimulation may improve cognitive function, attenuate Aβ deposits, up-regulate the expression of BDNF and promote neurogenesis in the APP/PS1 double transgenic mice. This suggests that EA may be a promising treatment for AD.
Collapse
|
45
|
Effects of the BDNF Val66Met polymorphism and met allele load on declarative memory related neural networks. PLoS One 2013; 8:e74133. [PMID: 24244264 PMCID: PMC3823923 DOI: 10.1371/journal.pone.0074133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/28/2013] [Indexed: 11/19/2022] Open
Abstract
It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe. In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results suggest that the BDNF Val66Met polymorphism does not, as previously claimed, exert an observable effect on neural systems underlying encoding of new information into episodic memory but may exert a subtle effect on the efficiency with which such information can be retrieved.
Collapse
|
46
|
Nagata T, Shibata N, Shinagawa S, Nakayama R, Kuerban B, Ohnuma T, Arai H, Nakayama K, Yamada H. Genetic Association between Neurotrophin-3 Polymorphisms and Alzheimer's Disease in Japanese Patients. Dement Geriatr Cogn Dis Extra 2013; 3:272-80. [PMID: 24174922 PMCID: PMC3808222 DOI: 10.1159/000354369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Some polymorphisms of the neurotrophin family have previously been investigated as candidate genes for Alzheimer's disease (AD). In the present study, we examined whether neurotrophin-3 (NTF-3) polymorphisms are genetic risk factors in patients with AD. METHODS From a sample of 507 subjects, we recruited 248 age-matched subjects divided into 2 groups: AD patients (n = 143) and normal controls (NCs) (n = 105). We identified 3 representative NTF-3 single nucleotide polymorphisms (SNPs): rs6332, rs6489630, and rs4930767. Next, we statistically compared the allele frequencies of each SNP between the AD and NC groups in the early-onset (<65 years) cases under a more limited age-matched condition. RESULTS We found a significant association between rs6332 and the total group of AD patients (p = 0.013) and significant associations between both rs6332 (p = 0.033) and rs6489630 (p = 0.035) and early-onset AD patients. CONCLUSION These results suggest that NTF-3 SNPs may not only be associated with AD itself, but also with early-onset AD in Japanese patients, assuming that the NTF-3 gene may have age-related effects on neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomoyuki Nagata
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan ; Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pikula A, Beiser AS, Chen TC, Preis SR, Vorgias D, DeCarli C, Au R, Kelly-Hayes M, Kase CS, Wolf PA, Vasan RS, Seshadri S. Serum brain-derived neurotrophic factor and vascular endothelial growth factor levels are associated with risk of stroke and vascular brain injury: Framingham Study. Stroke 2013; 44:2768-75. [PMID: 23929745 PMCID: PMC3873715 DOI: 10.1161/strokeaha.113.001447] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/08/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Brain-derived neurotrophic factor (BDNF), a major neurotrophin and vascular endothelial growth factor (VEGF) have a documented role in neurogenesis, angiogenesis, and neuronal survival. In animal experiments, they impact infarct size and functional motor recovery after an ischemic brain lesion. We sought to examine the association of serum BDNF and VEGF with the risk of clinical stroke or subclinical vascular brain injury in a community-based sample. METHODS In 3440 Framingham Study participants (mean age, 65±11 years; 56% women) who were free of stroke/transient ischemic attack (TIA), we related baseline BDNF and logVEGF to risk of incident stroke/TIA. In a subsample with brain MRI and with neuropsychological tests available (n=1863 and 2104, respectively; mean age, 61±9 years, 55% women, in each), we related baseline BDNF and logVEGF to log-white matter hyperintensity volume on brain MRI, and to visuospatial memory and executive function tests. RESULTS During a median follow-up of 10 years, 193 participants experienced incident stroke/TIA. In multivariable analyses adjusted for age, sex, and traditional stroke risk factors, lower BDNF and higher logVEGF levels were associated with an increased risk of incident stroke/TIA (hazard ratio comparing BDNF Q1 versus Q2-Q4, 1.47; 95% confidence interval, 1.09-2.00; P=0.012 and hazard ratio/SD increase in logVEGF, 1.21; 95% confidence interval, 1.04-1.40; P=0.012). Persons with higher BDNF levels had less log-white matter hyperintensity volume (β±SE=-0.05±0.02; P=0.025), and better visual memory (β±SE=0.18±0.07; P=0.005). CONCLUSIONS Lower serum BDNF and higher VEGF concentrations were associated with increased risk of incident stroke/TIA. Higher levels of BDNF were also associated with less white matter hyperintensity and better visual memory. Our findings suggest that circulating BDNF and VEGF levels modify risk of clinical and subclinical vascular brain injury.
Collapse
Affiliation(s)
- Aleksandra Pikula
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| | - Alexa S. Beiser
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| | - Tai C. Chen
- Boston University Schools of Medicine and Public Health, Boston, MA
| | - Sarah R. Preis
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| | | | - Charles DeCarli
- Framingham Heart Study, Framingham, MA
- University of California at Davis, Sacramento, CA
| | - Rhoda Au
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| | - Margaret Kelly-Hayes
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| | - Carlos S. Kase
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| | - Philip A. Wolf
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| | - Ramachandran S. Vasan
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| | - Sudha Seshadri
- Boston University Schools of Medicine and Public Health, Boston, MA
- Framingham Heart Study, Framingham, MA
| |
Collapse
|
48
|
Reduced nerve growth factor levels in stress-related brain regions of folate-deficient mice. Neuroscience 2013; 245:129-35. [DOI: 10.1016/j.neuroscience.2013.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 11/19/2022]
|
49
|
The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease. PLoS One 2013; 8:e68722. [PMID: 23844236 PMCID: PMC3700921 DOI: 10.1371/journal.pone.0068722] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 06/02/2013] [Indexed: 01/01/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer’s disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could partially contribute to learning and memory problems of AD patients.
Collapse
|
50
|
Abdallah MW, Mortensen EL, Greaves-Lord K, Larsen N, Bonefeld-Jørgensen EC, Nørgaard-Pedersen B, Hougaard DM, Grove J. Neonatal levels of neurotrophic factors and risk of autism spectrum disorders. Acta Psychiatr Scand 2013; 128:61-9. [PMID: 23039165 DOI: 10.1111/acps.12020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine levels of 3 neurotrophic factors (NTFs): Brain derived neurotrophic factor (BDNF), Neurotrophin-4 (NT-4), and transforming growth factor-β (TGF-β) in dried blood spot samples of neonates diagnosed with autism spectrum disorders (ASD) later in life and frequency-matched controls. METHOD Biologic samples were retrieved from the Danish Newborn Screening Biobank. NTFs for 414 ASD cases and 820 controls were measured using Luminex technology. Associations were analyzed with continuous measures (Tobit regression) as well as dichotomized at the lower and upper 10th percentiles cutoff points derived from the controls' distributions (logistic regression). RESULTS ASD cases were more likely to have BDNF levels falling in the lower 10th percentile (odds ratios [OR], 1.53 [95% confidence intervals (CI), 1.04-2.24], P-value = 0.03). Similar pattern was seen for TGF-β in females with ASD (OR, 2.36 [95% CI, 1.05-5.33], P-value = 0.04). For NT-4, however, ASD cases diagnosed with ICD-10 only were less likely to have levels in upper 10th percentile compared with controls (OR, 0.22 [95% CI, 0.05-0.98], P-value = 0.05). CONCLUSION Results cautiously indicate decreased NTFs levels during neonatal period in ASD. This may contribute to the pathophysiology of ASD through impairments of neuroplasticity. Further research is required to confirm our results and to examine the potential therapeutic effects of NTFs in ASD.
Collapse
Affiliation(s)
- M W Abdallah
- Section for Epidemiology, HEALTH, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|