1
|
Sun Y, Zhang H, Liu R, Huang R, Gao Z, Tian L, Zhu Y, Liu Y, Lu C, Wu L. Lancao decoction alleviates cognitive dysfunction: A new therapeutic drug and its therapeutic mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155531. [PMID: 38492366 DOI: 10.1016/j.phymed.2024.155531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Cognitive dysfunction (CD) is a neurodegenerative disease characterized primarily by the decline of learning and memory abilities. The physiological and pathological mechanisms of CD are very complex, which is mainly related to normal function of the hippocampus. Lancao decoction (LC) is a Chinese medicine formula, which has been used to treat neurodegenerative disorders. However, the potential of LC for the treatment of CD, as well as its underlying mechanisms, is unclear. PURPOSE In the study, we aimed to reveal the functional and neuronal mechanisms of LC's treatments for CD in scopolamine-induced mice. METHODS Gas chromatography (GC) was used to determine the stability of LC's extraction. CD model was established by the chronic induction of scopolamine (Scop, 1 mg/kg/day) for 1 week. Behavioral tests including morris water maze (MWM) and y-maze were used to evaluate learning and memory abilities of mice after LC's treatments. Immunofluorescence was used to detected the expressions of cFOS, Brdu and Ki67 after LC's treatments. Pharmacological blockade experiments explored the role of α-Amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in LC's treatments for CD and its relationships with regeneration, activities and differentiation of neurons. RESULTS The results showed that LC was capable of improving spatial learning and memory and spontaneous alternating abilities in Scop-induced mice, which was similar to donepezil. LC could increase the number of cFOS positive cells, which was used as a marker of neuronal activity to upregulate by neuronal activities in hippocampus, but donepezil did not. Moreover, LC could strengthen neurogenesis and neuro-differentiation by increasing the number of Brdu and Ki67 positive cells in hippocampal dentate gyrus (DG), meanwhile, donepezil could only enhance the number of Ki67 positive cells. Transient inhibition of AMPAR by NBQX blunted the function of LC's treatment for CD and inhibited the enhanced effect of LC on Scop-induced hippocampal neuronal excitability and neurogenesis in mice. CONCLUSION To sum up, our study demonstrated that LC had the function of treating CD by enhancing content of acetylcholine (ACh) to activate AMPAR, which further up-regulated neurogenesis and neuronal differentiation to strengthen neuroactivities in hippocampus.
Collapse
Affiliation(s)
- Yan Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China; College of Chinese Medicine & College of Integrated Chinese and Western Medicine, Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders and School of Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders and School of Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Rumin Huang
- College of Chinese Medicine & College of Integrated Chinese and Western Medicine, Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ziwei Gao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China
| | - Liyuan Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China
| | - Yaping Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China
| | - Yuxin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China
| | - Chao Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing 210029, PR China.
| |
Collapse
|
2
|
Iyer S, Dhiman N, Zade SP, Mukherjee S, Singla N, Kumar M. Exposure to Tetrabutylammonium Bromide Impairs Cranial Neural Crest Specification, Neurogenic Program, and Brain Morphogenesis. ACS Chem Neurosci 2023; 14:1785-1798. [PMID: 37125651 DOI: 10.1021/acschemneuro.2c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Tetrabutylammonium bromide (TBAB) is a widely used industrial reagent and is commonly found in our aquatic ecosystem as an industrial byproduct. In humans, the ingestion of TBAB causes severe neurological impairments and disorders such as vertigo, hallucinations, and delirium. Yet, the extent of environmental risk and TBAB toxicity to human health is poorly understood. In this study, we aim to determine the developmental toxicity of TBAB using zebrafish embryos as a model and provide novel insights into the mechanism of action of such chemicals on neurodevelopment and the overall embryonic program. Our results show that exposure to TBAB results in impaired development of the brain, inner ear, and pharyngeal skeletal elements in the zebrafish embryo. TBAB treatment resulted in aberrations in the specification of the neural crest precursors, hindbrain segmentation, and otic neurogenesis. TBAB treatment also induced a surge in apoptosis in the head, tail, and trunk regions of the developing embryo. Long-term TBAB exposure resulted in cardiac edema and craniofacial defects. Further, in silico molecular docking analysis indicated that TBAB binds to AMPA receptors and modulates neural developmental genes such as olfactomedin and acetylcholinesterase in the embryonic brain. To summarize, our study highlights the novel effects of TBAB on embryonic brain formation and segmentation, ear morphogenesis, and craniofacial skeletal development.
Collapse
Affiliation(s)
- Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Dhiman
- Department of Biochemistry, Panjab University, Chandigarh160014, India
| | - Suraj P Zade
- Global Product Compliance─India, 301, Samved Sankul, Near MLA Hostel, Civil Lines, Nagpur 440001, India
| | - Sulagna Mukherjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh160014, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
4
|
Gosso FM, de Geus EJC, Polderman TJC, Boomsma DI, Posthuma D, Heutink P. Exploring the functional role of the CHRM2 gene in human cognition: results from a dense genotyping and brain expression study. BMC MEDICAL GENETICS 2007; 8:66. [PMID: 17996044 PMCID: PMC2198911 DOI: 10.1186/1471-2350-8-66] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/08/2007] [Indexed: 02/02/2023]
Abstract
BACKGROUND The CHRM2 gene, located on the long arm of chromosome 7 (7q31-35), is involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release, and has been implicated in higher cognitive processing. The aim of this study is the identification of functional (non)coding variants underlying cognitive phenotypic variation. METHODS We previously reported an association between polymorphisms in the 5'UTR regions of the CHRM2 gene and intelligence.. However, no functional variants within this area have currently been identified. In order to identify the relevant functional variant(s), we conducted a denser coverage of SNPs, using two independent Dutch cohorts, consisting of a children's sample (N = 371 ss; mean age 12.4) and an adult sample (N= 391 ss; mean age 37.6). For all individuals standardized intelligence measures were available. Subsequently, we investigated genotype-dependent CHRM2 gene expression levels in the brain, to explore putative enhancer/inhibition activity exerted by variants within the muscarinic acetylcholinergic receptor. RESULTS Using a test of within-family association two of the previously reported variants - rs2061174, and rs324650 - were again strongly associated with intelligence (P < 0.01). A new SNP (rs2350780) showed a trend towards significance. SNP rs324650, is located within a short interspersed repeat (SINE). Although the function of short interspersed repeats remains contentious, recent research revealed potential functionality of SINE repeats in a gene-regulatory context. Gene-expression levels in post-mortem brain material, however were not dependent on rs324650 genotype. CONCLUSION Using a denser coverage of SNPs in the CHRM2 gene, we confirmed the 5'UTR regions to be most interesting in the context of intelligence, and ruled out other regions of this gene. Although no correlation between genomic variants and gene expression was found, it would be interesting to examine allele-specific effects on CHRM2 transcripts expression in much more detail, for example in relation to transcripts specific halve-life and their relation to LTP and memory.
Collapse
Affiliation(s)
- Florencia M Gosso
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
5
|
Morley BJ. Nicotinic cholinergic intercellular communication: implications for the developing auditory system. Hear Res 2005; 206:74-88. [PMID: 16081000 DOI: 10.1016/j.heares.2005.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 02/24/2005] [Indexed: 02/02/2023]
Abstract
In this paper, research on the temporal and spatial distribution of cholinergic-related molecules in the lower auditory brainstem, with an emphasis on nicotinic acetylcholine receptors (nAChRs), is reviewed. The possible functions of acetylcholine (ACh) in driving selective auditory neurons before the onset of hearing, inducing glutamate receptor gene expression, synaptogenesis, differentiation, and cell survival are discussed. Experiments conducted in other neuronal and non-neuronal systems are drawn on extensively to discuss putative functions of ACh and nAChRs. Data from other systems may provide insight into the functions of ACh and nAChRs in auditory processing. The mismatch of presynaptic and postsynaptic markers and novel endogenous agonists of nAChRs are discussed in the context of non-classical interneuronal communication. The molecular mechanism that may underlie the many functions of ACh and its agonists is the regulation of intracellular calcium through nAChRs. The possible reorganization that may take place in the auditory system by the exposure to nicotine during critical developmental periods is also briefly considered.
Collapse
Affiliation(s)
- Barbara J Morley
- Boys Town National Research Hospital, Neurochemistry Laboratory, 555 North 30th Street, Omaha, NE 68131, USA.
| |
Collapse
|
6
|
Bravo SO, Henley J, Rodriguez-Ithurralde D. (35) Acetylcholinesterase effects on glutamate receptors. Chem Biol Interact 2005. [DOI: 10.1016/j.cbi.2005.10.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Morley BJ, Warr WB, Rodriguez-Sierra J. Transient expression of acetylcholinesterase in the posterior ventral cochlear nucleus of rat brain. J Assoc Res Otolaryngol 2005; 5:391-403. [PMID: 15675003 PMCID: PMC2504565 DOI: 10.1007/s10162-004-5015-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In this report we partially characterize a pathway projecting to the posterior ventral cochlear nucleus (PVCN) of the rat brain that transiently expresses a high level of acetylcholinesterase (AChE). The AChE-positive axons form a network that envelops a discrete region of the PVCN that includes the octopus cell region and some cells rostral to it. AChE is first detectable by postnatal day 3 (P3), peaks in expression at about P7-10, and is barely detectable in our preparations by P15. We previously reported that neurons in the octopus cell region express high levels of alpha7 nAChR mRNA and alpha-bungarotoxin binding during the same time period. In light microscopic immunocytochemical studies using antibodies to the vesicular acetylcholine transporter (VAChT), we could not identify immunopositive boutons in the developing regions of the PVCN that express high levels of AChE-positive fibers despite distinct punctate labeling in other brain regions. Systematic electron microscopic examination of AChE histochemical staining throughout the PVCN revealed intense labeling of axons, but synaptic sites were devoid of reaction product. The source of the AChE-positive fibers is not known, but the fibers are not auditory nerve axons and probably not collaterals of the olivocochlear bundle.
Collapse
|