Raval AN, Karmarkar PV, Guttman MA, Ozturk C, Sampath S, DeSilva R, Aviles RJ, Xu M, Wright VJ, Schenke WH, Kocaturk O, Dick AJ, Raman VK, Atalar E, McVeigh ER, Lederman RJ. Real-time magnetic resonance imaging-guided endovascular recanalization of chronic total arterial occlusion in a swine model.
Circulation 2006;
113:1101-7. [PMID:
16490819 PMCID:
PMC1428785 DOI:
10.1161/circulationaha.105.586727]
[Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND
Endovascular recanalization (guidewire traversal) of peripheral artery chronic total occlusion (CTO) can be challenging. X-ray angiography resolves CTO poorly. Virtually "blind" device advancement during x-ray-guided interventions can lead to procedure failure, perforation, and hemorrhage. Alternatively, MRI may delineate the artery within the occluded segment to enhance procedural safety and success. We hypothesized that real-time MRI (rtMRI)-guided CTO recanalization can be accomplished in an animal model.
METHODS AND RESULTS
Carotid artery CTO was created by balloon injury in 19 lipid-overfed swine. After 6 to 8 weeks, 2 underwent direct necropsy analysis for histology, 3 underwent primary x-ray-guided CTO recanalization attempts, and the remaining 14 underwent rtMRI-guided recanalization attempts in a 1.5-T interventional MRI system. Real-time MRI intervention used custom CTO catheters and guidewires that incorporated MRI receiver antennae to enhance device visibility. The mean length of the occluded segments was 13.3+/-1.6 cm. The rtMRI-guided CTO recanalization was successful in 11 of 14 swine and in only 1 of 3 swine with the use of x-ray alone. After unsuccessful rtMRI (n=3), x-ray-guided attempts were also unsuccessful.
CONCLUSIONS
Recanalization of long CTO is entirely feasible with the use of rtMRI guidance. Low-profile clinical-grade devices will be required to translate this experience to humans.
Collapse