1
|
Hu S, Duggavathi R, Zadworny D. Regulatory Mechanisms Underlying the Expression of Prolactin Receptor in Chicken Granulosa Cells. PLoS One 2017; 12:e0170409. [PMID: 28107515 PMCID: PMC5249103 DOI: 10.1371/journal.pone.0170409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
Prolactin (PRL) has both pro- and anti-gonadal roles in the regulation of avian ovarian functions through its interaction with the receptor (PRLR). However, neither the pattern of expression of PRLR nor its regulatory mechanisms during follicle development have been clearly defined. The objective of the present study was to investigate mechanisms of PRLR expression in chicken granulosa cells. Levels of PRLR transcript were highest in the stroma and walls of follicles < 2 mm in diameter and progressively declined with the maturation of follicles. In preovulatory follicles, PRLR was expressed at higher levels in granulosa than theca layers. FSH exerted the greatest stimulatory effect on PRLR and StAR expression in cultured granulosa cells of the 6–8 mm follicles but this effect declined as follicles matured to F1. In contrast, LH did not alter the expression of PRLR in granulosa cells of all follicular classes but increased levels of StAR in F2 and F1 granulosa cells. Both non-glycosylated- (NG-) and glycosylated- (G-) PRL upregulated basal PRLR expression in granulosa cells of the 6–8 mm, F3 or F1 follicles but had little effect in F2 follicles. Furthermore, FSH-stimulated PRLR expression was reduced by the addition of either isoform of PRL especially in F2 granulosa cells. These results indicate that PRLR is differentially distributed and regulated by FSH or PRL variants independently or in combination in the follicular hierarchy. By using activators and inhibitors, we further demonstrated that multiple signaling pathways, including PKA, PKC, PI3K, mTOR and AMPK, are not only directly involved in, but they can also converge to modulate ERK2 activity to regulate FSH-mediated PRLR and StAR expression in undifferentiated granulosa cells. These data provide new insights into the regulatory mechanisms controlling the expression of PRLR in granulosa cells.
Collapse
Affiliation(s)
- Shenqiang Hu
- Department of Animal Science, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - David Zadworny
- Department of Animal Science, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|
2
|
Abstract
In the majority of vertebrates, survival of offspring to sexual maturation is important for increasing population size, and parental investment in the young is important for reproductive success. Consequently, parental care is critical for the survival of offspring in many species, and many vertebrates have adapted this behavior to their social and ecological environments. Parental care is defined as any behavior that is performed in association with one's offspring (Rosenblatt, Mayer, Siegel. Maternal behavior among nonprimate mammals. In: Adler, Pfaff, Goy, editors. Handbook of behavioral neurobiology. New York: Plenum; 1985. p. 229-98) and is well characterized in mammals and birds. In birds (class Aves), this is due to the high level of diversity across species. Parental behavior in birds protects the young from intruders, and generally involves nest building, incubation, and broody behavior which protect their young from an intruder, and the offspring are reared to independence. Broodiness is complexly regulated by the central nervous system and is associated with multiple hormones and neurotransmitters produced by the hypothalamus and pituitary gland. The mechanism of this behavior has been extensively characterized in domestic chicken (Gallus domesticus), turkey (Meleagris gallopavo), and pigeons and doves (family Columbidae). This chapter summarizes broodiness in birds from a physiology, genetics, and molecular biology perspective.
Collapse
Affiliation(s)
- Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ibaraki, Japan.
| |
Collapse
|
3
|
Kansaku N, Tobari Y, Hiyama G, Wakui S, Minoguchi N, Numata M, Kino K, Zadworny D. Effects of Vasoactive Intestinal Polypeptide and Forskolin on mRNA Expression of Prolactin and Prolactin Regulatory Element-Binding Protein in the Anterior Pituitary Gland of Chicken Embryo and Laying Hens. J Poult Sci 2016; 53:313-317. [PMID: 32908399 PMCID: PMC7477168 DOI: 10.2141/jpsa.0160039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) treatment induced mRNA expression of Prolactin (PRL) in the chicken anterior pituitary gland. VIP responsive element (VRE) of the PRL promoter was identified in the various bird species. However, transcription factor, which binds to VRE, has not yet been identified. Prolactin regulatory element-binding protein (PREB) gene cloned as a candidate transcription factor binds to VRE. Increases of mRNA levels of PRL and PREB during embryogenesis were identified. However, whether VIP affects levels of PRL and PREB mRNA during embryogenesis remains unknown. The effects of VIP and forskolin on mRNA expression of PRL and PREB in the embryonic anterior pituitary gland were assessed. Furthermore, administration of VIP to laying hens was conducted to examine the relationship between VIP and PREB mRNA expression. At day 14 of the embryonic growth stage, VIP treatment did not affect mRNA levels of either PRL or PREB, whereas forskolin treatment induced the increase of these mRNA levels. At day 20, both VIP and forskolin induced an increase of PRL and PREB mRNA levels. The administration of VIP significantly increased mRNA levels of PRL and PREB in the anterior pituitary gland of White Leghorn and Nagoya. These results indicate that the effects of VIP on PRL and PREB mRNA expression levels of VIP receptor may in turn affect PRL and PREB mRNA levels in the chicken anterior pituitary gland.
Collapse
Affiliation(s)
- Norio Kansaku
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara-Shi, Kanagawa, 252-5201, Japan
| | - Yasuko Tobari
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara-Shi, Kanagawa, 252-5201, Japan
| | - Gen Hiyama
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara-Shi, Kanagawa, 252-5201, Japan
| | - Shin Wakui
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara-Shi, Kanagawa, 252-5201, Japan
| | - Naokazu Minoguchi
- Animal Husbandry Research Division, Aichi Agricultural Research Center, Yazako, Nagakute, Aichi-ken, 480-1193, Japan
| | - Masazumi Numata
- Animal Husbandry Research Division, Aichi Agricultural Research Center, Yazako, Nagakute, Aichi-ken, 480-1193, Japan
| | - Katsutoshi Kino
- Animal Husbandry Research Division, Aichi Agricultural Research Center, Yazako, Nagakute, Aichi-ken, 480-1193, Japan
| | - David Zadworny
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, P.Q., H9X 3V9, Canada
| |
Collapse
|
4
|
Characterization of Chicken Prolactin Regulatory Element Binding Protein and its Expression in the Anterior Pituitary Gland during Embryogenesis and Different Reproductive Stages. J Poult Sci 2015. [DOI: 10.2141/jpsa.0140036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Hiyama G, Kansaku N, Kinoshita M, Sasanami T, Nakamura A, Noda K, Tsukada A, Shimada K, Zadworny D. Changes in post-translational modifications of prolactin during development and reproductive cycles in the chicken. Gen Comp Endocrinol 2009; 161:238-45. [PMID: 19523395 DOI: 10.1016/j.ygcen.2009.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/28/2022]
Abstract
Changes in proportion of glycosylated prolactin in the anterior pituitary glands of chickens were assessed using one- and two-dimensional western blotting analysis during the perihatch stage of embryos and reproductive cycles. Multiple isoforms of prolactin were detected by one-dimensional analysis and glycosylated (G) and non-glycosylated (NG) isoforms were identified by N-glycosidase and neuraminidase treatment. Increases of ratio of G to NG isoforms were observed in both embryonic stages and reproductive cycles by the one-dimensional analysis. Although a similar tendency of increase of proportion of G prolactin was obtained, different values of proportion were observed between one-dimensional and two-dimensional analysis. Since two-dimensional analysis may better resolve isoforms differing slightly in molecular size of G prolactin, the results from two-dimensional analysis may reflect the actual proportion of prolactin isoforms. Furthermore, isoforms differing in isoelectric points were detected after N-glycosidase and neuraminidase treatment. These results indicate that prolactin may also be additionally post-translationally modified such as by phosphorylation. Thus function and biological activity of prolactin were, at least in part, regulated by post-translational modification in the various physiological stages.
Collapse
Affiliation(s)
- Gen Hiyama
- Laboratory of Animal Genetics and Breeding, Azabu University, Fuchinobe, Sagamihara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Al Kahtane A, Kannan M, Kang SW, El Halawani ME. Regulation of prolactin gene expression by vasoactive intestinal peptide and dopamine in the turkey: role of Ca signalling. J Neuroendocrinol 2005; 17:649-55. [PMID: 16159377 DOI: 10.1111/j.1365-2826.2005.01352.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our recent work has demonstrated that dopamine, acting through D2 dopamine receptors on pituitary cells, inhibits the stimulatory effects of vasoactive intestinal peptide (VIP) on prolactin release and prolactin gene transcription. It is hypothesised that the stimulatory and inhibitory roles of VIP and dopamine, respectively, on prolactin synthesis and release are mediated by their opposite effects on intracellular Ca2+ concentration ([Ca2+]i) in lactotrophs. The present study aimed: (i) to investigate the effect of VIP and dopamine on [Ca2+]i of cultured turkey anterior pituitary cells and (ii) to examine the role of Ca2+ signalling in mediating the regulatory effects of VIP and dopamine on prolactin mRNA levels and prolactin release. Changes in [Ca2+]i were measured spectrofluorometrically using Fura-2/AM as a fluorescent Ca2+ indicator. Semi-quantitative reverse transcription-polymerase chain reaction and radioimmunoassay were used to determine prolactin mRNA levels and prolactin release, respectively. VIP or the L-type Ca2+ channel activator, Bay K8644 (Bay) increased [Ca2+]i in a concentration- and time-dependent fashion, an effect abolished by preincubating the cells with R(-)-propylnorapomorphine HCl, a D2 dopamine receptor agonist (D2AG) or Verapamil (VR), a specific L-type Ca2+ channel blocker. Similarly, either VR or D2Ag diminished the VIP/Bay stimulatory effect on prolactin expression and release. On the other hand, pretreatment of pituitary cells with thapsigargin (TG) or neomycin (NEO), to deplete the intracellular Ca2+ stores, showed no effect on basal or VIP-stimulated prolactin mRNA levels; although VIP-induced prolactin release was partially inhibited by NEO but not TG. These results suggest that intracellular Ca2+ represents a common signal transduction pathway through which VIP and dopamine can exert antagonistic control on prolactin synthesis and release in avian lactotrophs.
Collapse
Affiliation(s)
- A Al Kahtane
- Department of Animal Science, University of Minnesota, St Paul, MN, USA
| | | | | | | |
Collapse
|
8
|
Kang SW, Youngren OM, El Halawani ME. Influence of VIP on prolactinemia in turkey anterior pituitary cells: role of cAMP second messenger in VIP-induced prolactin gene expression. REGULATORY PEPTIDES 2002; 109:39-44. [PMID: 12409212 DOI: 10.1016/s0167-0115(02)00168-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasoactive intestinal peptide (VIP) is the avian prolactin (PRL)-releasing factor. In the turkey, hypothalamic VIP immunoreactivity and mRNA content, as well as VIP levels in hypophyseal portal blood, are closely related to the state of prolactinemia and the reproductive stage. The present study investigated the role of VIP on prolactinemia in turkey anterior pituitary (AP) cells through PRL gene expression and the role of a cAMP second messenger system on VIP-induced PRL expression. In primary AP cells harvested from hens in different prolactinemic states, steady state promoter activities were positively correlated with secreted PRL levels. VIP increased PRL promoter activities in AP cells from hens with intermediate PRL levels (laying), but not in AP cells from hypoprolactinemic hens (nonphotostimulated reproductively quiescent). However, in AP cells from hyperprolactinemic hens (incubating), PRL promoter activity was down-regulated by VIP. PRL mRNA steady state levels were significantly decreased by the cAMP analogue, 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP), and PRL secretion was down-regulated by the phosphodiesterase blocker, 3-isobutyl-1-methylxanthine (IBMX) in a dose-dependent manner, suggesting that the cAMP second messenger system might be involved in the inhibitory action of dopamine upon VIP-stimulated PRL secretion and gene expression at the pituitary level. In a study of VIP immediate and long-term effects on c-fos expression in relation to PRL expression, VIP dramatically induced c-fos mRNA expression within 5 min, suggesting that VIP-induced c-fos expression might be involved in VIP-stimulated PRL secretion and gene expression. These results provide additional evidence of the functional significance of VIP in PRL gene expression and suggest that changes in PRL promoter activity by VIP may be one of the important inductive mechanisms leading to prolactinemia.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|