1
|
Benaim G, Paniz-Mondolfi AE, Sordillo EM, Martinez-Sotillo N. Disruption of Intracellular Calcium Homeostasis as a Therapeutic Target Against Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:46. [PMID: 32133302 PMCID: PMC7040492 DOI: 10.3389/fcimb.2020.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
There is no effective cure for Chagas disease, which is caused by infection with the arthropod-borne parasite, Trypanosoma cruzi. In the search for new drugs to treat Chagas disease, potential therapeutic targets have been identified by exploiting the differences between the mechanisms involved in intracellular Ca2+ homeostasis, both in humans and in trypanosomatids. In the trypanosomatid, intracellular Ca2+ regulation requires the concerted action of three intracellular organelles, the endoplasmic reticulum, the single unique mitochondrion, and the acidocalcisomes. The single unique mitochondrion and the acidocalcisomes also play central roles in parasite bioenergetics. At the parasite plasma membrane, a Ca2+-−ATPase (PMCA) with significant differences from its human counterpart is responsible for Ca2+ extrusion; a distinctive sphingosine-activated Ca2+ channel controls Ca2+ entrance to the parasite interior. Several potential anti-trypansosomatid drugs have been demonstrated to modulate one or more of these mechanisms for Ca2+ regulation. The antiarrhythmic agent amiodarone and its derivatives have been shown to exert trypanocidal effects through the disruption of parasite Ca2+ homeostasis. Similarly, the amiodarone-derivative dronedarone disrupts Ca2+ homeostasis in T. cruzi epimastigotes, collapsing the mitochondrial membrane potential (ΔΨm), and inducing a large increase in the intracellular Ca2+ concentration ([Ca2+]i) from this organelle and from the acidocalcisomes in the parasite cytoplasm. The same general mechanism has been demonstrated for SQ109, a new anti-tuberculosis drug with potent trypanocidal effect. Miltefosine similarly induces a large increase in the [Ca2+]i acting on the sphingosine-activated Ca2+ channel, the mitochondrion and acidocalcisomes. These examples, in conjunction with other evidence we review herein, strongly support targeting Ca2+ homeostasis as a strategy against Chagas disease.
Collapse
Affiliation(s)
- Gustavo Benaim
- Instituto de Estudios Avanzados, Caracas, Venezuela.,Facultad de Ciencias, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Alberto E Paniz-Mondolfi
- Instituto de Estudios Avanzados, Caracas, Venezuela.,Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Institute for Health Sciences, Mount Sinai St. Luke's & Mount Sinai West, New York, NY, United States
| | | |
Collapse
|
2
|
Nussinov R, Zhang M, Tsai CJ, Jang H. Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2304-2314. [DOI: 10.1016/j.bbadis.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
|
3
|
Nussinov R, Wang G, Tsai CJ, Jang H, Lu S, Banerjee A, Zhang J, Gaponenko V. Calmodulin and PI3K Signaling in KRAS Cancers. Trends Cancer 2017; 3:214-224. [PMID: 28462395 PMCID: PMC5408465 DOI: 10.1016/j.trecan.2017.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Calmodulin (CaM) uniquely promotes signaling of oncogenic K-Ras; but not N-Ras or H-Ras. How CaM interacts with K-Ras and how this stimulates cell proliferation are among the most challenging questions in KRAS-driven cancers. Earlier data pointed to formation of a ternary complex consisting of K-Ras, PI3Kα and CaM. Recent data point to phosphorylated CaM binding to the SH2 domains of the p85 subunit of PI3Kα and activating it. Modeling suggests that the high affinity interaction between the phosphorylated CaM tyrosine motif and PI3Kα, can promote full PI3Kα activation by oncogenic K-Ras. Our up-to-date review discusses CaM's role in PI3K signaling at the membrane in KRAS-driven cancers. This is significant since it may help development of K-Ras-specific pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guanqiao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Avik Banerjee
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL 60607, U.S.A
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL 60607, U.S.A
| |
Collapse
|
4
|
The activating role of phospho-(Tyr)-calmodulin on the epidermal growth factor receptor. Biochem J 2015; 472:195-204. [DOI: 10.1042/bj20150851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The existence of a calmodulin (CaM)/phospho-(Tyr)-CaM cycle involved in the regulation of the epidermal growth factor receptor could have important consequences for the control of cell proliferation, as its alteration could potentially result in uncontrolled tumour growth.
Collapse
|
5
|
Delivoria-Papadopoulos M, Ashraf QM, Mishra OP. Mechanism of CaM kinase IV activation during hypoxia in neuronal nuclei of the cerebral cortex of newborn piglets: the role of Src kinase. Neurochem Res 2011; 36:1512-9. [PMID: 21516343 DOI: 10.1007/s11064-011-0477-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2011] [Indexed: 12/11/2022]
Abstract
The present study aims to investigate the mechanism of CaM kinase IV activation during hypoxia and tests the hypothesis that hypoxia-induced increased activity of CaM kinase IV is due to Src kinase mediated increased tyrosine phosphorylation of calmodulin and CaM kinase IV in neuronal nuclei of the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, F(i)O(2) of 0.07 for 1 h, n = 5) and hypoxic-pretreated with Src kinase inhibitor PP2 (Hx-Srci, n = 5) groups. Src inhibitor was administered (1.0 mg/kg, I.V.) 30 min prior to hypoxia. Neuronal nuclei were isolated and purified, and tyrosine phosphorylation of calmodulin (Tyr(99)) and CaM kinase IV determined by Western blot using anti-phospho-(pTyr(99))-calmodulin, anti-pTyrosine and anti-CaM kinase IV antibodies. The activity of CaM kinase IV and its consequence the phosphorylation of CREB protein at Ser(133) were determined. Hypoxia resulted in increased tyrosine phosphorylation of calmodulin at Tyr(99), tyrosine phosphorylation of CaM kinase IV, activity of CaM kinase IV and phosphorylation of CREB protein at Ser(133). The data show that administration of Src kinase inhibitor PP2 prevented the hypoxia-induced increased tyrosine phosphorylation of calmodulin (Tyr(99)) and tyrosine phosphorylation of CaM.kinase IV as well as the activity of CaM kinase IV and CREB phosphorylation at Ser(133). We conclude that the mechanism of hypoxia-induced increased activation of CaM kinase IV is mediated by Src kinase-dependent tyrosine phosphorylation of the enzyme and its activator calmodulin. We propose that Tyr(99) phosphorylated calmodulin, as compared to non-phosphorylated, binds with a higher affinity at the calmodulin binding site (rich in basic amino acids) of CaM kinase IV leading to increased activation of CaM kinase IV. Similarly, tyrosine phosphorylated CaM kinase IV binds its substrate with a higher affinity and thus increased tyrosine phosphorylation leads to increased activation of CaM kinase IV resulting in increased CREB phosphorylation that triggers increased transcription of proapoptotic proteins that initiate hypoxic neuronal death.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, 245 N 15th Street, New College Building, Room 7410, Mail Stop 1029, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
6
|
Arruda Campos Brasil de Souza T, Graça-de Souza VK, Lancheros CAC, Monteiro-Góes V, Krieger MA, Goldenberg S, Yamauchi LM, Yamada-Ogatta SF. Identification, Molecular and Functional Characterization of Calmodulin Gene of Phytomonas serpens 15T that Shares High Similarity with its Pathogenic Counterparts Trypanosoma cruzi. Protein J 2011; 30:212-9. [DOI: 10.1007/s10930-011-9322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
|
8
|
Mishra OP, Ashraf QM, Delivoria-Papadopoulos M. Mechanism of increased tyrosine (Tyr(99)) phosphorylation of calmodulin during hypoxia in the cerebral cortex of newborn piglets: the role of nNOS-derived nitric oxide. Neurochem Res 2009; 35:67-75. [PMID: 19590958 DOI: 10.1007/s11064-009-0031-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/25/2009] [Indexed: 11/28/2022]
Abstract
The present study aims to investigate the mechanism of calmodulin modification during hypoxia and tests the hypothesis that hypoxia-induced increase in Tyr(99) phosphorylation of calmodulin in the cerebral cortex of newborn piglets is mediated by NO derived from nNOS. Fifteen piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, F(i)O(2) of 0.07 for 1 h, n = 5) and hypoxic-pretreated with nNOSi (Hx-nNOSi, n = 5) groups. nNOS inhibitor I (selectivity >2,500 vs. eNOS and >500 vs. iNOS) was administered (0.4 mg/kg, I.V.) 30 min prior to hypoxia. Cortical membranes were isolated and tyrosine phosphorylation (Tyr(99) and total) of calmodulin determined by Western blot using anti-phospho-(pTyr(99))-calmodulin and anti-pTyr antibodies. Protein bands were detected by enhanced chemiluminescence, analyzed by densitometry and expressed as absorbance. The pTyr(99) calmodulin (ODxmm(2)) was 78.55 +/- 10.76 in Nx, 165.05 +/- 12.26 in Hx (P < 0.05 vs. Nx) and 96.97 +/- 13.18 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Expression of total tyrosine phosphorylated calmodulin was 69.24 +/- 13.69 in Nx, 156.17 +/- 16.34 in Hx (P < 0.05 vs. Nx) and 74.18 +/- 3.9 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). The data show that administration of nNOS inhibitor prevented the hypoxia-induced increased Tyr(99) phosphorylation of calmodulin. Total tyrosine phosphorylation of calmodulin was similar to Tyr(99) phosphorylation. We conclude that the mechanism of hypoxia-induced modification (Tyr(99) phosphorylation) of calmodulin is mediated by NO derived from nNOS. We speculate that Tyr(99) phosphorylated calmodulin, as compared to non-phosphorylated, binds with a higher affinity at the calmodulin binding site of nNOS leading to increased activation of nNOS and increased generation of NO.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
9
|
Coaxum SD, Garnovskaya MN, Gooz M, Baldys A, Raymond JR. Epidermal growth factor activates Na(+/)H(+) exchanger in podocytes through a mechanism that involves Janus kinase and calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1174-81. [PMID: 19341767 DOI: 10.1016/j.bbamcr.2009.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/28/2009] [Accepted: 03/19/2009] [Indexed: 01/23/2023]
Abstract
Sodium-proton exchanger type 1 (NHE-1) is ubiquitously expressed, is activated by numerous growth factors, and plays significant roles in regulating intracellular pH and cellular volume, proliferation and cytoskeleton. Despite its importance, little is known about its regulation in renal glomerular podocytes. In the current work, we studied the regulation of NHE-1 activity by the epidermal growth factor receptor (EGFR) in cultured podocytes. RT-PCR demonstrated mRNAs for NHE-1 and NHE-2 in differentiated podocytes, as well as for EGFR subunits EGFR/ErbB1, Erb3, and ErbB4. EGF induced concentration-dependent increases in proton efflux in renal podocytes as assessed using a Cytosensor microphysiometer, were diminished in the presence of 5-(N-methyl-N-isobutyl) amiloride or in a sodium-free solution. Furthermore, pharmacological inhibitors of Janus kinase (Jak2) and calmodulin (CaM) attenuated EGF-induced NHE-1 activity. Co-immunoprecipitation studies determined that EGF induced formation of complexes between Jak2 and CaM, as well as between CaM and NHE-1. In addition, EGF increased levels of tyrosine phosphorylation of Jak2 and CaM. The EGFR kinase inhibitor, AG1478, blocked activation of NHE-1, but did not block EGF-induced phosphorylation of Jak2 or CaM. These results suggest that EGF induces NHE-1 activity in podocytes through two pathways: (1) EGF-->EGFR-->Jak2 activation (independent of EGFR tyrosine kinase activity)-->tyrosine phosphorylation of CaM-->CaM binding to NHE-1-->conformational change of NHE-1-->activation of NHE-1; and (2) EGF-->EGFR-->EGFR kinase activation-->association of CaM with NHE-1 (independent of Jak2)-->conformational change of NHE-1-->activation of NHE-1.
Collapse
Affiliation(s)
- Sonya D Coaxum
- Medical and Research Services, Ralph H. Johnson VA Medical Center, USA
| | | | | | | | | |
Collapse
|
10
|
Garnovskaya MN, Mukhin YV, Vlasova TM, Raymond JR. Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J Biol Chem 2003; 278:16908-15. [PMID: 12626508 DOI: 10.1074/jbc.m209883200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 1 sodium-hydrogen exchanger (NHE-1) is a ubiquitous electroneutral membrane transporter that is activated by hypertonicity in many cells. NHE-1 may be an important pathway for Na(+) entry during volume restoration, yet the molecular mechanisms underlying the osmotic regulation of NHE-1 are poorly understood. In the present study we conducted a screen for important signaling molecules that could be involved in hypertonicity-induced activation of NHE-1 in CHO-K1 cells. Hypertonicity rapidly activated NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry and by measurements of intracellular pH on a FLIPR (fluorometric imaging plate reader). Inhibitors of Ca(2+)/calmodulin (CaM) and Janus kinase 2 (Jak2) attenuated this activation, whereas neither calcium chelation nor inhibitors of protein kinase C, the Ras-ERK1/2 pathway, Src kinase, and Ca(2+)/calmodulin-dependent enzymes had significant effects. Hypertonicity also resulted in the rapid tyrosine phosphorylation of Jak2 and STAT3 (the major substrate of Jak2) and CaM. Phosphorylation of Jak2 and CaM were blocked by AG490, an inhibitor of Jak2. Immunoprecipitation studies showed that hypertonicity stimulates the assembly of a signaling complex that includes CaM, Jak2, and NHE-1. Formation of the complex could be blocked by AG490. Thus, we propose that hypertonicity induces activation of NHE-1 in CHO-K1 cells in large part through the following pathway: hypertonicity --> Jak2 phosphorylation and activation --> tyrosine phosphorylation of CaM --> association of CaM with NHE-1 --> NHE-1 activation.
Collapse
Affiliation(s)
- Maria N Garnovskaya
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
11
|
Mukhin YV, Vlasova T, Jaffa AA, Collinsworth G, Bell JL, Tholanikunnel BG, Pettus T, Fitzgibbon W, Ploth DW, Raymond JR, Garnovskaya MN. Bradykinin B2 receptors activate Na+/H+ exchange in mIMCD-3 cells via Janus kinase 2 and Ca2+/calmodulin. J Biol Chem 2001; 276:17339-46. [PMID: 11278760 DOI: 10.1074/jbc.m010834200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used a cultured murine cell model of the inner medullary collecting duct (mIMCD-3 cells) to examine the regulation of the ubiquitous sodium-proton exchanger, Na+/H+ exchanger isoform 1 (NHE-1), by a prototypical G protein-coupled receptor, the bradykinin B2 receptor. Bradykinin rapidly activates NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry of quiescent cells and by 2'-7'-bis[2-carboxymethyl]-5(6)-carboxyfluorescein fluorescence measuring the accelerated rate of pH(i) recovery from an imposed acid load. The activation of NHE-1 is blocked by inhibitors of the bradykinin B2 receptor, phospholipase C, Ca2+/calmodulin (CaM), and Janus kinase 2 (Jak2), but not by pertussis toxin or by inhibitors of protein kinase C and phosphatidylinositol 3'-kinase. Immunoprecipitation studies showed that bradykinin stimulates the assembly of a signal transduction complex that includes CaM, Jak2, and NHE-1. CaM appears to be a direct substrate for phosphorylation by Jak2 as measured by an in vitro kinase assay. We propose that Jak2 is a new indirect regulator of NHE-1 activity, which modulates the activity of NHE-1 by increasing the tyrosine phosphorylation of CaM and most likely by increasing the binding of CaM to NHE-1.
Collapse
Affiliation(s)
- Y V Mukhin
- Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, and Department of Medicine of the Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|