1
|
Osborne A, Mayer CA, Hoffman A, Cali V, Hyzny R, Lewis SJ, MacFarlane PM. Cardiorespiratory anomalies and increased brainstem microglia in a rat model of neonatal opioid withdrawal syndrome. Respir Physiol Neurobiol 2022; 296:103800. [PMID: 34626831 PMCID: PMC8742781 DOI: 10.1016/j.resp.2021.103800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 02/03/2023]
Abstract
Infants born with neonatal opioid withdrawal syndrome (NOWS) can display abnormal cardiorespiratory patterns including tachypnea, tachycardia, and impaired ventilatory responses to hypoxia (HVR) and hypercapnia (HCVR). Chronic morphine exposure is associated with increased midbrain microglial expression. Using a rat model of pre- and post-natal morphine exposure, we assessed cardiorespiratory features of NOWS (resting tachycardia and tachypnea) including the attenuated HVR and HCVR and whether they are associated with increased brainstem microglia expression. Pregnant rats (dams) received twice-daily subcutaneous injections of morphine (5 mg/kg) during the third (last) week of pregnancy to simulate 3rd trimester in utero opioid exposure. Offspring then received once-daily subcutaneous injections of morphine (0.5 mg/kg) until postnatal (P) day P10 days of age to simulate postnatal morphine therapy. Cardiorespiratory responses were assessed 24 h later (P11 days) following spontaneous withdrawal. Compared to saline-treated pups, morphine-exposed offspring exhibited tachycardia and tachypnea as well as an attenuated HVR and HCVR. Microglial cell counts were increased in the nucleus tractus solitarius (nTS), dorsal motor nucleus of the vagus (DMNV) and nucleus ambiguous (NAamb), but not the retrapezoid nucleus (RTN) or the non-cardiorespriatory region, the cuneate nucleus (CN). These data suggest that the cardiorespiratory features and autonomic dysregulation in NOWS infants may be associated with altered microglial function in specific brainstem cardiorespiratory control regions.
Collapse
Affiliation(s)
- Allison Osborne
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Catherine A. Mayer
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Adriana Hoffman
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Valbona Cali
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rachel Hyzny
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen J. Lewis
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peter M. MacFarlane
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Physiology, Case Western Reserve University, Cleveland, OH, 44106, USA,Corresponding Author: Peter M. MacFarlane, PhD., Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children’s Hospital, 11100 Euclid Ave., Cleveland, OH, 44106-6010, USA. Ph: 216 368 4628,
| |
Collapse
|
2
|
Donnelly WT, Haynes RL, Commons KG, Erickson DJ, Panzini CM, Xia L, Han QJ, Leiter JC. Prenatal intermittent hypoxia sensitizes the laryngeal chemoreflex, blocks serotoninergic shortening of the reflex, and reduces 5-HT 3 receptor binding in the NTS in anesthetized rat pups. Exp Neurol 2020; 326:113166. [PMID: 31887303 PMCID: PMC7028519 DOI: 10.1016/j.expneurol.2019.113166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
We tested the hypothesis that exposure to intermittent hypoxia (IH) during pregnancy would prolong the laryngeal chemoreflex (LCR) and diminish the capacity of serotonin (5-hydroxytryptamine; 5-HT) to terminate the LCR. Prenatal exposure to IH was associated with significant prolongation of the LCR in younger, anesthetized, postnatal day (P) rat pups age P8 to P16 compared to control, room air (RA)-exposed rat pups of the same age. Serotonin microinjected into the NTS shortened the LCR in rat pups exposed to RA during gestation, but 5-HT failed to shorten the LCR in rat pups exposed to prenatal IH. Given these observations, we tested the hypothesis that prenatal hypoxia would decrease binding to 5-HT3 receptors in the nucleus of the solitary tract (NTS) where 5-HT acts to shorten the LCR. Serotonin 3 receptor binding was reduced in younger rat pups exposed to IH compared to control, RA-exposed rat pups in the age range P8 to P12. Serotonin 3 receptor binding was similar in older animals (P18-P24) regardless of gas exposure during gestation. The failure of the 5-HT injected into the NTS to shorten the LCR was correlated with a developmental decrease in 5-HT3 receptor binding in the NTS associated with exposure to prenatal IH. In summary, prenatal IH sensitized reflex apnea and blunted processes that terminate reflex apneas in neonatal rat pups, processes that are essential to prevent death following apneas such as those seen in babies who died of SIDS.
Collapse
Affiliation(s)
- William T Donnelly
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, United States of America
| | - Drexel J Erickson
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Chris M Panzini
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, United States of America
| | - Luxi Xia
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - Q Joyce Han
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - J C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America.
| |
Collapse
|
3
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
4
|
Bright FM, Vink R, Byard RW. The potential role of substance P in brainstem homeostatic control in the pathogenesis of sudden infant death syndrome (SIDS). Neuropeptides 2018; 70:1-8. [PMID: 29908886 DOI: 10.1016/j.npep.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Victims of sudden infant death syndrome (SIDS) are believed to have an underlying dysfunction in medullary homeostatic control that impairs critical responses to life threatening challenges such as hypoxia, hypercarbia and asphyxia, often during a sleep period. This failure is thought to result from abnormalities in a network of neural pathways in the medulla oblongata that control respiration, chemosensitivity, autonomic function and arousal. Studies have mainly focused on the role of serotonin, 5-hydroxytyptamine (5HT), although the neuropeptide substance P (SP) has also been shown to play an integral role in the modulation of medullary homeostatic function, often in conjunction with 5-HT. Actions of SP include regulation of respiratory rhythm generation, integration of cardiovascular control, modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may, therefore, also play a significant role in homeostatic dysfunction of the neurotransmitter network in SIDS. This review focuses on the pathways within the medulla involving SP and its tachykinin NK1 receptor, their potential relationship with the medullary 5-HT system, and possible involvement in the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Fiona M Bright
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia.
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Roger W Byard
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia
| |
Collapse
|
5
|
Mehboob R. Substance P/Neurokinin 1 and Trigeminal System: A Possible Link to the Pathogenesis in Sudden Perinatal Deaths. Front Neurol 2017; 8:82. [PMID: 28348544 PMCID: PMC5346962 DOI: 10.3389/fneur.2017.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
Sudden demise of a healthy fetus or a neonate is a very tragic episode in the life of parents. These deaths have been a mystery since ages but still remain unexplained. This review proposes the involvement of trigeminal nerve, neurotransmitter substance P (SP), and its receptor neurokinin 1 (NK-1R) in regulation of cardiorespiratory control in fetuses and newborns. Anomalies and immaturity of neuroregulatory systems such as trigeminal system in medulla oblongata of brainstem may provide a possible mechanism of sudden perinatal deaths. Vulnerable infants are born with respiratory center immaturity which in combination with any stressor such as cold, hypoxia, and smoking may lead to cessation of breathing and ventilatory response. SP/NK-1R may be involved in regulating the ventilatory control in neonates while it is decreased in fetal and adult life in humans, and any alterations from these may lead to irreversible sleep apnea and fatal breathing, ultimately sudden death. This review summarizes the studies performed to highlight the expression of SP or NK-1R in sudden perinatal deaths and proposes the involvement of trigeminal ganglion along with its nerve and SP/NK-1R expression alteration as one of the possible pathophysiological underlying mechanism. However, further studies are required to explore the role of SP, NK-1R, and trigeminal system in the pathogenesis of sudden infant deaths, sudden intrauterine deaths, stillbirths, and sudden deaths later in human life.
Collapse
Affiliation(s)
- Riffat Mehboob
- Biomedical Sciences, King Edward Medical University , Lahore , Pakistan
| |
Collapse
|
6
|
Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex. J Neurosci 2017; 37:1807-1819. [PMID: 28073937 DOI: 10.1523/jneurosci.2316-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/30/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022] Open
Abstract
Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei.SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic tools, we characterize a 5-HT neuron subtype defined by expression of Tachykinin1 and Pet1 (Tac1-Pet1 neurons), mapping soma localization to the caudal medulla primarily and axonal projections to brainstem motor nuclei most prominently, and, when silenced, observed blunting of the ventilatory response to inhaled CO2Tac1-Pet1 neurons thus appear distinct from and contrast previously described Egr2-Pet1 neurons, which project primarily to chemosensory integration centers and are themselves chemosensitive.
Collapse
|
7
|
Squier W, Mack J, Jansen AC. Infants dying suddenly and unexpectedly share demographic features with infants who die with retinal and dural bleeding: a review of neural mechanisms. Dev Med Child Neurol 2016; 58:1223-1234. [PMID: 27435495 DOI: 10.1111/dmcn.13202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 01/01/2023]
Abstract
The cause of death in infants who die suddenly and unexpectedly (sudden unexpected death in infancy [SUDI]) remains a diagnostic challenge. Some infants have identified diseases (explained SUDI); those without explanation are called sudden infant death syndrome (SIDS). Demographic data indicate subgroups among SUDI and SIDS cases, such as unsafe sleeping and apparent life-threatening events. Infants dying suddenly with retinal and dural bleeding are often classified as abused, but in many there is no evidence of trauma. Demographic features suggest that they may represent a further subgroup of SUDI. This review examines the neuropathological hypotheses to explain SIDS and highlights the interaction of infant oxygen-conserving reflexes with the brainstem networks considered responsible for SIDS. We consider sex- and age-specific vulnerabilities related to dural bleeding and how sensitization of the dural innervation by bleeding may influence these reflexes, potentially leading to collapse or even death after otherwise trivial insults.
Collapse
Affiliation(s)
- Waney Squier
- Formerly Department of Neuropathology, Oxford University John Radcliffe Hospital, Oxford, UK
| | - Julie Mack
- Department of Radiology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Anna C Jansen
- Paediatric Neurology Unit, Department of Paediatrics, UZ Brussel, Brussels, Belgium.,Neurogenetics Research Unit, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Rourke KS, Mayer CA, MacFarlane PM. A critical postnatal period of heightened vulnerability to lipopolysaccharide. Respir Physiol Neurobiol 2016; 232:26-34. [DOI: 10.1016/j.resp.2016.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
9
|
Hunt NJ, Phillips L, Waters KA, Machaalani R. Proteomic MALDI-TOF/TOF-IMS examination of peptide expression in the formalin fixed brainstem and changes in sudden infant death syndrome infants. J Proteomics 2016; 138:48-60. [PMID: 26926438 DOI: 10.1016/j.jprot.2016.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/30/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
Abstract
UNLABELLED Matrix assisted laser desorption/ionisation imaging mass spectrometry (MALDI-IMS) has not previously been utilised to examine sudden infant death syndrome (SIDS). This study aimed to optimise MALDI IMS for use on archived formalin-fixed-paraffin-embedded human infant medulla tissue (n=6, controls; n=6, SIDS) to evaluate differences between multiple nuclei of the medulla by using high resolution IMS. Profiles were compared between SIDS and age/sex matched controls. LC-MALDI identified 55 proteins based on 321 peptides across all samples; 286 peaks were found using IMS, corresponding to these 55 proteins that were directly compared between controls and SIDS. Control samples were used to identify common peptides for neuronal/non-neuronal structures allowing identification of medullary regions. In SIDS, abnormal expression patterns of 41 peptides (p≤0.05) corresponding to 9 proteins were observed; these changes were confirmed with immunohistochemistry. The protein abnormalities varied amongst nuclei, with the majority of variations in the raphe nuclei, hypoglossal and pyramids. The abnormal proteins are not related to a previously identified neurological disease pathway but consist of developmental neuronal/glial/axonal growth, cell metabolism, cyto-architecture and apoptosis components. This suggests that SIDS infants have abnormal neurological development in the raphe nuclei, hypoglossal and pyramids of the brainstem, which may contribute to the pathogenesis of SIDS. BIOLOGICAL SIGNIFICANCE This study is the first to perform an imaging mass spectrometry investigation in the human brainstem and also within sudden infant death syndrome (SIDS). LC MALDI and MALDI IMS identified 55 proteins based on 285 peptides in both control and SIDS tissue; with abnormal expression patterns present for 41/285 and 9/55 proteins in SIDS using IMS. The abnormal proteins are critical for neurological development; with the impairment supporting the hypothesis that SIDS may be due to delayed neurological maturation. The brainstem regions mostly affected included the raphe nuclei, hypoglossal and pyramids. This study highlights that basic cyto-architectural proteins are affected in SIDS and that abnormal expression of these proteins in other CNS disorders should be examined. KEY SENTENCES LC MALDI and MALDI IMS identified 55 proteins based on 285 peptides in both control and SIDS tissue. Abnormal expression patterns were present for 41/285 and 9/55 proteins in SIDS using IMS. Brainstem regions mostly affected included the raphe nuclei, hypoglossal and pyramids.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia
| | - Leo Phillips
- Hormones and Cancer Division, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, NSW, Australia
| | - Karen A Waters
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia; The Children's Hospital, Westmead, NSW 2145, Australia
| | - Rita Machaalani
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia; The Children's Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
10
|
MacFarlane PM, Mayer CA, Litvin DG. Microglia modulate brainstem serotonergic expression following neonatal sustained hypoxia exposure: implications for sudden infant death syndrome. J Physiol 2016; 594:3079-94. [PMID: 26659585 DOI: 10.1113/jp271845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neonatal sustained hypoxia exposure modifies brainstem microglia and serotonin expression. The altered brainstem neurochemistry is associated with impaired ventilatory responses to acute hypoxia and mortality. The deleterious effects of sustained hypoxia exposure can be prevented by an inhibitor of activated microglia. These observations demonstrate a potential cause of the brainstem serotonin abnormalities thought to be involved in sudden infant death syndrome. ABSTRACT We showed previously that the end of the second postnatal week (days P11-15) represents a period of development during which the respiratory neural control system exhibits a heightened vulnerability to sustained hypoxia (SH, 11% O2 , 5 days) exposure. In the current study, we investigated whether the vulnerability to SH during the same developmental time period is associated with changes in brainstem serotonin (5-HT) expression and whether it can be prevented by the microglia inhibitor minocycline. Using whole-body plethysmography, SH attenuated the acute (5 min) hypoxic ventilatory response (HVR) and caused a high incidence of mortality compared to normoxia rats. SH also increased microglia cell numbers and decreased 5-HT immunoreactivity in the nucleus of the solitary tract (nTS) and dorsal motor nucleus of the vagus (DMNV). The attenuated HVR, mortality, and changes in nTS and DMNV immunoreactivity was prevented by minocycline (25 mg kg(-1) /2 days during SH). These data demonstrate that the 5-HT abnormalities in distinct respiratory neural control regions can be initiated by prolonged hypoxia exposure and may be modulated by microglia activity. These observations share several commonalities with the risk factors thought to underlie the aetiology of sudden infant death syndrome, including: (1) a vulnerable neonate; (2) a critical period of development; (3) evidence of hypoxia; (4) brainstem gliosis (particularly the nTS and DMNV); and (5) 5-HT abnormalities.
Collapse
Affiliation(s)
- P M MacFarlane
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - C A Mayer
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - D G Litvin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
11
|
Neurochemical abnormalities in the brainstem of the Sudden Infant Death Syndrome (SIDS). Paediatr Respir Rev 2014; 15:293-300. [PMID: 25304427 DOI: 10.1016/j.prrv.2014.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/29/2023]
Abstract
The brainstem has been a focus in Sudden Infant Death Syndrome (SIDS) research for 30 years. Physiological and animal model data show that cardiorespiratory, sleep, and arousal mechanisms are abnormal after exposure to SIDS risk factors or in infants who subsequently die from SIDS. As the brainstem houses the regulatory centres for these functions, it is the most likely site to find abnormalities. True to this hypothesis, data derived over the last 30 years shows that the brainstem of infants who died from SIDS exhibits abnormalities in a number of major neurotransmitter and receptor systems including: catecholamines, neuropeptides, acetylcholinergic, indole amines (predominantly serotonin and its receptors), amino acids (predominantly glutamate), brain derived neurotrophic growth factor (BDNF), and some cytokines. A pattern is emerging of particular brainstem nuclei being consistently affected including the dorsal motor nucleus of the vagus (DMNV), nucleus of the solitary tract (NTS), arcuate nucleus (AN) and raphe. We discuss the implications of these findings and directions that this may lead in future research.
Collapse
|
12
|
Paine SML, Jacques TS, Sebire NJ. Review: Neuropathological features of unexplained sudden unexpected death in infancy: current evidence and controversies. Neuropathol Appl Neurobiol 2014; 40:364-84. [DOI: 10.1111/nan.12095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/10/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Simon ML Paine
- Birth Defects Research Centre; UCL Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| | - Thomas S Jacques
- Birth Defects Research Centre; UCL Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| | - Neil J Sebire
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| |
Collapse
|
13
|
Lavezzi AM, Mehboob R, Matturri L. Developmental alterations of the spinal trigeminal nucleus disclosed by substance P immunohistochemistry in fetal and infant sudden unexplained deaths. Neuropathology 2011; 31:405-13. [PMID: 21276082 DOI: 10.1111/j.1440-1789.2010.01190.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the immunohistochemical expression of substance P (SP) in the brainstems of 56 subjects aged from 17 gestational weeks to 10 post natal months, who died of unknown (sudden unexplained fetal deaths and SIDS) and known causes (controls). The goals of this study were: (i) to obtain basic information about the expression of SP during the first phases of human nervous system development; (ii) to evaluate whether there are alterations of this neuromodulator in victims of sudden death; and (iii) to verify any correlation with maternal cigarette smoking. Immunohistochemistry demonstrated SP immunoreactivity in the caudal trigeminal nucleus area, with a progressive increase in the density of SP-positive fibers of the corresponding tract during normal development from fetal life to the first post natal months. Delineation of the structure of the human trigeminal nucleus, little investigated so far, provided essential data on its morphologic and functional development. Instead, a negative or low SP expression was detectable in the fibers of this tract in a wide subset of SIDS victims and, conversely, a high SP-expression in a wide subset of sudden fetal deaths. We postulate, on the basis of these results, that SP has a functional importance in the early phases of central nervous system development and in the regulation of autonomic functions. In addition, the observation of a significant correlation between sudden unexplained death, altered SP staining and maternal smoking leads us to suggest a close relation between the absorption of cigarette smoke in utero and a decreased functional activity of the trigeminal nucleus, that can trigger sudden death of the fetus during pregnancy or of the infant in the first months of life.
Collapse
Affiliation(s)
- Anna M Lavezzi
- Lino Rossi Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Surgical, Reconstructive and Diagnostic Sciences, University of Milan, Milan, Italy.
| | | | | |
Collapse
|
14
|
Kinney HC. Brainstem mechanisms underlying the sudden infant death syndrome: evidence from human pathologic studies. Dev Psychobiol 2009; 51:223-33. [PMID: 19235901 DOI: 10.1002/dev.20367] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The brainstem hypothesis is one of the leading hypotheses concerning the sudden infant death syndrome (SIDS). It states that SIDS, or an important subset of SIDS, is due to abnormal brainstem mechanisms in the control of respiration, chemosensitivity, autonomic regulation, and/or arousal which impairs the infant's response to life-threatening, but often occurring, stressors during sleep (e.g., hypoxia, hypercarbia, asphyxia, hyperthermia) and leads to sudden death in a vulnerable developmental period. In this review, we summarize neuropathologic evidence from SIDS cases that support this hypothesis, beginning with the seminal report of subtle brainstem gliosis three decades ago. We focus upon recent neurochemical studies in our laboratory concerning the neurotransmitter serotonin (5-HT) and its key role in mediating protective responses to homeostatic stressors via medullary circuits. The possible fetal origin of brainstem defects in SIDS is reviewed, including evidence for adverse effects of prenatal exposure to maternal cigarette smoking and alcohol upon the postnatal development of human brainstem 5-HT pathways.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Kinney HC, Richerson GB, Dymecki SM, Darnall RA, Nattie EE. The brainstem and serotonin in the sudden infant death syndrome. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:517-50. [PMID: 19400695 DOI: 10.1146/annurev.pathol.4.110807.092322] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sudden infant death syndrome (SIDS) is the sudden death of an infant under one year of age that is typically associated with sleep and that remains unexplained after a complete autopsy and death scene investigation. A leading hypothesis about its pathogenesis is that many cases result from defects in brainstem-mediated protective responses to homeostatic stressors occurring during sleep in a critical developmental period. Here we review the evidence for the brainstem hypothesis in SIDS with a focus upon abnormalities related to the neurotransmitter serotonin in the medulla oblongata, as these are the most robust pathologic findings to date. In this context, we synthesize the human autopsy data with genetic, whole-animal, and cellular data concerning the function and development of the medullary serotonergic system. These emerging data suggest an important underlying mechanism in SIDS that may help lead to identification of infants at risk and specific interventions to prevent death.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
AIM To investigate polymorphisms in the serotonin transporter (5-HTT) gene in cases of sudden infant death syndrome (SIDS) and controls, and further to elucidate a possible relationship between 5-HTT genotypes and external risk factors for SIDS. METHOD The subjects investigated consist of 163 SIDS cases and 243 controls. Polymorphisms in both the promoter and intron 2 of the 5-HTT gene were investigated, and the genotypes were determined using polymerase chain reaction (PCR) and gel electrophoresis. RESULTS In the promoter, there was a tendency for the L allele and L/L genotype to be found more often in the SIDS cases than in the controls (p=0.05 and p=0.07, respectively). Regarding the intron 2 polymorphism, there were no differences between the groups, and the SIDS cases were not found to have a higher frequency of either the L/L-12/12 genotype or the L-12 haplotype than the controls. When investigating possible correlations between genotype and risk factors for SIDS, there was a tendency towards different distribution of the promoter genotypes in cases found dead prone compared to cases found dead in other sleeping positions (p=0.06). CONCLUSION Polymorphisms in the promoter of the 5-HTT gene may be of importance with regard to SIDS.
Collapse
Affiliation(s)
- Siri Hauge Opdal
- Institute of Forensic Medicine, University of Oslo, Pathology Clinic, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | |
Collapse
|
17
|
Berner J, Shvarev Y, Lagercrantz H, Bilkei-Gorzo A, Hökfelt T, Wickström R. Altered respiratory pattern and hypoxic response in transgenic newborn mice lacking the tachykinin-1 gene. J Appl Physiol (1985) 2007; 103:552-9. [PMID: 17525292 DOI: 10.1152/japplphysiol.01389.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Substance P is known to be involved in respiratory rhythm and central pattern-generating mechanisms, especially during early development. We therefore studied respiratory responses in transgenic newborn mice (Tac1(-/-)) lacking substance P and neurokinin A (NKA). In vivo, the effects of intermittent isocapnic hypoxia (IH) and hypercapnia were studied using whole body flow plethysmography at P2-3 and P8-10. In vitro, anoxic responses and the effects of hypocapnic and hypercapnic conditions were studied in brain stem-spinal cord preparations (C4 activity) at P2. Hypoxic challenge considerably modified the respiratory activity in transgenic mice displayed in vivo as an attenuated increase in tidal volume during IH. Transgenic mice also showed a more prominent posthypoxic frequency decline in vivo, and posthypoxic neuronal arrests appeared more often in vitro. We recognized two types of sigh activity: with or without a following pause. During IH, the amount of sighs with a pause decreased and those without increased, a redistribution that became stronger with age only in controls. Intermittent anoxia induced long-term facilitation effects in controls, but not in Tac1(-/-) animals, manifested as an increase in burst frequency in vitro and by an augmentation of ventilation during posthypoxic periods in vivo. Thus our data demonstrate that a functional substance P/NKA system is of great importance for the generation of an adequate respiratory response to hypoxic provocation in newborn mice and during early maturation. It also indicates that substance P (and/or NKA) is involved in the development of the plasticity of the respiratory system.
Collapse
Affiliation(s)
- J Berner
- Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
18
|
Lavezzi AM, Ottaviani G, Mingrone R, Matturri L. Analysis of the human locus coeruleus in perinatal and infant sudden unexplained deaths. Possible role of the cigarette smoking in the development of this nucleus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:71-80. [PMID: 15617757 DOI: 10.1016/j.devbrainres.2004.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/01/2004] [Indexed: 11/21/2022]
Abstract
We investigated the immunohistochemical expression of the tyrosine hydroxylase (TH) enzyme and the morphometric parameters of the human locus coeruleus (LC) in the brainstems of 32 subjects aged from 17 gestational weeks to 12 postnatal month, died of unknown (sudden unexplained perinatal and infant deaths) and known causes. The goals of this study were: (1) to obtain basic information about the structure and physiology of the LC during the first phases of human nervous system development; (2) to evaluate whether there is altered expression of TH and/or structural alterations of the LC in cases of sudden perinatal and infant death; and (3) to verify if morphological and/or physiological abnormalities of the LC could be related to maternal cigarette smoking. Morphometric analysis showed homogeneous data in cases of sudden perinatal and infant death and in age-matched controls who had died of known aetiology. However, immunohistochemistry demonstrated in a wide subset of sudden and unexplained deaths a negativity or low positivity of TH. High distribution of TH protein were instead detectable in the LC neurons of foetuses aged 17-18 gestational weeks who had died of known causes. Therefore, we postulate the functional importance of the LC in the early phases of central nervous system development. Besides, the observation of a significant correlation between sudden unexplained death, negativity of TH staining and maternal smoking, prompted us to suppose a close relation between smoking in utero and a decrease of the noradrenergic activity of the LC, leading to sudden death in the last part of pregnancy and in the first year of life.
Collapse
Affiliation(s)
- Anna Maria Lavezzi
- Institute of Pathology, University of Milan, Via della Commenda, 19, 20122 Milan, Italy.
| | | | | | | |
Collapse
|
19
|
Biondo B, Magagnin S, Bruni B, Cazzullo A, Tosi D, Matturri L. Glial and neuronal alterations in the nucleus tractus solitarii of sudden infant death syndrome victims. Acta Neuropathol 2004; 108:309-18. [PMID: 15300449 DOI: 10.1007/s00401-004-0895-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 05/18/2004] [Accepted: 05/18/2004] [Indexed: 01/30/2023]
Abstract
The factors underlying the sudden infant death syndrome (SIDS) are still unknown, but in recent years much attention has been focused on the central cardiorespiratory control system. In the present work we analyzed the nucleus tractus solitarii (nTS) of 23 SIDS victims and 17 age-matched control cases. We studied the functional and morphological alterations of neurons and glial cells to evaluate the results of possible hypoxic-ischemic injury that could have led to sudden death. Morphometric and immunohistochemical analyses were performed on medullary sections. In the nTS of SIDS victims we observed modifications of both neuronal and glial cells. Brain injury triggers the activation of both astrocytes and microglia, which respond to neuronal damage by characteristic changes that could explain our observations in the nTS of SIDS victims. In our investigation of the nTS of SIDS victims we found a significant increase of reactive astrocytes density, a significantly higher percentage of necrotic cells, an increase of reactive microglial cells density, a significantly higher expression of substance P and the presence of NMDA receptors immunoreactivity. Our results support the hypothesis that there is injury of the nTS neurons in SIDS victims, even if the causes of this damage are still unknown. This neuronal damage may explain why adequate ventilation is often not maintained during hypoxia. Such histological findings have never been thought sufficient to explain SIDS, but the tissue findings could be an indication of the impairment of several pathophysiological mechanisms which may underlie brainstem dysfunction, affecting cardiorespiratory control.
Collapse
Affiliation(s)
- Bruna Biondo
- Institute of Pathology, University of Milan, Via Commenda 19, 20122 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Wickström HR, Berner J, Holgert H, Hökfelt T, Lagercrantz H. Hypoxic response in newborn rat is attenuated by neurokinin-1 receptor blockade. Respir Physiol Neurobiol 2004; 140:19-31. [PMID: 15109925 DOI: 10.1016/j.resp.2004.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2004] [Indexed: 11/15/2022]
Abstract
Substance P (SP) is considered to be involved in the regulation of respiration, in particular when respiratory demands are increased, such as during hypoxic stress. In the present study we have investigated the effects of intracerebroventricular pre-treatment with the selective NK-1 receptor antagonist RP67580 on the respiratory response to hypoxia in 5-day-old rat pups. Basal respiration was not altered by RP67580. When subjected to hypoxia (10% O(2)), rat pups pre-treated with RP67580 were unable to sustain the increased respiratory frequency at 10 min. In situ hybridisation demonstrated increased expression of c-fos mRNA in several brainstem areas following hypoxia. This activation was blocked by the antagonist in the retrotrapezoid nucleus and the rostral ventrolateral medulla, areas known to be involved in the hypoxic ventilatory response. This study corroborates a role of endogenously released SP, mediated via NK-1 receptors, in the sustained response to hypoxia in 5-day-old rat pups and suggests that neurons in the rostral ventrolateral medulla are important in this function. It also represents a further example that neuropeptides are released under stressful conditions.
Collapse
Affiliation(s)
- H Ronny Wickström
- Department of Woman and Child Health, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Ozawa Y, Takashima S, Tada H. α2-Adrenergic receptor subtype alterations in the brainstem in the sudden infant death syndrome. PATHOPHYSIOLOGY 2004. [DOI: 10.1016/j.pathophys.2004.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
23
|
Sawaguchi T, Ozawa Y, Franco P, Kadhim H, Groswasser J, Sottiaux M, Takashima S, Nishida H, Kahn A. Serotonergic receptors in the midbrain correlated with physiological data on sleep apnea in SIDS victims. PATHOPHYSIOLOGY 2004. [DOI: 10.1016/j.pathophys.2004.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Substance P in the midbrains of SIDS victims and its correlation with sleep apnea. PATHOPHYSIOLOGY 2004. [DOI: 10.1016/j.pathophys.2004.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Sawaguchi T, Ozawa Y, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Takashima S, Nishida H, Kahn A. Serotonergic receptors in the midbrain correlated with physiological data on sleep apnea in SIDS victims. Early Hum Dev 2003; 75 Suppl:S65-74. [PMID: 14693393 DOI: 10.1016/j.earlhumdev.2003.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recently it has been reported that serotonin and related matters are associated with the sudden infant death syndrome (SIDS), which is still the main cause of postneonatal infant death. To further explore this claim, the correlation between serotonin receptors in the brainstem and sleep apnea in SIDS victims was investigated. MATERIALS AND METHODS Among 27,000 infants studied prospectively to characterize their sleep-wake behavior, 38 infants died under 6 months of age including 26 cases of SIDS. All the infants had been recorded during one night in a pediatric sleep laboratory some 3-12 weeks before death. The frequency and duration of sleep apnea were analyzed. Brainstem material was collected and immunohistochemistry on 5-hydroxy tryptamine 1A (5HT1A) receptor was carried out. The density of 5HT1A receptor-positive neurons was measured quantitatively. Nonparametric analysis of the density of 5HT1A receptor-positive neurons was carried out between SIDS and non-SIDS cases. Correlation analyses were performed between the density of 5HT1A receptor-positive neurons and the data on sleep apnea. RESULTS There was no correlation between the pathological data on 5HT1A receptors and the physiological data on sleep apnea in SIDS victims. CONCLUSIONS No correlation between pathological findings of serotonin and physiological findings of sleep apnea were not in agreement with the association of sleep apnea in pathophysiology of SIDS.
Collapse
Affiliation(s)
- Toshiko Sawaguchi
- Department of Legal Medicine, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sawaguchi T, Ozawa Y, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Takashima S, Nishida H, Kahn A. Substance P in the midbrains of SIDS victims and its correlation with sleep apnea. Early Hum Dev 2003; 75 Suppl:S51-9. [PMID: 14693391 DOI: 10.1016/j.earlhumdev.2003.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Substance P (SP) is a neuropeptide transmitter found in sensory neurons of the central nervous system and related to pain sensation and respiratory regulation. Some reports claim an increase in SP in the brains of SIDS victims, so the correlation between SP and sleep apnea was investigated here. MATERIALS AND METHODS Among 27,000 infants studied prospectively to characterize their sleep-wake behavior, 38 infants died under 6 months of age, which included 26 cases of Sudden Infant Death Syndrome (SIDS). All the infants had been recorded during one night in a pediatric sleep laboratory some 3 to 12 weeks before death. The frequency and duration of sleep apnea were analyzed. Brainstem material was collected and immunohistochemistry for SP was carried out. The density of SP positive fibers was measured in the nucleus spinal and mesencephalic nervi trigemini and nucleus parabranchialis in the brainstem of abovementioned cases. Correlation analyses were carried out between the density of SP and the data of sleep apnea. RESULTS There was no SIDS specific correlation of SP through the above-listed parts of the midbrain with frequency and duration of sleep apnea. CONCLUSIONS There was no significant association between the SP findings and apnea data in SIDS; this is not in agreement with the association of apnea in pathophysiology of SIDS.
Collapse
Affiliation(s)
- Toshiko Sawaguchi
- Department of Legal Medicine, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ozawa Y, Takashima S, Tada H. Alpha2-adrenergic receptor subtype alterations in the brainstem in the sudden infant death syndrome. Early Hum Dev 2003; 75 Suppl:S129-38. [PMID: 14693399 DOI: 10.1016/j.earlhumdev.2003.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The sudden infant death syndrome (SIDS) is still the main cause of postneonatal infant death. However, the causes and mechanisms of SIDS have never been completely elucidated. Catecholamines, via alpha2-adrenergic receptor (alpha2-AR) interactions, are known to influence brainstem autonomic and respiratory activity. AIMS To examine the catecholaminergic system abnormalities in SIDS victims, we investigated the alterations of alpha2-AR subtypes. SUBJECTS AND METHODS We examined the developmental changes of alpha2-AR subtypes in the brainstem, especially in cardiorespiratory nuclei, in 21 SIDS victims and 17 age-matched controls by means of immunohistochemical methods. For statistical analysis, the chi2-test or Fisher's exact probability test was performed. RESULTS There was a significant decrease in alpha2A-AR immunoreactivity in the solitary nucleus and ventrolateral medulla (VLM) in the medulla oblongata in SIDS victims compared with in control cases, but there were no significant differences of the alpha2B and alpha2C-AR immunoreactivity in the brainstem between SIDS victims and controls. CONCLUSION Alpha2A-AR immunoreactivity was selectively decreased in the solitary nucleus and VLM in the medulla oblongata in SIDS victims, so there was no possibility that it was secondary to chronic hypoxia or repeated ischemia. It may be related to some impairment of the cardiorespiratory neuronal system. Therefore, SIDS victims may be vulnerable to asphyxia, hypoxia, and/or hypercapnia, and fail to exhibit brainstem responses.
Collapse
Affiliation(s)
- Yuri Ozawa
- Department of Neonatology, Toho University School of Medicine, 6-11-1 Ohmorinishi, Ohta, Tokyo 143-8541, Japan.
| | | | | |
Collapse
|
28
|
Sawaguchi T, Ozawa Y, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Takashima S, Nishida H, Kahn A. Catecholaminergic neurons in the brain-stem and sleep apnea in SIDS victims. Early Hum Dev 2003; 75 Suppl:S41-50. [PMID: 14693390 DOI: 10.1016/j.earlhumdev.2003.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tyrosine hydroxylase (TH) is a specific marker for catecholaminergic neurones. Some reports have demonstrated a decrease of TH in the Sudden Infant Death Syndrome (SIDS) compared with controls. To further investigate this, the correlation between TH and sleep apnea was investigated here. MATERIALS AND METHODS Among 27,000 infants studied prospectively to characterize their sleep-wake behavior, 38 infants died under 6 months of age. They included 26 cases of SIDS. All the infants had been recorded during one night in a pediatric sleep laboratory some 3 to 12 weeks before death. The frequency and the duration of sleep apnea were analyzed. The brain stem material was collected and subjected to immunohistochemical studies for TH. The density of TH-immunoreactive neurons was measured in the nucleus hypoglossus, nervus vagus dorsalis, solitary and ambiguous and the ventrolateral medulla (VLM) in the medulla oblongata. Correlation analyses were carried out between the density of TH-immunoreactive neurons and the data from the sleep apnea studies. RESULTS There was no SIDS specific correlation between TH-immunoreactive neurons in the nucleus hypoglossus, nervus vagus dorsalis, solitary and ambiguous and the ventrolateral medulla (VLM) in the medulla oblongata and the frequency and duration of sleep apnea. CONCLUSIONS No significant association between the pathological data and the physiological data refers to TH positive neurons in the medulla oblongata in SIDS victims.
Collapse
Affiliation(s)
- Toshiko Sawaguchi
- Department of Legal Medicine, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ozawa Y, Takashima S. Developmental neurotransmitter pathology in the brainstem of sudden infant death syndrome: a review and sleep position. Forensic Sci Int 2002; 130 Suppl:S53-9. [PMID: 12350301 DOI: 10.1016/s0379-0738(02)00139-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developmental studies on neurotransmitters and their receptors in sudden infant death syndrome (SIDS) infants and controls are reviewed, including comparison between the prone and supine positions at death. In SIDS infants, there are an increase of glial fibrillary acidic protein (GFAP)-positive astrocytes in the brainstem, an increase of substance P (SP) in the medulla and pons, a decrease of tyrosine hydroxylase (TH)-positive catecholaminergic neurons in the ventrolateral medulla (VLM), and vagal nuclei in the medulla oblongata and basal ganglia, a decrease of tryptophan hydroxylase (TrH)-positive serotonergic neurons in the periaqueductal gray matter (PAG), and decreases of 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2A receptor immunoreactivities in the VLM and vagal nuclei in the medulla oblongata. These findings may be the result of chronic or repeated hypoxia and at the same time suggest hypofunction or immaturity of cardiorespiratory regulation. In contrast, 5-HT1A and 5-HT2A receptor immunoreactivities are increased in the PAG of SIDS infants. These increased immunoreactivities may reflect delayed neuronal maturation or a developmental abnormality of the nocicetive reaction of cardiorespiratory and arousal control in SIDS. Also, there are no differences of brainstem gliosis and catecholaminergic neuron changes between the prone and supine positions. Therefore, these changes may be predisposing factors for SIDS.
Collapse
Affiliation(s)
- Y Ozawa
- Department of Neonatology, Toho University School of Medicine, 6-11-1 Ohmorinishi, Ohta, Tokyo 43-8541, Japan.
| | | |
Collapse
|
30
|
Matturri L, Minoli I, Lavezzi AM, Cappellini A, Ramos S, Rossi L. Hypoplasia of medullary arcuate nucleus in unexpected late fetal death (stillborn infants): a pathologic study. Pediatrics 2002; 109:E43. [PMID: 11875171 DOI: 10.1542/peds.109.3.e43] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To evaluate the frequency, morphology, and pathogenesis (primary or secondary) of the abnormally developed medullary arcuate nucleus (ARCn) in stillbirths. METHODS We examined 26 stillbirths (24 antepartum, 2 intrapartum) that had a gestational age between 25 and 40 weeks and a normal karyotype. All of the stillborns were described as well-developed, with body length and weight proportional to their gestational age. Each case was submitted to complete autopsy examination, which included a systematic gross and microscopic evaluation of the body, the placental disk, and the umbilical cord and membranes. The brainstem was the particular focus of the histologic examination. The study of the various nuclei (nucleus hypoglossus, dorsal vagus motor nucleus, tractus solitarii nucleus, nucleus ambiguus, trigeminal tractus and nucleus, arcuate nucleus, and ventrolateral reticular formation and its neurons and parabrachial/Kölliker-Fuse complex) was performed on transversal serial sections through the entire pons and medulla oblongata. The histologic analysis was supplemented by volumetric reconstruction and immunohistochemical detection of both apoptosis and proliferating cell nuclear antigen. RESULTS Histologic examination showed abnormalities of the medulla oblongata ARCn in 9 fetuses (35%). In 8, a marked hypoplasia was evident, characterized by a volume reduction of the nucleus accompanied by neuronal depletion, whereas in 1 fetus the nucleus was completely absent (agenesis). The absence of gliosis, the negativity of the proliferating cell nuclear antigen analysis, and the similarities in apoptotic indices between the hypoplastic and well-developed arcuate are in keeping with a primary developmental defect. This anomaly is frequently associated with hypoplasia of the reticular formation and chronic hypoxia. CONCLUSIONS A high frequency of hypoplasia of the ARCn occurs in fetuses who have died "sine causa," ie, in a similar manner to that observed in sudden infant death syndrome. Chemoreceptors, although not involved in reflexogenic oxygenation in fetal life, become of vital importance intrapartum and postpartum; therefore, whenever impaired in the course of development, chemoreceptors may underlie cardioventilatory abnormalities critical to sudden infant death syndrome.
Collapse
Affiliation(s)
- Luigi Matturri
- Department of Pathology, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Shvarev YN, Lagercrantz H, Yamamoto Y. Biphasic effects of substance P on respiratory activity and respiration-related neurones in ventrolateral medulla in the neonatal rat brainstem in vitro. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 174:67-84. [PMID: 11851598 DOI: 10.1046/j.1365-201x.2002.00926.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The effects of substance P (SP) on respiratory activity in the brainstem-spinal cord preparation from neonatal rats (0-4 days old) were investigated. The respiratory activity was recorded from C4 ventral roots and intracellularly from three types of respiration-related neurones, i.e. pre-inspiratory (or biphasic E), three subtypes of inspiratory; expiratory and tonic neurones in the ventrolateral medulla (VLM). After the onset of SP bath application (10 nM-1 microM) a dose-dependent decline of burst rate (by 48%) occurred, followed by a weaker dose-dependent increase (by 17.5%) in burst rate. The biphasic effect of SP on inspiratory burst rate was associated with sustained membrane depolarization (in a range of 0.5-13 mV) of respiration-related and tonic neurones. There were no significant changes in membrane resistance in any type of neurones when SP was applied alone or when synaptic transmission was blocked with tetrodotoxin (TTX). The initial depolarization was associated with an increase in inspiratory drive potential (by 25%) as well as in bursting time (by 65%) and membrane excitability in inspiratory and pre-inspiratory neurones, which corresponded to the decrease in burst rate (C4 activity). The spiking frequency of expiratory and tonic neurones was also increased (by 36 and 48%). This activation was followed by restoration of the synaptic drive potential and bursting time in inspiratory and to a less extent in pre-inspiratory neurones, which corresponded to the increase in burst rate. The discharge frequency of expiratory and tonic neurones also decreased to control values. This phase followed the peak membrane depolarization. At the peak depolarization, SP reduced the amplitude of the action potential by 4-8% in all types of neurones. Our results suggest that SP exerts a general excitatory effect on respiration-related neurones and synaptic coupling within the respiratory network in the VLM. The transient changes in neuronal activity in the VLM may underlie the biphasic effect of SP in the brainstem respiration activity recorded in C4 roots. However, the biphasic effect of SP on inspiratory burst rate seems to be also defined by the balance in activity of other SP-sensitive systems and neurones in the respiratory network in the brainstem and spinal cord, which can modify the activity of medullary respiratory rhythm generator.
Collapse
Affiliation(s)
- Y N Shvarev
- Neonatal Unit, Dept. of Woman and Child Health, Q2:07, Astrid Lindgren Children's Hospital, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Hauck FR, Hunt CE. Sudden infant death syndrome in 2000. CURRENT PROBLEMS IN PEDIATRICS 2000; 30:237-61. [PMID: 11041024 DOI: 10.1067/mpp.2000.109512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- F R Hauck
- Department of Family Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | | |
Collapse
|
33
|
Lieske SP, Thoby-Brisson M, Telgkamp P, Ramirez JM. Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps [see comment]. Nat Neurosci 2000; 3:600-7. [PMID: 10816317 DOI: 10.1038/75776] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Are different forms of breathing derived from one or multiple neural networks? We demonstrate that brainstem slices containing the pre-Bötzinger complex generated two rhythms when normally oxygenated, with striking similarities to eupneic ('normal') respiration and sighs. Sighs were triggered by eupneic bursts under control conditions, but not in the presence of strychnine (1 microM). Although all neurons received synaptic inputs during both activities, the calcium channel blocker cadmium (4 microM) selectively abolished sighs. In anoxia, sighs ceased, and eupneic activity was reconfigured into gasping, which like eupnea was insensitive to 4 microM cadmium. This reconfiguration was accompanied by suppression of synaptic inhibition. We conclude that a single medullary network underlies multiple breathing patterns.
Collapse
Affiliation(s)
- S P Lieske
- Committee on Neurobiology, The University of Chicago, 1027 East 57th Street Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
34
|
Patzak A. Short-term rhythms of the cardiorespiratory system and their significance in neonatology. Chronobiol Int 1999; 16:249-68. [PMID: 10373096 DOI: 10.3109/07420529909116856] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Latent disturbances in the control of respiration and heart rate (HR) may be important factors in the pathogenesis of life-threatening events during infancy. A method of determining the control of the autonomic nervous system functions involves the analysis of time-dependent ultradian changes of its parameters. The breathing signal and HR variability contain rhythmic components that are generated within the cardiorespiratory network of the brain stem, through reflexes, and by feedback mechanisms. The analysis of these components may provide insights into the functioning of the cardiorespiratory control system. The prominence and precision of the rhythms are correlated with states of vigilance and underlie distinct development during the first months of life. The results of studies on infants at risk (for example, for sudden infant death), with the help of statistical and spectral analysis of time series to obtain new indices, have proved to be inconsistent in their prognostic value of thus studied parameters. Recently, the importance of qualitative and quantitative assessment of the dynamic and complex behavior of time series, based on nonlinear characteristics of the control system, has been emphasized. To what extent, however, the analysis of the dynamic behavior can be utilized for clinical purposes, such as judging the prognosis of deficiencies in control, requires further study regarding physiological baselines and the possible changes resulting from pathological states.
Collapse
Affiliation(s)
- A Patzak
- Institute of Physiology, Humboldt-University of Berlin, University Hospital Charité, Germany.
| |
Collapse
|
35
|
Abstract
Serial examination of the cerebral hemispheres of 20 sudden infant death syndrome victims revealed high incidence of leukomalacia (40%), leptomeningeal glioneuronal heterotopias (70%) at the base of the cerebrum, and astrogliosis (65%) in the white matter and medulla reticular formation compared with 20 age-matched controls. These results suggest that an antepartum insult may become an important predisposing risk factor in some patients for sudden infant death syndrome.
Collapse
Affiliation(s)
- T Obonai
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | |
Collapse
|
36
|
Jordan D, Kermadi I, Rambaud C, Bouvier R, Dijoud F, Martin D, Kopp N. Autoradiographic distribution of brainstem substance P binding sites in humans: ontogenic study and relation to sudden infant death syndrome (SIDS). J Neural Transm (Vienna) 1998; 104:1101-5. [PMID: 9503261 DOI: 10.1007/bf01273322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The precise distribution of substance P (SP) binding sites in the human brainstem was investigated in normal cases (3 fetuses and 24 new-borns) and in 9 cases of Sudden Infant Death Syndrome (SIDS) by in vitro quantitative autoradiography. We discussed the widely but uneven distribution of SP binding sites as regards to the role of SP in brainstem cardio-respiratory ontogenic control and its possible involvement in SIDS.
Collapse
Affiliation(s)
- D Jordan
- Anatomo-Pathologic Laboratory, Laënnec University, Lyon, France
| | | | | | | | | | | | | |
Collapse
|