1
|
Evtushenko EV, Elisafenko EA, Vershinin AV. The relationship between two tandem repeat families in rye heterochromatin. Mol Biol 2010. [DOI: 10.1134/s0026893310010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Paar V, Pavin N, Basar I, Rosandić M, Gluncić M, Paar N. Hierarchical structure of cascade of primary and secondary periodicities in Fourier power spectrum of alphoid higher order repeats. BMC Bioinformatics 2008; 9:466. [PMID: 18980673 PMCID: PMC2661002 DOI: 10.1186/1471-2105-9-466] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 11/03/2008] [Indexed: 11/28/2022] Open
Abstract
Background Identification of approximate tandem repeats is an important task of broad significance and still remains a challenging problem of computational genomics. Often there is no single best approach to periodicity detection and a combination of different methods may improve the prediction accuracy. Discrete Fourier transform (DFT) has been extensively used to study primary periodicities in DNA sequences. Here we investigate the application of DFT method to identify and study alphoid higher order repeats. Results We used method based on DFT with mapping of symbolic into numerical sequence to identify and study alphoid higher order repeats (HOR). For HORs the power spectrum shows equidistant frequency pattern, with characteristic two-level hierarchical organization as signature of HOR. Our case study was the 16 mer HOR tandem in AC017075.8 from human chromosome 7. Very long array of equidistant peaks at multiple frequencies (more than a thousand higher harmonics) is based on fundamental frequency of 16 mer HOR. Pronounced subset of equidistant peaks is based on multiples of the fundamental HOR frequency (multiplication factor n for nmer) and higher harmonics. In general, nmer HOR-pattern contains equidistant secondary periodicity peaks, having a pronounced subset of equidistant primary periodicity peaks. This hierarchical pattern as signature for HOR detection is robust with respect to monomer insertions and deletions, random sequence insertions etc. For a monomeric alphoid sequence only primary periodicity peaks are present. The 1/fβ – noise and periodicity three pattern are missing from power spectra in alphoid regions, in accordance with expectations. Conclusion DFT provides a robust detection method for higher order periodicity. Easily recognizable HOR power spectrum is characterized by hierarchical two-level equidistant pattern: higher harmonics of the fundamental HOR-frequency (secondary periodicity) and a subset of pronounced peaks corresponding to constituent monomers (primary periodicity). The number of lower frequency peaks (secondary periodicity) below the frequency of the first primary periodicity peak reveals the size of nmer HOR, i.e., the number n of monomers contained in consensus HOR.
Collapse
Affiliation(s)
- Vladimir Paar
- Faculty of Science, University of Zagreb, Bijenicka 32, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
3
|
Rosandić M, Glunčić M, Paar V, Basar I. The role of alphoid higher order repeats (HORs) in the centromere folding. J Theor Biol 2008; 254:555-60. [DOI: 10.1016/j.jtbi.2008.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 05/13/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
|
4
|
Paar V, Basar I, Rosandić M, Glunčić M. Consensus higher order repeats and frequency of string distributions in human genome. Curr Genomics 2007; 8:93-111. [PMID: 18660848 PMCID: PMC2435359 DOI: 10.2174/138920207780368169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 01/26/2007] [Accepted: 01/30/2007] [Indexed: 02/01/2023] Open
Abstract
Key string algorithm (KSA) could be viewed as robust computational generalization of restriction enzyme method. KSA enables robust and effective identification and structural analyzes of any given genomic sequences, like in the case of NCBI assembly for human genome. We have developed a method, using total frequency distribution of all r-bp key strings in dependence on the fragment length l, to determine the exact size of all repeats within the given genomic sequence, both of monomeric and HOR type. Subsequently, for particular fragment lengths equal to each of these repeat sizes we compute the partial frequency distribution of r-bp key strings; the key string with highest frequency is a dominant key string, optimal for segmentation of a given genomic sequence into repeat units. We illustrate how a wide class of 3-bp key strings leads to a key-string-dependent periodic cell which enables a simple identification and consensus length determinations of HORs, or any other highly convergent repeat of monomeric or HOR type, both tandem or dispersed. We illustrated KSA application for HORs in human genome and determined consensus HORs in the Build 35.1 assembly. In the next step we compute suprachromosomal family classification and CENP-B box / pJalpha distributions for HORs. In the case of less convergent repeats, like for example monomeric alpha satellite (20-40% divergence), we searched for optimal compact key string using frequency method and developed a concept of composite key string (GAAAC--CTTTG) or flexible relaxation (28 bp key string) which provides both monomeric alpha satellites as well as alpha monomer segmentation of internal HOR structure. This method is convenient also for study of R-strand (direct) / S-strand (reverse complement) alpha monomer alternations. Using KSA we identified 16 alternating regions of R-strand and S-strand monomers in one contig in choromosome 7. Use of CENP-B box and/or pJalpha motif as key string is suitable both for identification of HORs and monomeric pattern as well as for studies of CENP-B box / pJalpha distribution. As an example of application of KSA to sequences outside of HOR regions we present our finding of a tandem with highly convergent 3434-bp Long monomer in chromosome 5 (divergence less then 0.3%).
Collapse
Affiliation(s)
- Vladimir Paar
- Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| | - Ivan Basar
- Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| | - Marija Rosandić
- Department of Internal Medicine,
University Hospital Rebro, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Matko Glunčić
- Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Rosandić M, Paar V, Basar I, Gluncić M, Pavin N, Pilas I. CENP-B box and pJalpha sequence distribution in human alpha satellite higher-order repeats (HOR). Chromosome Res 2006; 14:735-53. [PMID: 17115329 DOI: 10.1007/s10577-006-1078-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 06/03/2006] [Indexed: 01/13/2023]
Abstract
Using our Key String Algorithm (KSA) to analyze Build 35.1 assembly we determined consensus alpha satellite higher-order repeats (HOR) and consensus distributions of CENP-B box and pJalpha motif in human chromosomes 1, 4, 5, 7, 8, 10, 11, 17, 19, and X. We determined new suprachromosomal family (SF) assignments: SF5 for 13mer (2211 bp), SF5 for 13mer (2214 bp), SF2 for 11mer (1869 bp), SF1 for 18mer (3058 bp), SF3 for 12mer (2047 bp), SF3 for 14mer (2379 bp), and SF5 for 17mer (2896 bp) in chromosomes 4, 5, 8, 10, 11, 17, and 19, respectively. In chromosome 5 we identified SF5 13mer without any CENP-B box and pJalpha motif, highly homologous (96%) to 13mer in chromosome 19. Additionally, in chromosome 19 we identified new SF5 17mer with one CENP-B box and pJalpha motif, aligned to 13mer by deleting four monomers. In chromosome 11 we identified SF3 12mer, homologous to 12mer in chromosome X. In chromosome 10 we identified new SF1 18mer with eight CENP-B boxes in every other monomer (except one). In chromosome 4 we identified new SF5 13mer with CENP-B box in three consecutive monomers. We found four exceptions to the rule that CENP-B box belongs to type B and pJalpha motif to type A monomers.
Collapse
Affiliation(s)
- Marija Rosandić
- Department of Internal Medicine, University Hospital Rebro, University of Zagreb, 10000, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Alpha-satellite is a family of tandemly repeated sequences found at all normal human centromeres. In addition to its significance for understanding centromere function, alpha-satellite is also a model for concerted evolution, as alpha-satellite repeats are more similar within a species than between species. There are two types of alpha-satellite in the human genome; while both are made up of approximately 171-bp monomers, they can be distinguished by whether monomers are arranged in extremely homogeneous higher-order, multimeric repeat units or exist as more divergent monomeric alpha-satellite that lacks any multimeric periodicity. In this study, as a model to examine the genomic and evolutionary relationships between these two types, we have focused on the chromosome 17 centromeric region that has reached both higher-order and monomeric alpha-satellite in the human genome assembly. Monomeric and higher-order alpha-satellites on chromosome 17 are phylogenetically distinct, consistent with a model in which higher-order evolved independently of monomeric alpha-satellite. Comparative analysis between human chromosome 17 and the orthologous chimpanzee chromosome indicates that monomeric alpha-satellite is evolving at approximately the same rate as the adjacent non-alpha-satellite DNA. However, higher-order alpha-satellite is less conserved, suggesting different evolutionary rates for the two types of alpha-satellite.
Collapse
Affiliation(s)
- M Katharine Rudd
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
7
|
Grimes BR, Babcock J, Rudd MK, Chadwick B, Willard HF. Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 2004; 5:R89. [PMID: 15535865 PMCID: PMC545780 DOI: 10.1186/gb-2004-5-11-r89] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/31/2004] [Accepted: 09/22/2004] [Indexed: 01/07/2023] Open
Abstract
An assay of the formation of heterochromatin and euchromatin on de novo human artificial chromosomes containing alpha satellite DNA revealed that only a small amount of heterochromatin may be required for centromere function and that replication late in S phase is not a requirement for centromere function. Background Human centromere regions are characterized by the presence of alpha-satellite DNA, replication late in S phase and a heterochromatic appearance. Recent models propose that the centromere is organized into conserved chromatin domains in which chromatin containing CenH3 (centromere-specific H3 variant) at the functional centromere (kinetochore) forms within regions of heterochromatin. To address these models, we assayed formation of heterochromatin and euchromatin on de novo human artificial chromosomes containing alpha-satellite DNA. We also examined the relationship between chromatin composition and replication timing of artificial chromosomes. Results Heterochromatin factors (histone H3 lysine 9 methylation and HP1α) were enriched on artificial chromosomes estimated to be larger than 3 Mb in size but depleted on those smaller than 3 Mb. All artificial chromosomes assembled markers of euchromatin (histone H3 lysine 4 methylation), which may partly reflect marker-gene expression. Replication timing studies revealed that the replication timing of artificial chromosomes was heterogeneous. Heterochromatin-depleted artificial chromosomes replicated in early S phase whereas heterochromatin-enriched artificial chromosomes replicated in mid to late S phase. Conclusions Centromere regions on human artificial chromosomes and host chromosomes have similar amounts of CenH3 but exhibit highly varying degrees of heterochromatin, suggesting that only a small amount of heterochromatin may be required for centromere function. The formation of euchromatin on all artificial chromosomes demonstrates that they can provide a chromosome context suitable for gene expression. The earlier replication of the heterochromatin-depleted artificial chromosomes suggests that replication late in S phase is not a requirement for centromere function.
Collapse
Affiliation(s)
- Brenda R Grimes
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Current address: Indiana University, School of Medicine, Department of Medical and Molecular Genetics, Medical Research Building 130, 975 West Walnut Street, Indianapolis, IN 46202-5251, USA
| | - Jennifer Babcock
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - M Katharine Rudd
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| | - Brian Chadwick
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| | - Huntington F Willard
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
8
|
Paar V, Pavin N, Rosandic M, Gluncic M, Basar I, Pezer R, Zinic SD. ColorHOR--novel graphical algorithm for fast scan of alpha satellite higher-order repeats and HOR annotation for GenBank sequence of human genome. Bioinformatics 2004; 21:846-52. [PMID: 15509609 DOI: 10.1093/bioinformatics/bti072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION GenBank data are at present lacking alpha satellite higher-order repeat (HOR) annotation. Furthermore, exact HOR consensus lengths have not been reported so far. Given the fast growth of sequence databases in the centromeric region, it is of increasing interest to have efficient tools for computational identification and analysis of HORs from known sequences. RESULTS We develop a graphical user interface method, ColorHOR, for fast computational identification of HORs in a given genomic sequence, without requiring a priori information on the composition of the genomic sequence. ColorHOR is based on an extension of the key-string algorithm and provides a color representation of the order and orientation of HORs. For the key string, we use a robust 6 bp string from a consensus alpha satellite and its representative nature is tested. ColorHOR algorithm provides a direct visual identification of HORs (direct and/or reverse complement). In more detail, we first illustrate the ColorHOR results for human chromosome 1. Using ColorHOR we determine for the first time the HOR annotation of the GenBank sequence of the whole human genome. In addition to some HORs, corresponding to those determined previously biochemically, we find new HORs in chromosomes 4, 8, 9, 10, 11 and 19. For the first time, we determine exact consensus lengths of HORs in 10 chromosomes. We propose that the HOR assignment obtained by using ColorHOR be included into the GenBank database.
Collapse
Affiliation(s)
- Vladimir Paar
- Faculty of Science, University of Zagreb Bijenicka 32, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang L, Ogawa S, Hangaishi A, Qiao Y, Hosoya N, Nanya Y, Ohyashiki K, Mizoguchi H, Hirai H. Molecular characterization of the recurrent unbalanced translocation der(1;7)(q10;p10). Blood 2003; 102:2597-604. [PMID: 12816870 DOI: 10.1182/blood-2003-01-0031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An unbalanced translocation der(1;7)(q10; p10) is a nonrandom chromosomal aberration commonly observed in myelodysplastic syndrome and acute myeloid leukemia. We molecularly analyzed the breakpoints of der(1;7)(q10;p10) by quantitative fluorescent in situ hybridization (FISH) analyses using centromeric satellite DNAs mapped to chromosomes 1 and 7 as probes. We found that the signal intensities of 2 centromere alphoid probes, D1Z7 on chromosome 1 and D7Z1 on chromosome 7, were almost invariably reduced on the derivative chromosome compared with those on their normal counterparts. These results suggest that this translocation results from the recombination between the 2 alphoids, which was further confirmed by fiber FISH experiments. Because the relative reduction in the intensities of D1Z7 and D7Z1 signals on the derivative chromosomes was highly variable among patients, it was estimated that the breakpoints in these patients were randomly distributed over several megabase pairs within each alphoid cluster except for its extreme end to the short arm. Our results provide a novel insight into the structural basis for generation of this translocation as well as its leukemogenic roles.
Collapse
Affiliation(s)
- Lili Wang
- Department of Hematology & Oncology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosandić M, Paar V, Basar I. Key-string segmentation algorithm and higher-order repeat 16mer (54 copies) in human alpha satellite DNA in chromosome 7. J Theor Biol 2003; 221:29-37. [PMID: 12634041 DOI: 10.1006/jtbi.2003.3165] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new key-string segmentation algorithm for identification of alpha satellite DNAs and higher-order repeat (HOR) units was introduced and exemplified. Starting with an initial key string, we determine the dominant key string and HOR. Our key-string algorithm was used to scan the recent GenBank data for human alpha satellite DNA sequence AC017075.8 (193 277 bp) from the centromeric region of chromosome 7. The sequence was computationally segmented into one HOR domain (super-repeat domain) and two non-HOR domains. Dominant key-string GTTTCT provided segmentation in terms of alpha monomers. The HOR is tandemly repeated in 54 copies in the super-repeat (HOR) domain. Five insertions and three deletions in the HOR structure associated with a dominant key string were identified. Concensus HOR was constructed. Divergence of individual HOR copies from concensus amounts to 0.7% on the average, while divergence between 16 monomer variants within each HOR is on the average 20%. In the front and back domain, 199 monomer variants were identified that are not organized in HOR and diverge by 20-40%.
Collapse
Affiliation(s)
- M Rosandić
- Department of Internal Medicine, University Hospital Rebro, University of Zagreb, Kispatićeva 12, Zagreb, Croatia
| | | | | |
Collapse
|
11
|
Politi V, Perini G, Trazzi S, Pliss A, Raska I, Earnshaw WC, Della Valle G. CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J Cell Sci 2002; 115:2317-27. [PMID: 12006616 DOI: 10.1242/jcs.115.11.2317] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CENP-C is a fundamental component of the centromere, highly conserved among species and necessary for the proper assembly of the kinetochore structure and for the metaphase-anaphase transition. Although CENP-C can bind DNA in vitro,the identification of the DNA sequences associated with it in vivo and the significance of such an interaction have been, until now, elusive. To address this problem we took advantage of a chromatin-immunoprecipitation procedure and applied this technique to human HeLa cells. Through this approach we could establish that: (1) CENP-C binds the alpha-satellite DNA selectively; (2) the CENP-C region between amino acids 410 and 537, previously supposed to contain a DNA-binding domain, is indeed required to perform such a function in vivo;and (3) the profile of the alpha-satellite DNA associated with CENP-C is essentially identical to that recognized by CENP-B. However, further biochemical and ultrastructural characterization of CENP-B/DNA and CENP-C/DNA complexes, relative to their DNA components and specific spatial distribution in interphase nuclei, surprisingly reveals that CENP-C and CENP-B associate with the same types of alpha-satellite arrays but in distinct non-overlapping centromere domains. Our results, besides extending previous observations on the role of CENP-C in the formation of active centromeres, show, for the first time, that CENP-C can associate with the centromeric DNA sequences in vivo and, together with CENP-B, defines a highly structured organization of the alpha-satellite DNA within the human centromere.
Collapse
Affiliation(s)
- Valeria Politi
- Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Yan CM, Dobie KW, Le HD, Konev AY, Karpen GH. Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster. Genetics 2002; 161:217-29. [PMID: 12019236 PMCID: PMC1462106 DOI: 10.1093/genetics/161.1.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Approximately one-third of the human and Drosophila melanogaster genomes are heterochromatic, yet we know very little about the structure and function of this enigmatic component of eukaryotic genomes. To facilitate molecular and cytological analysis of heterochromatin we introduced a yellow(+) (y(+))-marked P element into centric heterochromatin by screening for variegated phenotypes, that is, mosaic gene inactivation. We recovered >110 P insertions with variegated yellow expression from approximately 3500 total mobilization events. FISH analysis of 71 of these insertions showed that 69 (97%) were in the centric heterochromatin, rather than telomeres or euchromatin. High-resolution banding analysis showed a wide but nonuniform distribution of insertions within centric heterochromatin; variegated insertions were predominantly recovered near regions of satellite DNA. We successfully used inverse PCR to clone and sequence the flanking DNA for approximately 63% of the insertions. BLAST analysis of the flanks demonstrated that either most of the variegated insertions could not be placed on the genomic scaffold, and thus may be inserted within novel DNA sequence, or that the flanking DNA hit multiple sites on the scaffold, due to insertions within different transposons. Taken together these data suggest that screening for yellow variegation is a very efficient method for recovering centric insertions and that a large-scale screen for variegated yellow P insertions will provide important tools for detailed analysis of centric heterochromatin structure and function.
Collapse
Affiliation(s)
- Christopher M Yan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
13
|
Mashkova TD, Oparina NY, Lacroix MH, Fedorova LI, G Tumeneva I, Zinovieva OL, Kisselev LL. Structural rearrangements and insertions of dispersed elements in pericentromeric alpha satellites occur preferably at kinkable DNA sites. J Mol Biol 2001; 305:33-48. [PMID: 11114245 DOI: 10.1006/jmbi.2000.4270] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Centromeric region of human chromosome 21 comprises two long alphoid DNA arrays: the well homogenized and CENP-B box-rich alpha21-I and the alpha21-II, containing a set of less homogenized and CENP-B box-poor subfamilies located closer to the short arm of the chromosome. Continuous alphoid fragment of 100 monomers bordering the non-satellite sequences in human chromosome 21 was mapped to the pericentromeric short arm region by fluorescence in situ hybridization (alpha21-II locus). The alphoid sequence contained several rearrangements including five large deletions within monomers and insertions of three truncated L1 elements. No binding sites for centromeric protein CENP-B were found. We analyzed sequences with alphoid/non-alphoid junctions selectively screened from current databases and revealed various rearrangements disrupting the regular tandem alphoid structure, namely, deletions, duplications, inversions, expansions of short oligonucleotide motifs and insertions of different dispersed elements. The detailed analysis of more than 1100 alphoid monomers from junction regions showed that the vast majority of structural alterations and joinings with non-alphoid DNAs occur in alpha satellite families lacking CENP-B boxes. Most analyzed events were found in sequences located toward the edges of the centromeric alphoid arrays. Different dispersed elements were inserted into alphoid DNA at kinkable dinucleotides (TG, CA or TA) situated between pyrimidine/purine tracks. DNA rearrangements resulting from different processes such as recombination and replication occur at kinkable DNA sites alike insertions but irrespectively of the occurrence of pyrimidine/purine tracks. It seems that kinkable dinucleotides TG, CA and TA are part of recognition signals for many proteins involved in recombination, replication, and insertional events. Alphoid DNA is a good model for studying these processes.
Collapse
MESH Headings
- Alu Elements/genetics
- Autoantigens
- Base Sequence
- Binding Sites
- Centromere/chemistry
- Centromere/genetics
- Centromere/metabolism
- Centromere Protein B
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Deletion
- Chromosome Inversion
- Chromosomes, Human, Pair 21/chemistry
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Computational Biology
- Crossing Over, Genetic/genetics
- DNA Replication/genetics
- DNA, Satellite/chemistry
- DNA, Satellite/genetics
- DNA, Satellite/metabolism
- DNA-Binding Proteins
- Databases as Topic
- Dinucleotide Repeats/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Lymphocytes
- Mutagenesis, Insertional/genetics
- Mutation/genetics
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- Recombination, Genetic/genetics
Collapse
Affiliation(s)
- T D Mashkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Str., Moscow, 117984, Russia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bassi C, Magnani I, Sacchi N, Saccone S, Ventura A, Rocchi M, Marozzi A, Ginelli E, Meneveri R. Molecular structure and evolution of DNA sequences located at the alpha satellite boundary of chromosome 20. Gene 2000; 256:43-50. [PMID: 11054534 DOI: 10.1016/s0378-1119(00)00354-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated and characterised one PAC clone (dJ233C1) containing a linkage between alphoid and non-alphoid DNA. The non-alphoid DNA was found to map at the pericentromeric region of chromosome 20, both on p and q sides, and to contain homologies with one contig (ctg176, Sanger Centre), also located in the same chromosome region. At variance with the chromosome specificity shown by the majority of non-alphoid DNA, a subset of alphoid repeats derived from the PAC yielded FISH hybridisation signals located at the centromeric region of several human chromosomes, belonging to three different suprachromosomal families. The evolutionary conservation of this boundary region was investigated by comparative FISH experiments on chromosomes from great apes. The non-alphoid DNA was found to have undergone events of expansion and transposition to different pericentromeric regions of great apes chromosomes. Alphoid sequences revealed a very wide distribution of FISH signals in the great apes. The pattern was substantially discordant with the data available in the literature, which is essentially derived from the central alphoid subset. These results add further support to the emerging opinion that the pericentromeric regions are high plastics, and that the alpha satellite junctions do not share the evolutionary history with the main subsets.
Collapse
Affiliation(s)
- C Bassi
- Dipartimento di Biologia e Genetica per le Scienze Mediche, Università di Milano, 20133, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pinna-Senn E, Lisanti JA, Ortiz MI, Dalmasso G, Bella JL, Gosálvez J, Stockert JC. Specific heterochromatic banding of metaphase chromosomes using nuclear yellow. Biotech Histochem 2000; 75:132-40. [PMID: 10950175 DOI: 10.3109/10520290009066491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bis-benzimidazole compound nuclear yellow (NY) belongs to the same chemical family as the DNA binding fluorochromes Hoechst 33258 and Hoechst 33342. Spectroscopic studies of NY alone and in the presence of calf thymus DNA show high DNA binding affinity and behavior similar to the Hoechst fluorochromes above. Mitotic metaphase chromosomes from Balb/c mice stained with NY show C-banding and weak G/Q-banding, both of them disappearing after distamycin A (DA) or methyl green (MG) counterstaining. The same staining of human metaphase chromosomes from lymphocyte cultures, however, reveal only faint G/Q-banding (NY) and a characteristic DA-DAPI-like banding (NY-DA, NY-MG). Image analysis of NY stained human chromosomes, confirms that NY is suitable for studying polymorphisms affecting size in the pericentromeric heterochromatin of pairs 1, 9 and 16, and shows significant enhancement of NY fluorescence induced by DA in DA-DAPI heterochromatin. Our spectroscopic and cytological results show that NY, either alone or counterstained with DA or MG, can be used for DNA cytochemistry and chromosome banding. Possible mechanisms for the banding patterns induced by NY are discussed.
Collapse
Affiliation(s)
- E Pinna-Senn
- Department of Natural Sciences, Faculty of Exact and Natural Sciences, University of Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Lo AW, Liao GC, Rocchi M, Choo KH. Extreme reduction of chromosome-specific alpha-satellite array is unusually common in human chromosome 21. Genome Res 1999; 9:895-908. [PMID: 10523519 DOI: 10.1101/gr.9.10.895] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human centromeres contain large arrays of alpha-satellite DNA that are thought to provide centromere function. The arrays show size and sequence variation, but the extent to which extremely low levels of this DNA can occur on normal centromeres is unclear. Using a set of chromosome-specific alpha-satellite probes for each of the human chromosomes, we performed interphase fluorescence in situ hybridization (FISH) in a population-screening study. Our results demonstrate that extreme reduction of chromosome-specific alpha satellite is unusually common in chromosome 21 (screened with the alphaRI probe), with a prevalence of 3.70%, compared to < or =0.12% for each of chromosomes 13 and 17, and 0% for the other chromosomes. No analphoid centromere was identified in >17,000 morphologically normal chromosomes studied. All of the low-alphoid centromeres are fully functional as indicated by their mitotic stability and binding to centromere proteins CENP-B, CENP-C, and CENP-E. Sensitive metaphase FISH analysis of the low-alphoid chromosome 21 centromeres established the presence of residual alphaRI as well as other non-alphaRI alpha-satellite DNA suggesting that centromere function may be provided by (1) the residual alphaRI DNA, (2) other non-alphaRI alpha-satellite sequences, (3) a combination of 1 and 2, or (4) an activated neocentromere DNA. The low-alphoid centromeres, in particular those of chromosome 21, should provide unique opportunities for the study of the evolution and the minimal DNA requirement of the human centromere.
Collapse
Affiliation(s)
- A W Lo
- The Murdoch Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
17
|
Laurent AM, Puechberty J, Roizès G. Hypothesis: for the worst and for the best, L1Hs retrotransposons actively participate in the evolution of the human centromeric alphoid sequences. Chromosome Res 1999; 7:305-17. [PMID: 10461876 DOI: 10.1023/a:1009283015738] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A number of questions concerning the evolution and the function of the alpha satellite DNA sequences present at the centromere of all human chromosomes are still open. In this paper, we present data which could contribute to understanding these points. It is shown here that the alphoid sequences within which L1 elements are found are quite divergent from those of the homogeneous alphoid subsets present at each centromere where none has so far been detected. In addition, a number of L1s are detected close to the ends of the alpha satellite blocks. A fairly high proportion exhibit a polymorphism of presence/absence. Strikingly, several L1s localized at a distance from each other are always either present or absent simultaneously. This is interpreted as resulting from intrachromosomal recombination, through distant L1s, leading to deletion of several of them at once together with their surrounding alphoid sequences. The parameters determining which portion of the several megabases of alphoid sequences is actually involved in the centromeric function are not known. From the above data we suggest that the alpha satellite domain within which DNA sequences are recruited to form a centromere is both homogeneous in sequence and uninterrupted by L1s or any other retrotransposons. Conversely, non-centromere competent alphoid sequences would be both divergent and punctuated by scattered L1 elements, particularly at the borders of the alphoid blocks. On the grounds of these data and hypotheses, a model is presented in which it is postulated that accumulation of L1 insertions within a centromere competent alphoid domain is ruining this competence, the consequence being damage to or even loss of the centromere-forming capability of the chromosome. Restoration of fully centromere-forming competence is supposed to occur by two alternative means, either de-novo amplification of a homogeneous and uninterrupted alphoid domain or by unequal crossing over with a homologue harbouring a large competent one. If L1 retrotransposons are acting detrimentally to centromere integrity (for the worst), one must also consider them as having positive consequences on chromosomes by preventing their centromeres from swelling indefinitely by the addition of alphoid sequences (for the best). The data and ideas presented here fit well with those already put forward by Csink and Henikoff (1998) using the example of Drosophila.
Collapse
Affiliation(s)
- A M Laurent
- Séquences répétées et centromères humains, Institut de Génétique Humaine UPR 1142, Institut de Biologie, Montpellier, France
| | | | | |
Collapse
|
18
|
Eisenbarth I, König-Greger D, Wöhr G, Kehrer-Sawatzki H, Assum G. Characterization of an alphoid subfamily located near p-arm sequences on human chromosome 22. Chromosome Res 1999; 7:65-9. [PMID: 10219734 DOI: 10.1023/a:1009279412797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The centromeric heterochromatin of all human chromosomes is composed of tandemly repeated alpha satellite DNA. Here we describe another alphoid subfamily that maps to human chromosome 22 as determined by FISH. The alphoid sequences were isolated from three YAC-clones carrying DNA from the pericentromeric region of the short arm of human chromosome 22 and limited amounts of alphoid DNA. This property enabled us to map the members of the subfamily to the border of the centromeric region and the short arm of the chromosome. The new alphoid subfamily may contribute to the closure of the gap remaining between the centromeric and short-arm maps of human chromosome 22.
Collapse
Affiliation(s)
- I Eisenbarth
- Abteilung Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, Germany
| | | | | | | | | |
Collapse
|
19
|
Puechberty J, Laurent AM, Gimenez S, Billault A, Brun-Laurent ME, Calenda A, Marçais B, Prades C, Ioannou P, Yurov Y, Roizès G. Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. Genomics 1999; 56:274-87. [PMID: 10087194 DOI: 10.1006/geno.1999.5742] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human centromeres are poorly understood at both the genetic and the physical level. In this paper, we have been able to distinguish the alphoid centromeric sequences of chromosome 5 from those of chromosome 19. This result was obtained by pulsed-field gel electrophoresis after cutting genomic DNA with restriction endonucleases NcoI (chromosome 5) and BamHI (chromosome 19). We could thus define a highly polymorphic marker, representing length variations of the D5Z1 domain located at the q arm boundary of the chromosome 5 centromere. The centromeric region of chromosome 5 was then analyzed in full detail. We established an approximately 4.6-Mb physical map of the whole region with five rare-cutting enzymes by using nonchimeric YACs, two of which were shown to contain the very ends of 5cen on both sides. The p-arm side of 5cen was shown to contain an alphoid subset (D5Z12) different from those described thus far. Two genes and several putative cDNAs could be precisely located close to the centromere. Several L1 elements were shown to be present within alpha satellites at the boundary between alphoid and nonalphoid sequences on both sides of 5cen. They were used to define STSs that could serve as physical anchor points at the junction of 5cen with the p and q arms. Some STSs were placed on a radiation hybrid map. One was polymorphic and could therefore be used as a second centromeric genetic marker at the p arm boundary of 5cen. We could thus estimate recombination rates within and around the centromeric region of chromosome 5. Recombination is highly reduced within 5cen, with zero recombinants in 58 meioses being detected between the two markers located at the two extremities of the centromere. In its immediate vicinity, 5cen indeed exerts a direct negative effect on meiotic recombination within the proximal chromosomal DNA. This effect is, however, less important than expected and is polarized, as different rates are observed on both arms if one compares the 0 cM/Mb of the p proximal first 5.5 Mb and the 0.64 cM/Mb of the q proximal first 5 Mb to the sex-average 1.02 cM/Mb found throughout the entire chromosome 5. Rates then become close to the average when one goes further within the arms. Finally, most recombinants (21/22), irrespective of the arm, are of female origin, thus showing that recombination around 5cen is essentially occurring in the female lineage.
Collapse
MESH Headings
- Blotting, Southern
- Centromere/genetics
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 5/genetics
- Contig Mapping
- Electrophoresis, Gel, Pulsed-Field
- Humans
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Oligonucleotide Probes
- Pedigree
- Physical Chromosome Mapping
- Recombination, Genetic
- Restriction Mapping
- Sequence Analysis, DNA
- Sequence Tagged Sites
- Temperature
Collapse
Affiliation(s)
- J Puechberty
- Institut de Génétique Humaine, CNRS UPR 1142, Institut de Biologie, 4 Boulevard Henri IV, Montpellier Cedex, 34060, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Van Hooser A, Brinkley WR. Methods for in situ localization of proteins and DNA in the centromere-kinetochore complex. Methods Cell Biol 1999; 61:57-80. [PMID: 9891309 DOI: 10.1016/s0091-679x(08)61975-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- A Van Hooser
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
21
|
Mashkova T, Oparina N, Alexandrov I, Zinovieva O, Marusina A, Yurov Y, Lacroix MH, Kisselev L. Unequal cross-over is involved in human alpha satellite DNA rearrangements on a border of the satellite domain. FEBS Lett 1998; 441:451-7. [PMID: 9891989 DOI: 10.1016/s0014-5793(98)01600-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It can be invoked from the theory of tandem repeat homogenization that DNA on a satellite/non-satellite border may carry sequence marks of molecular processes basic to satellite evolution. We have sequenced a continuous 17-kb alpha satellite fragment bordering the non-satellite in human chromosome 21, which is devoid of higher-order repeated structure, contains multiple rearrangements, and exhibits higher divergence of monomers towards the border, indicating the lack of efficient homogenization. Remarkably, monomers have been found with mutually supplementary deletions matching each other as reciprocal products of unequal recombination, which provide evidence for unequal cross-over as a mechanism generating deletions in satellite DNA.
Collapse
Affiliation(s)
- T Mashkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
López CC, Edström JE. Interspersed centromeric element with a CENP-B box-like motif in Chironomus pallidivittatus. Nucleic Acids Res 1998; 26:4168-72. [PMID: 9722636 PMCID: PMC147845 DOI: 10.1093/nar/26.18.4168] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Short mobile elements are present in different recombined forms as interspersed GC-rich islands between AT rich centromeric 155 bp tandem repeats in the dipteran Chironomus pallidivittatus . The basic element is 80 bp long, has a pronounced invert repeat structure and contains a 17 bp segment similar to the CENP-B box in mammals. The element inserts into a specific site of the 155 bp repeat in a defined orientation surrounded by 2 bp direct repeats. The total number per genome of the main variant is <20. Elements can be present in all centromeres from C.pallidivittatus and the sibling species Chironomus tentans with pronounced differences in distribution within and between species.
Collapse
Affiliation(s)
- C C López
- Department of Genetics, Lund University, Sölvegatan 29, S-22362 Lund, Sweden
| | | |
Collapse
|
23
|
Ananiev EV, Phillips RL, Rines HW. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics 1998; 149:2025-37. [PMID: 9691055 PMCID: PMC1460258 DOI: 10.1093/genetics/149.4.2025] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of specific regions, such as knobs, of individual maize chromosomes. A DNA hybridization blot panel of eight individual maize chromosome addition lines revealed that 180-bp repeats found in knobs are present in each of these maize chromosomes, but the copy number varies from approximately 100 to 25, 000. Cosmid clones with knob DNA segments were isolated from a genomic library of an oat-maize chromosome 9 addition line with the help of the 180-bp knob-associated repeated DNA sequence used as a probe. Cloned knob DNA segments revealed a complex organization in which blocks of tandemly arranged 180-bp repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. Sequence microheterogeneity including point mutations and duplications was found in copies of 180-bp repeats. The 180-bp repeats within an array all had the same polarity. Restriction maps constructed for 23 cloned knob DNA fragments revealed the positions of polymorphic sites and sites of integration of insertion elements. Discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes.
Collapse
Affiliation(s)
- E V Ananiev
- Department of Agronomy and Plant Genetics and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, Minnesota 55108-6026, USA
| | | | | |
Collapse
|
24
|
Liao C, Rovira C, He H, Edström JE. Site-specific insertion of a SINE-like element, Cp1, into centromeric tandem repeats from Chironomus pallidivittatus. J Mol Biol 1998; 280:811-21. [PMID: 9701546 DOI: 10.1006/jmbi.1998.1896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A SINE-like dispersed element, Cp1, from the dipteran Chironomus pallidivittatus was found to show site-specific insertion into two different centromeric tandem repeats. The insertions result in identical target site duplications of nine base-pairs. In contrast, extracentromeric Cp1 elements, which are polymorphic and degenerate, are previously known to be surrounded by different target site duplications. The intracentromeric Cp1 is uniform in structure and contains a single pol III unit, upstream of which 87 bp arms of a palindrome surround a 103 bp unique sequence. The numbers of Cp1 elements per centromere were determined in microdissected material and were found to be in the range of five to ten units per centromere. The well-defined insertion properties, correlated to chromosomal localization, suggest that Cp1 is likely to be a component of importance for the centromere. Similarities of Cp1 and its parts to functionally identified centromeres in Saccharomyces cerevisiae and Schizosaccharomyces pombe are discussed.
Collapse
Affiliation(s)
- C Liao
- Department of Genetics, Lund University, Sölvegatan 29 S-22362 Lund, Sweden
| | | | | | | |
Collapse
|
25
|
Abstract
Successful construction of artificial chromosomes is an important step for studies to elucidate the DNA elements necessary for chromosome structure and function. A roadblock to developing a tractable system in multicellular organisms, including humans, is the poorly understood nature of centromeres. Progress, has been made in defining the satellite DNA that appears to contribute to the centromere in both humans and Drosophila and large arrays of alpha satellite DNA have been used to construct first-generation human artificial chromosomes. Non-satellite DNA sequences are also capable of forming 'neo-centromeres' under some circumstances, however, raising questions about the sequence-dependence of centromere and kinetochore assembly. Taken together with new information on the nature of protein components of the kinetochore, these data support a model in which functional kinetochores are assembled on centromeric chromatin, the competence of which is established epigenetically. The development of human artificial chromosome systems should facilitate investigation of the DNA and chromatin requirements for active centromere assembly.
Collapse
Affiliation(s)
- H F Willard
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| |
Collapse
|
26
|
Mahtani MM, Willard HF. Physical and genetic mapping of the human X chromosome centromere: repression of recombination. Genome Res 1998; 8:100-10. [PMID: 9477338 DOI: 10.1101/gr.8.2.100] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Classical genetic studies in Drosophila and yeast have shown that chromosome centromeres have a cis-acting ability to repress meiotic exchange in adjacent DNA. To determine whether a similar phenomenon exists at human centromeres, we measured the rate of meiotic recombination across the centromere of the human X chromosome. We have constructed a long-range physical map of centromeric alpha-satellite DNA (DXZ1) by pulsed-field gel analysis, as well as detailed meiotic maps of the pericentromeric region of the X chromosome in the CEPH family panel. By comparing these two maps, we determined that, in the proximal region of the X chromosome, a genetic distance of 0.57 cM exists between markers that span the centromere and are separated by at least the average 3600 kb physical distance mapped across the DXZ1 array. Therefore, the rate of meiotic exchange across the X chromosome centromere is <1 cM/6300 kb (and perhaps as low as 1 cM/17,000 kb on the basis of other physical mapping data), at least eightfold lower than the average rate of female recombination on the X chromosome and one of the lowest rates of exchange yet observed in the human genome.
Collapse
Affiliation(s)
- M M Mahtani
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | |
Collapse
|
27
|
Williams BC, Murphy TD, Goldberg ML, Karpen GH. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 1998; 18:30-7. [PMID: 9425896 DOI: 10.1038/ng0198-30] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromosome fragments that lack centromeric DNA (structurally acentric chromosomes) are usually not inherited in mitosis and meiosis. We previously described the isolation, after irradiation of a Drosophila melanogaster mini-chromosome, of structurally acentric mini-chromosomes that display efficient mitotic and meiotic transmission despite their small size (under 300 kb) and lack of centromeric DNA. Here we report that these acentric mini-chromosomes bind the centromere-specific protein ZW10 and associate with the spindle poles in anaphase. The sequences in these acentric mini-chromosomes were derived from the tip of the X chromosome, which does not display centromere activity or localize ZW10, even when separated from the rest of the X. We conclude that the normally non-centromeric DNAs present in these acentric mini-chromosomes have acquired centromere function, and suggest that this example of 'neocentromere' formation involves appropriation of a self-propagating centromeric chromatin structure. The potential relevance of these observations to the identity, propagation and function of normal centromeres is discussed.
Collapse
Affiliation(s)
- B C Williams
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
28
|
Behrens F, Claussen U, Iyer LM, Green ED, Horsthemke B, Williamson R, Huxley C, Coutelle C. Isolation of DNA from the centromere of human chromosome 7 by microdissection. Chromosome Res 1997; 5:215-20. [PMID: 9244447 DOI: 10.1023/a:1018459300978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Centromeres remain the least characterized regions of human chromosomes because they have a very high content of repetitive DNA. Here, we describe a microdissection library from the centromeric region of human chromosome 7 and its use for generating sequence tagged sites (STSs). The library contains about 1500 clones with an average insert size of 150 bp and only about 15% of the clones harbour repetitive human DNA. Seven clones hybridizing to alphoid DNA were found to correspond to a fragment of the D7Z2 alphoid array on chromosome 7, thus confirming the origin of the library. A number of clones not containing known repetitive DNA were used to generate STSs that identified yeast artificial chromosomes (YACs) and in turn allowed the STSs to be placed on the physical map. One STS is located between the two Genethon genetic markers closest to the centromere on the q side. Another STS was located 3-4cM away in 7q11.2, while a third identified YACs containing both low-copy and alphoid sequences that are not yet mapped but are clearly centromeric. The library therefore comprises a collection of sequences from the centromeric region of chromosome 7 that can be used to generate STSs and to map the entire centromeric region.
Collapse
Affiliation(s)
- F Behrens
- Department of Biochemistry and Molecular Genetics, Imperial College School of Medicine at St Mary's, London, UK. frb306ic.ac.uk
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shelby RD, Hahn KM, Sullivan KF. Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Biophys Biochem Cytol 1996; 135:545-57. [PMID: 8909532 PMCID: PMC2121065 DOI: 10.1083/jcb.135.3.545] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have constructed a fluorescent alpha-satellite DNA-binding protein to explore the motile and mechanical properties of human centromeres. A fusion protein consisting of human CENP-B coupled to the green fluorescent protein (GFP) of A. victoria specifically targets to centromeres when expressed in human cells. Morphometric analysis revealed that the alpha-satellite DNA domain bound by CENPB-GFP becomes elongated in mitosis in a microtubule-dependent fashion. Time lapse confocal microscopy in live mitotic cells revealed apparent elastic deformations of the central domain of the centromere that occurred during metaphase chromosome oscillations. These observations demonstrate that the interior region of the centromere behaves as an elastic element that could play a role in the mechanoregulatory mechanisms recently identified at centromeres. Fluorescent labeling of centromeres revealed that they disperse throughout the nucleus in a nearly isometric expansion during chromosome decondensation in telophase and early G1. During interphase, centromeres were primarily stationary, although motility of individual or small groups of centromeres was occasionally observed at very slow rates of 7-10 microns/h.
Collapse
Affiliation(s)
- R D Shelby
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
30
|
Franks TK, Houben A, Leach CR, Timmis JN. The molecular organisation of a B chromosome tandem repeat sequence from Brachycome dichromosomatica. Chromosoma 1996; 105:223-30. [PMID: 8854881 DOI: 10.1007/bf02528770] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A high copy, tandemly repeated, sequence (Bd49) specific to the B chromosome and located near the centromere in Brachycome dichromosomatica was used to identify lambda genomic clones from DNA of a 3B plant. Only one clone of those analysed was composed entirely of a tandem array of the B-specific repeat unit. In other clones, the Bd49 repeats were linked to, or interspersed with, sequences that are repetitious and distributed elsewhere on the A and B chromosomes. One such repetitious flanking sequence has similarity to retrotransposon sequences and a second is similar to chloroplast DNA sequences. Of the four separate junctions analysed of Bd49-like sequence with flanking sequence, three were associated with the same A/T-rich region in Bd49 and the fourth was close to a 25 bp imperfect dyadic sequence. No novel B-specific sequences were detected within the genomic clones.
Collapse
Affiliation(s)
- T K Franks
- Department of Genetics, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
31
|
Müllenbach R, Pusch C, Holzmann K, Suijkerbuijk R, Blin N. Distribution and linkage of repetitive clusters from the heterochromatic region of human chromosome 22. Chromosome Res 1996; 4:282-7. [PMID: 8817068 DOI: 10.1007/bf02263678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The pericentric regions of eukaryotic chromosomes consist of several types of repetitive DNA families. In human chromosome 22, the organization of such families was studied in more detail. In addition to the known families of alpha and beta repeats, an additional repeat with a 48-bp motif was previously assigned to 22pter-q11. Here, we report in more detail the distribution of these repeat families, applying pulsed-field gel electrophoresis, fluorescence in situ hybridization and physical linkage on cosmid recombinants. At least two clusters of 48-bp repeats are localized on chromosome 22, one on the distal p-arm and one in the region 22cen-q11. Cosmids from a chromosome 22 library, containing both 48-bp and beta-repeats, link both arrays on 22p and define their maximum distances to less than 44 kb. Loss of 48-bp repeat sequences in a Dl-George cell line carrying a deletion in 22q11 suggests the presence of a second cluster in 22q11, a distribution supported by (fluorescene in situ hybridization)-FISH signal analysis. As additional members of the 48-bp repeat family can be found on all acrocentric chromosomes. It remains to be determined whether the distribution seen on chromosome 22 is also common in other human acrocentric chromosomes.
Collapse
Affiliation(s)
- R Müllenbach
- ICRF Molecular Oncology Unit, Institute of Child Health, London, UK
| | | | | | | | | |
Collapse
|
32
|
Lee C, Li X, Jabs EW, Court D, Lin CC. Human gamma X satellite DNA: an X chromosome specific centromeric DNA sequence. Chromosoma 1995; 104:103-12. [PMID: 8585987 DOI: 10.1007/bf00347692] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cosmid clone, CX16-2D12, was previously localized to the centromeric region of the human X chromosome and shown to lack human X-specific alpha satellite DNA. A 1.2 kb EcoRI fragment was subcloned from the CX16-2D12 cosmid and was named 2D12/E2. DNA sequencing revealed that this 1,205 bp fragment consisted of approximately five tandemly repeated DNA monomers of 220 bp. DNA sequence homology between the monomers of 2D12/E2 ranged from 72.8% to 78.6%. Interestingly, DNA sequence analysis of the 2D12/E2 clone displayed a change in monomer unit orientation between nucleotide positions 585-586 from a "tail-to-head" arrangement to a "head-to-tail" configuration. This may reflect the existence of at least one inversion within this repetitive DNA array in the centromeric region of the human X chromosome. The DNA consensus sequence derived from a compilation of these 220 bp monomers had approximately 62% DNA sequence similarity to the previously determined gamma 8 satellite DNA consensus sequence. Comparison of the 2D12/E2 and gamma 8 consensus sequences revealed a 20 bp DNA sequence that was well conserved in both DNA consensus sequences. Slot-blot analysis revealed that this repetitive DNA sequence comprises approximately 0.015% of the human genome, similar to that found with gamma 8 satellite DNA. These observations suggest that this satellite DNA clone is derived from a subfamily of gamma satellite DNA and is thus designated gamma X satellite DNA. When genomic DNA from six unrelated males and two unrelated females was cut with SstI or HpaI and separated by pulsed-field gel electrophoresis, no restriction fragment length polymorphisms were observed for either gamma X (2D12/E2) or gamma 8 (50E4) probes. Fluorescence in situ hybridization localized the 2D12/E2 clone to the lateral sides of the primary constriction specifically on the human X chromosome.
Collapse
Affiliation(s)
- C Lee
- Department of Laboratory Medicine and Pathology, University of Alberta and the University of Alberta Hospitals, Edmonton, Alberta, Canada, T6G 2B7
| | | | | | | | | |
Collapse
|
33
|
Hamvas RM, Lehrach HR. Repetitive sequence fingerprinting in the long range mapping of mammalian genomes. Electrophoresis 1995; 16:1602-6. [PMID: 8582341 DOI: 10.1002/elps.11501601264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review presents some properties of interspersed repeats, particularly human and mouse repeats, and shows how these have been utilized in long-range genome mapping. The link between the distribution of such repeats and their relationship with genome organization is discussed.
Collapse
Affiliation(s)
- R M Hamvas
- Genome Analysis Laboratory, Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
34
|
Rudert F, Bronner S, Garnier JM, Dollé P. Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm Genome 1995; 6:76-83. [PMID: 7767009 DOI: 10.1007/bf00303248] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using in vitro immuno-selected retinoic acid response elements, we have isolated mouse genomic clones containing major (gamma) satellite DNA repeats that are considered as typical of chromosome centromeres. Several cDNA clones were then isolated from a F9 cell cDNA library and were found to harbor variants of the 234-base pair consensus gamma satellite monomer. In Northern analysis, these satellite DNA sequences hybridized predominantly to an approximately 1.8-kb RNA species in polyadenylated RNA from P19 cells. These transcripts were strongly repressed by retinoic acid, and nuclear run-on assays revealed that this repression was, at least in part, mediated at the transcriptional level. Satellite transcripts were also detected in HeLa cells, where they were similarly down-regulated by retinoids. Heterogeneously sized satellite transcripts were detected in RNA from specific mouse tissues, such as fetuses (but not placenta), adult liver, and testis. In situ hybridization analysis revealed that satellite transcripts are generated from opposite DNA strands and are differentially expressed in cells of the developing central nervous system as well as in adult liver and testis. These data may have implications on retinoic acid-mediated transcriptional regulation and centromere function.
Collapse
Affiliation(s)
- F Rudert
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, INSERM, IGBMC, Illkirch, France
| | | | | | | |
Collapse
|
35
|
Reed KM, Beukeboom LW, Eickbush DG, Werren JH. Junctions between repetitive DNAs on the PSR chromosome of Nasonia vitripennis: association of palindromes with recombination. J Mol Evol 1994; 38:352-62. [PMID: 8007003 DOI: 10.1007/bf00163152] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Paternal-Sex-Ratio (PSR) chromosome of Nasonia vitripennis contains several families of repetitive DNAs that show significant sequence divergence but share two palindromic regions. This study reports on the analysis of junctions between two of these repetitive DNA families (psr2 and psr18). Three lambda clones that hybridized to both repeat families were isolated from PSR-genomic DNA libraries through multiple screenings and analyzed by Southern blots. Analysis of clones showed a region in which the two repeat types are interspersed, flanked by uniform blocks of each repeat type. PCR amplification of genomic DNA confirmed the contiguous arrangement of psr2 and psr18 on PSR and identified an additional junction region between these repeats that was not present in the lambda inserts. We isolated and sequenced 41 clones from the lambda inserts and genomic PCR products containing junction sequences. Sequence analysis showed that all transitions between psr2 and psr18 repeats occurred near one of the two palindromes. Based on the inheritance pattern of PSR, recombination between repeats on this chromosome must be mitotic (rather than meiotic) in origin. The occurrence of exchanges near the palindromes suggests that these sequences enhance recombination between repeat units. Rapid amplification of repetitive DNA may have been an important factor in the evolution of the PSR chromosome.
Collapse
Affiliation(s)
- K M Reed
- Department of Biology, University of Rochester, NY 14627
| | | | | | | |
Collapse
|
36
|
Jackson MS, Slijepcevic P, Ponder BA. The organisation of repetitive sequences in the pericentromeric region of human chromosome 10. Nucleic Acids Res 1993; 21:5865-74. [PMID: 8290346 PMCID: PMC310467 DOI: 10.1093/nar/21.25.5865] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Three satellite DNA families are present in the pericentromeric region of chromosome 10; the alpha satellite and two 5 bp satellite families defined here as satellites 2 and 3. Pulsed field gel electrophoresis (PFGE) demonstrates that these sequences are organised into five discrete arrays which are linked within a region of approximately 5.3 Megabases (Mb) of DNA. The alpha satellite is largely confined to a 2.2 Mb array which is flanked on its p arm side by two 100-150 kb satellite 3 arrays and on its q arm side by a 900 kb satellite 2 array and a further 320 kb satellite 3 array. This linear order is corroborated by fluorescent in situ hybridisation analyses. In total, these arrays account for 3.6 Mb of DNA in the pericentromeric region of chromosome 10. These data provide both physical information on sequences which may be involved in centromere function and a map across the centromere which has the potential to link yeast artificial chromosome (YAC) contigs currently being developed on both arms of this chromosome.
Collapse
Affiliation(s)
- M S Jackson
- Department of Pathology, University of Cambridge, UK
| | | | | |
Collapse
|
37
|
Abstract
The DNA sequences that are necessary for the formation of a functional mammalian chromosome are thought to be the origins of replication, the telomeres and the centromere. Telomere structure is now well understood, with the functional element characterized as the motif (TTAGGG)n. The structures of the DNA regions that contain origins of replication and a centromere are known, but the functionally important elements within these regions are still only poorly defined.
Collapse
Affiliation(s)
- C Tyler-Smith
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|