1
|
Bouchenafa R, Johnson de Sousa Brito FM, Piróg KA. Involvement of kinesins in skeletal dysplasia: a review. Am J Physiol Cell Physiol 2024; 327:C278-C290. [PMID: 38646780 PMCID: PMC11293425 DOI: 10.1152/ajpcell.00613.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton-associated proteins, and intracellular processes affected through microtubule-associated movement are important for the function of skeletal cells. Among microtubule-associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation, and ciliogenesis, in addition to cargo trafficking, receptor recycling, and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.
Collapse
Affiliation(s)
- Roufaida Bouchenafa
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Anna Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Abstract
SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.
Collapse
Affiliation(s)
- Antonio Marchini
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tsutomu Ogata
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gudrun A Rappold
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Lauvrak SU, Munthe E, Kresse SH, Stratford EW, Namløs HM, Meza-Zepeda LA, Myklebost O. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Br J Cancer 2013; 109:2228-36. [PMID: 24064976 PMCID: PMC3798956 DOI: 10.1038/bjc.2013.549] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023] Open
Abstract
Background: Osteosarcoma is the most common primary malignant bone tumour, predominantly affecting children and adolescents. Cancer cell line models are required to understand the underlying mechanisms of tumour progression and for preclinical investigations. Methods: To identify cell lines that are well suited for studies of critical cancer-related phenotypes, such as tumour initiation, growth and metastasis, we have evaluated 22 osteosarcoma cell lines for in vivo tumorigenicity, in vitro colony-forming ability, invasive/migratory potential and proliferation capacity. Importantly, we have also identified mRNA and microRNA (miRNA) gene expression patterns associated with these phenotypes by expression profiling. Results: The cell lines exhibited a wide range of cancer-related phenotypes, from rather indolent to very aggressive. Several mRNAs were differentially expressed in highly aggressive osteosarcoma cell lines compared with non-aggressive cell lines, including RUNX2, several S100 genes, collagen genes and genes encoding proteins involved in growth factor binding, cell adhesion and extracellular matrix remodelling. Most notably, four genes—COL1A2, KYNU, ACTG2 and NPPB—were differentially expressed in high and non-aggressive cell lines for all the cancer-related phenotypes investigated, suggesting that they might have important roles in the process of osteosarcoma tumorigenesis. At the miRNA level, miR-199b-5p and mir-100-3p were downregulated in the highly aggressive cell lines, whereas miR-155-5p, miR-135b-5p and miR-146a-5p were upregulated. miR-135b-5p and miR-146a-5p were further predicted to be linked to the metastatic capacity of the disease. Interpretation: The detailed characterisation of cell line phenotypes will support the selection of models to use for specific preclinical investigations. The differentially expressed mRNAs and miRNAs identified in this study may represent good candidates for future therapeutic targets. To our knowledge, this is the first time that expression profiles are associated with functional characteristics of osteosarcoma cell lines.
Collapse
Affiliation(s)
- S U Lauvrak
- 1] Cancer Stem Cell Innovation Centre, Institute of Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, PO Box 4953, Nydalen, Oslo 0424, Norway [2] Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, PO Box 4953, Nydalen, Oslo 0424, Norway
| | | | | | | | | | | | | |
Collapse
|
4
|
Khan B, Basit S, Touseef M, Tariq M, Khan MN, Ahmad W. A novel chondroectodermal dysplasia mapped to chromosome 2q24.1-q31.1. Eur J Med Genet 2012; 55:455-60. [DOI: 10.1016/j.ejmg.2012.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 04/07/2012] [Indexed: 12/01/2022]
|
5
|
Abstract
The skeletal dysplasias (osteochondrodysplasias) are a heterogeneous group of more than 350 disorders frequently associated with orthopedic complications and varying degrees of dwarfism or short stature. These disorders are diagnosed based on radiographic, clinical, and molecular criteria. The molecular mechanisms have been elucidated in many of these disorders providing for improved clinical diagnosis and reproductive choices for affected individuals and their families. An increasing variety of medical and surgical treatment options can be offered to affected individuals to try to improve their quality of life and lifespan.
Collapse
|
6
|
Abstract
The Short Stature Homeobox-containing Gene SHOX was identified as the genetic cause of the short stature phenotype in patients with Turner Syndrome and in certain patients with idiopathic short stature. Shortly after, SHOX mutations were also associated with the growth failure and skeletal deformities seen in patients with Léri - Weill dyschondrosteosis and Langer mesomelic dysplasia. Today it is estimated that SHOX mutations occur with an incidence of roughly 1:1,000 in newborns, making mutations of this gene one of the most common genetic defects leading to growth failure in humans. This review summarises the involvement of SHOX in several short stature syndromes and describes recent advances in our understanding of SHOX functions and regulation. We also discuss the current evidence in the literature that points to a role of this protein in growth and bone development. These studies have improved our knowledge of the SHOX gene and protein functions, and have given insight into the etiopathogenesis of short stature. However, the exact role of SHOX in bone development still remains elusive and poses the next major challenge for researchers in this field.
Collapse
Affiliation(s)
- Antonio Marchini
- German Cancer Research Center (DKFZ) and Inserm U375, Heidelberg, Germany.
| | | | | |
Collapse
|
7
|
Mamada M, Yorifuji T, Kurokawa K, Kawai M, Momoi T, Nakahata T. Prevalence of Mutations in the FGFR3 Gene in Individuals with Idiopathic Short Stature. Clin Pediatr Endocrinol 2006; 15:61-4. [PMID: 24790322 PMCID: PMC4004848 DOI: 10.1297/cpe.15.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/01/2006] [Indexed: 11/18/2022] Open
Abstract
FGFR3 (fibroblast growth factor receptor 3) is a gene responsible for the most common
form of osteodysplasia, achondroplasia, which results in extreme short stature. An allelic
disorder, hypochondroplasia, however, presents with a much milder phenotype and is
sometimes indistinguishable from idiopathic short stature. In this study, in order to test
the possibility of the mildest end of hypochondroplasia being labeled as idiopathic short
stature and the possibility of polymorphism of FGFR3 acting as one of the stature genes of
normal individuals, we examined the prevalence of sequence alterations of the FGFR3 gene
among individuals diagnosed clinically with idiopathic short stature. Sequencing analysis
of all exons of the FGFR3 gene on 54 individuals with idiopathic short stature did not
reveal any sequence variations related to the stature of the individuals. These results
suggest that hidden hypochondroplasia among idiopathic short stature individuals is not a
common occurrence and the contribution of polymorphism of the FGFR3 gene as a determinant
of stature in normal individuals is small if any.
Collapse
Affiliation(s)
- Mitsukazu Mamada
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Tohru Yorifuji
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Keiji Kurokawa
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Toru Momoi
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan ; Department of Pediatrics, Japanese Red Cross Society, Wakayama Medical Center, Wakayama, Japan
| | | |
Collapse
|
8
|
Liu CJ, Prazak L, Fajardo M, Yu S, Tyagi N, Di Cesare PE. Leukemia/lymphoma-related factor, a POZ domain-containing transcriptional repressor, interacts with histone deacetylase-1 and inhibits cartilage oligomeric matrix protein gene expression and chondrogenesis. J Biol Chem 2004; 279:47081-91. [PMID: 15337766 DOI: 10.1074/jbc.m405288200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the human cartilage oligomeric matrix protein (COMP) gene have been linked to the development of pseudoachondroplasia and multiple epiphyseal dysplasia. We previously cloned the promoter region of the COMP gene and delineated a minimal negative regulatory element (NRE) that is both necessary and sufficient to repress its promoter (Issack, P. S., Fang, C. H., Leslie, M. P., and Di Cesare, P. E. (2000) J. Orthop. Res. 18, 345-350; Issack, P. S., Liu, C. J., Prazak, L., and Di Cesare, P. E. (2004) J. Orthop. Res. 22, 751-758). In this study, a yeast one-hybrid screen for proteins that associate with the NRE led to the identification of the leukemia/lymphoma-related factor (LRF), a transcriptional repressor that contains a POZ (poxvirus zinc finger) domain, as an NRE-binding protein. LRF bound directly to the NRE both in vitro and in living cells. Nine nucleotides (GAGGGTCCC) in the 30-bp NRE are essential for binding to LRF. LRF showed dose-dependent inhibition of COMP-specific reporter gene activity, and exogenous overexpression of LRF repressed COMP gene expression in both rat chondrosarcoma cells and bone morphogenetic protein-2-treated C3H10T1/2 progenitor cells. In addition, LRF also inhibited bone morphogenetic protein-2-induced chondrogenesis in high density micromass cultures of C3H10T1/2 cells, as evidenced by lack of expression of other chondrocytic markers, such as aggrecan and collagen types II, IX, X, and XI, and by Alcian blue staining. LRF associated with histone deacetylase-1 (HDAC1), and experiments utilizing the HDAC inhibitor trichostatin A revealed that LRF-mediated repression requires deacetylase activity. LRF is the first transcription factor found to bind directly to the COMP gene promoter, to recruit HDAC1, and to regulate both COMP gene expression and chondrogenic differentiation.
Collapse
Affiliation(s)
- Chuan-ju Liu
- Musculoskeletal Research Center, New York University-Hospital for Joint Diseases Department of Orthopedic Surgery, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
9
|
Issack PS, Liu CJ, Prazak L, Di Cesare PE. A silencer element in the cartilage oligomeric matrix protein gene regulates chondrocyte-specific expression. J Orthop Res 2004; 22:751-8. [PMID: 15183430 DOI: 10.1016/j.orthres.2003.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 12/04/2003] [Indexed: 02/04/2023]
Abstract
The molecular mechanisms by which mesenchymal cells differentiate into chondrocytes are poorly understood. The cartilage oligomeric matrix protein gene (COMP) encodes a noncollagenous extracellular matrix protein whose expression pattern correlates with chondrocyte differentiation and arthritis. We have used the COMP promoter as a model to identify regulatory sequences necessary for chondrocyte-specific expression and to identify cell type-specific proteins that bind these sequences. We have previously cloned 1.9 kilobases of the 5(') flanking promoter sequence of the murine COMP gene and by deletion analysis have identified two spatially distant chondrocyte-specific regulatory regions. One element is situated proximally (-125 to -75), and a second region is located distally (-1925 to -592) relative to the transcription start site. In the present study, we performed a finer deletion analysis of the region of the COMP promoter from -1925 to -592 and identified a silencer region situated between -1775 and -1725. This silencer binds sequence-specific protein complexes; the intensity of these complexes is greater in two different fibroblast cell lines (NIH3T3 and 10T1/2) than in chondrocytic RCS cells. Competition experiments localized the binding site of these protein complexes from -1775 to -1746; deletion of this 30-bp site results in a selective increase in COMP promoter activity in fibroblasts. Four tandem repeats of this 30-bp site are sufficient to confer negative transcriptional regulation on a heterologous promoter (SV40) in NIH3T3 fibroblasts. These results suggest that negative regulation of transcription is an important mechanism for chondrocyte-specific expression of the COMP gene.
Collapse
Affiliation(s)
- Paul S Issack
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Hospital for Joint Diseases, NYU, 301 East 17th Street, New York, NY, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Manipulation of the mouse genome through mis-expressing, knocking out, and introducing mutations into genes of interest has provided important insights into the genetic pathways responsible for human skeletal development. These pathways contribute to the sequential phases of skeletal morphogenesis that include patterning, condensation, and overt organogenesis of the membranous and endochondral embryonic skeletons and to subsequent linear growth. Disturbances in these pathways account for many developmental syndromes and disorders of the human skeleton. Recurrent themes include establishment of interlocking regulatory circuits involving growth factors, receptors, signalling pathways, and transcription factors that control cellular programmes such as migration, adhesion, proliferation, differentiation, and apoptosis, and use of common molecules for different purposes. Technical advances suggest that genetic engineering in mice will continue to be highly instructive in the field of skeletal biology.
Collapse
Affiliation(s)
- William A Horton
- Shriners Hospital for Children, Oregon Health and Science University, 3101 Sam Jackson Park Road, Portland, OR 97239-3009, USA.
| |
Collapse
|
11
|
Longobardi L, Torello M, Buckway C, O'Rear L, Horton WA, Hwa V, Roberts CT, Chiarelli F, Rosenfeld RG, Spagnoli A. A novel insulin-like growth factor (IGF)-independent role for IGF binding protein-3 in mesenchymal chondroprogenitor cell apoptosis. Endocrinology 2003; 144:1695-702. [PMID: 12697673 DOI: 10.1210/en.2002-220959] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chondrogenesis results from the condensation of mesenchymal chondroprogenitor cells (MCC) that proliferate and differentiate into chondrocytes. We have previously shown that IGF binding protein (IGFBP)-3 has an IGF-independent antiproliferative effect in MCC. The current study evaluates the IGF-independent apoptotic effect of IGFBP-3 on MCC to modulate chondrocyte differentiation. We employed the RCJ3.1C5.18 chondrogenic cell line, which in culture progresses from MCC to differentiated chondrocytes; cells do not express IGFs or IGFBP-3. We also used IGFBP-3 mutants with decreased (I56 substituted to G56; L80 and L81 to G80G81) or abolished binding for IGFs (I56, L80, and L81 to G56G80G81). MCC transfected with IGFBP-3 detached, changed their phenotype, and underwent apoptosis. A maximal IGFBP-3 apoptotic effect was observed 24 h after transfection (463 +/- 73% of controls; P < 0.001). Remarkably, IGFBP-3 mutants had similar effects, demonstrating that the IGFBP-3 apoptotic action was clearly IGF independent. In addition, treatment with IGFBP-3 in serum-free conditions resulted in a significant increase of apoptosis (173 +/- 23% of controls; P < 0.05). Moreover, this apoptotic effect was selective for MCC, resulting in a selective reduction of chondrocytic nodules and a significant decrease in type II collagen expression and proteoglycan synthesis. In summary, we have identified a novel IGF-independent role for IGFBP-3 in the modulation of chondrocyte differentiation.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2579, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Spagnoli A, Hwa V, Horton WA, Lunstrum GP, Roberts CT, Chiarelli F, Torello M, Rosenfeld RG. Antiproliferative effects of insulin-like growth factor-binding protein-3 in mesenchymal chondrogenic cell line RCJ3.1C5.18. relationship to differentiation stage. J Biol Chem 2001; 276:5533-40. [PMID: 11110782 DOI: 10.1074/jbc.m005088200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondrogenesis results from a complex equilibrium between chondrocyte proliferation and differentiation. Insulin-like growth factors (IGFs) have a crucial role in chondrogenesis, but their mechanisms of action are not well defined. IGF-binding protein-3 (IGFBP-3) is the major carrier for circulating IGFs in postnatal life, and has been shown to have IGF-independent effects on proliferation of several cancer cell lines. In this study, we have evaluated the IGF-independent and -dependent effects of IGFBP-3 on chondrocyte proliferation and the relationship of these effects with chondrocyte differentiation stage. We used the RCJ3.1C5.18 nontransformed mesenchymal chondrogenic cell line, which, over 2 weeks of culture, progresses through the differentiation pathway exhibited by chondrocytes in the growth plate. We demonstrated that IGFBP-3 inhibited, in a dose-dependent manner (1-30 nm), the proliferation of chondroprogenitors and early differentiated chondrocytes, stimulated by des-(1-3)-IGF-I and longR(3)-IGF-I (IGF-I analogs with reduced affinity for IGFBP-3), and by insulin and IGF-I. In terminally differentiated chondrocytes, IGFBP-3 retained the ability to inhibit cell proliferation stimulated by IGF-I, but had no effect on cell growth stimulated by insulin, or des-(1-3)-IGF-I or longR(3)IGF-I. By monolayer affinity cross-linking, we demonstrated a specific IGFBP-3-associated cell-membrane protein of approximately 20 kDa. We determined that IGFBP-3 has an antiproliferative effect on chondrocytes and, that this effect is related to the differentiation process. In chondroprogenitors and early differentiated chondrocytes, antiproliferative effect of IGFBP-3 is mainly IGF-independent, whereas, following terminal differentiation this effect is IGF-dependent.
Collapse
Affiliation(s)
- A Spagnoli
- Department of Pediatrics, Oregon Health Sciences University, Portland, Oregon 97201, the Research Department, Shriners Hospital for Children, Portland, Oregon 97201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
The osteochondrodysplasias are a heterogeneous group of disorders characterized by abnormal growth and remodeling of cartilage and bone, affecting from 2 to 4.7 per 10,000 individuals. Most osteochondrodysplasias are heritable and many have elaborate patterns of genetic transmission. Affected individuals generally require management by multidisciplinary teams of specialists. In this review, we divide the osteochondrodysplasias into groups based on their genetic relationships, including mutations in various types of collagen, fibroblast growth factor, cartilage oligomeric matrix protein, parathyroid hormone receptor, the diastrophic dysplasia sulfate transporter, enzymes such as steroid sulfatases, transcription factor SOX9, and a cysteine proteinase, cathepsin K. We describe the major osteochondrodysplasias, define their causes and clinical manifestations, and provide the orthopaedic surgeon with an understanding of the underlying molecular defects as well as the anatomical aspects of these disorders.
Collapse
Affiliation(s)
- A C Baitner
- Department of Orthopaedic Surgery, New York University Medical Center-Hospital for Joint Diseases Orthopaedic Institute, New York 10003, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The genetic control of calcium, phosphorus, cartilage, and bone metabolism is discussed, and many of the genes involved in this process are described. Mutations in these genes that lead to the clinical disorders associated with hypercalcemia, hypocalcemia, rickets, and osteochondrodystrophies are delineated.
Collapse
Affiliation(s)
- A W Root
- Department of Pediatrics, University of South Florida College of Medicine, Tampa, USA
| |
Collapse
|
16
|
Abstract
The molecular events governing the differentiation of mesenchymal cells into chondrocytes and the expression of cartilage marker genes are poorly understood. Cartilage oligomeric matrix protein is a noncollagenous extracellular matrix protein with a relatively cartilage-specific spatial and temporal expression pattern. To understand the mechanisms controlling chondrocyte-specific expression of cartilage oligomeric matrix protein, we cloned 1.9 kb of the 5' flanking promoter sequence of the murine cartilage oligomeric matrix protein gene and identified two spatially distant cartilage-specific enhancer regions by deletion analysis. One element is situated proximally (proximal positive element: -125 to -75) and a second region is located distally (distal positive region: -1925 to -592) relative to the transcription start site. Interestingly, nucleotides within the proximal positive element are conserved between the mouse and human promoters and resemble consensus sites for the binding of members of the high mobility group class of transcription factors. Defining cartilage-specific regulatory elements in the cartilage oligomeric matrix protein promoter may provide useful molecular probes for identifying transcription factors that control acquisition of the chondrocytic phenotype.
Collapse
Affiliation(s)
- P S Issack
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University Medical Center-Hospital for Joint Diseases, New York 10003, USA
| | | | | | | |
Collapse
|
17
|
Everts RE, Hazewinkel HA, Rothuizen J, van Oost BA. Bone disorders in the dog: a review of modern genetic strategies to find the underlying causes. Vet Q 2000; 22:63-70. [PMID: 10789512 DOI: 10.1080/01652176.2000.9695027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
In man, the genetic defects of more than 600 inherited diseases, of which at least 150 skeletal diseases, have been identified as is the chromosomal location for approximately 7000 genes. This rapid progress has been made possible by the generation of a genetical and physical map of the human genome. There is no reason to believe that for the dog not a similar development may occur. This review is therefore focussed on the use of novel tools now available for comparative molecular genetic studies of skeletal dysplasias in the dog. Because the genomes of mammals at the subchromosomal level are very well conserved, likely candidate disease genes known from other species might be considered. In this review, formation of the bones and the most important canine disorders of the skeleton influencing locomotion will be discussed first. The canine disorders discussed are canine hip dysplasia, the three different forms of elbow dysplasia (fragmented coronoid process, ununited anconeal process, osteochondrosis dissecans and incongruency) and dwarfism. Where possible a link is made with similar diseases in man or mouse. Then, the molecular biological tools available to analyse the genetic defect will be reviewed and some examples discussed.
Collapse
Affiliation(s)
- R E Everts
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University Utrecht, The Netherlands
| | | | | | | |
Collapse
|
18
|
Melkoniemi M, Brunner HG, Manouvrier S, Hennekam R, Superti-Furga A, Kääriäinen H, Pauli RM, van Essen T, Warman ML, Bonaventure J, Miny P, Ala-Kokko L. Autosomal recessive disorder otospondylomegaepiphyseal dysplasia is associated with loss-of-function mutations in the COL11A2 gene. Am J Hum Genet 2000; 66:368-77. [PMID: 10677296 PMCID: PMC1288089 DOI: 10.1086/302750] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Otospondylomegaepiphyseal dysplasia (OSMED) is an autosomal recessive skeletal dysplasia accompanied by severe hearing loss. The phenotype overlaps that of the autosomal dominant disorders-Stickler and Marshall syndromes-but can be distinguished by disproportionately short limbs, severe hearing loss, and lack of ocular involvement. In one family with OSMED, a homozygous Gly-->Arg substitution has been described in COL11A2, which codes for the alpha2 chain of type XI collagen. We report seven further families with OSMED. All affected individuals had a remarkably similar phenotype: profound sensorineural hearing loss, skeletal dysplasia with limb shortening and large epiphyses, cleft palate, an extremely flat face, hypoplasia of the mandible, a short nose with anteverted nares, and a flat nasal bridge. We screened affected individuals for mutations in COL11A2 and found different mutations in each family. Individuals from four families, including three with consanguineous parents, were homozygous for mutations. Individuals from three other families, in whom parents were nonconsanguineous, were compound heterozygous. Of the 10 identified mutations, 9 are predicted to cause premature termination of translation, and 1 is predicted to cause an in-frame deletion. We conclude that the OSMED phenotype is highly homogenous and results from homozygosity or compound heterozygosity for COL11A2 mutations, most of which are predicted to cause complete absence of alpha2(XI) chains.
Collapse
Affiliation(s)
- M Melkoniemi
- Collagen Research Unit, Biocenter, Department of Medical Biochemistry, University of Oulu, Kajaanintie 52A, FIN-90220 Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dreyer SD, Zhou G, Lee B. The long and the short of it: developmental genetics of the skeletal dysplasias. Clin Genet 1999. [DOI: 10.1034/j.1399-0004.2000.57si05.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Abstract
The skeletal dysplasias are a large heterogeneous group of genetic conditions characterized by abnormal shape, growth, or integrity of bones. Often, there may be prominent features associated with other organ systems as part of a more encompassing skeletal malformation syndrome. Tremendous advances have been made in the clinical and molecular delineation of these conditions over the past 20-30 years. We have progressed from initial broad clinical classifications of these conditions in the first two-thirds of this century, to extensive delineation based on radiographic features in the 1970s and 1980s, to the present reconsideration and grouping of these conditions according to their molecular pathogenesis. This has in part been spurred on by advances in the understanding of the developmental pathways which govern skeletal development, as well as by the human genome sequencing effort, which has provided a plethora of positional candidate genes for many of these conditions. The pathogenetic correlations derived from such studies are often based on parallels between the human phenotype and mouse models of the human condition, and have sometimes revealed novel developmental functions.
Collapse
Affiliation(s)
- S D Dreyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|