1
|
Cyclin-dependent kinase 5 activity is required for allogeneic T-cell responses after hematopoietic cell transplantation in mice. Blood 2016; 129:246-256. [PMID: 28064242 DOI: 10.1182/blood-2016-05-702738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/16/2016] [Indexed: 01/14/2023] Open
Abstract
Molecular intermediates in T-cell activation pathways are crucial targets for the therapy and prevention of graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (allo-HCT). We recently identified an essential role for cyclin-dependent kinase 5 (Cdk5) in T-cell activation and effector function, but the contribution of Cdk5 activity to the development of GVHD has not been explored. Using an established, preclinical, murine, GVHD model, we reveal that Cdk5 activity is increased in key target organs early after allo-HCT. We then generated chimeric mice (Cdk5+/+C or Cdk5-/-C) using hematopoietic progenitors from either embryonic day 16.5 Cdk5+/+ or Cdk5-/- embryos to enable analyses of the role of Cdk5 in GVHD, as germ line Cdk5 gene deletion is embryonically lethal. The immunophenotype of adult Cdk5-/-C mice is identical to control Cdk5+/+C mice. However, transplantation of donor Cdk5-/-C bone marrow and T cells dramatically reduced the severity of systemic and target organ GVHD. This phenotype is attributed to decreased T-cell migration to secondary lymphoid organs (SLOs), reduced in vivo proliferation within these organs, and fewer cytokine-producing donor T cells during GVHD development. Moreover, these defects in Cdk5-/- T-cell function are associated with altered CCR7 signaling following ligation by CCL19, a receptor:ligand interaction critical for T-cell migration into SLOs. Although Cdk5 activity in donor T cells contributed to graft-versus-tumor effects, pharmacologic inhibition of Cdk5 preserved leukemia-free survival. Collectively, our data implicate Cdk5 in allogeneic T-cell responses after HCT and as an important new target for therapeutic intervention.
Collapse
|
2
|
Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J, Coleman K, Yao L, Martinez-Alsina L, Lorenzen M, Berliner M, Luzzio M, Patel N, Schmitt E, LaGreca S, Jani J, Wessel M, Marr E, Griffor M, Vajdos F. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 2008; 68:1935-44. [PMID: 18339875 DOI: 10.1158/0008-5472.can-07-5155] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells are characterized by the ability to grow in an anchorage-independent manner. The activity of the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is thought to contribute to this phenotype. FAK localizes in focal adhesion plaques and has a role as a scaffolding and signaling protein for other adhesion molecules. Recent studies show a strong correlation between increased FAK expression and phosphorylation status and the invasive phenotype of aggressive human tumors. PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, respectively. Additionally, PF-562,271 displayed robust inhibition in an inducible cell-based assay measuring phospho-FAK with an IC(50) of 5 nmol/L. PF-562,271 was evaluated against multiple kinases and displays >100x selectivity against a long list of nontarget kinases. PF-562,271 inhibits FAK phosphorylation in vivo in a dose-dependent fashion (calculated EC(50) of 93 ng/mL, total) after p.o. administration to tumor-bearing mice. In vivo inhibition of FAK phosphorylation (>50%) was sustained for >4 hours with a single p.o. dose of 33 mg/kg. Antitumor efficacy and regressions were observed in multiple human s.c. xenograft models. No weight loss, morbidity, or mortality were observed in any in vivo experiment. Tumor growth inhibition was dose and drug exposure dependent. Taken together, these data show that kinase inhibition with an ATP-competitive small molecule inhibitor of FAK decreases the phospho-status in vivo, resulting in robust antitumor activity.
Collapse
|
3
|
Ali MA, Choy H, Habib AA, Saha D. SNS-032 prevents tumor cell-induced angiogenesis by inhibiting vascular endothelial growth factor. Neoplasia 2007; 9:370-81. [PMID: 17534442 PMCID: PMC1877978 DOI: 10.1593/neo.07136] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 12/28/2022] Open
Abstract
Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs) and human glioblastoma cells (U87MG). SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF) in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.
Collapse
Affiliation(s)
- M. Aktar Ali
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9187, USA
| | - Hak Choy
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9187, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9187, USA
| | - Debabrata Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9187, USA
| |
Collapse
|
4
|
Ikeda A, Shankar DB, Watanabe M, Tamanoi F, Moore TB, Sakamoto KM. Molecular targets and the treatment of myeloid leukemia. Mol Genet Metab 2006; 88:216-24. [PMID: 16678459 DOI: 10.1016/j.ymgme.2006.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
Leukemia is a multistep process involving accumulation of genetic alterations over time. These genetic mutations destroy the delicate balance between cell proliferation, differentiation, and apoptosis. Traditional approaches to treatment of leukemia involve chemotherapy, radiation, and bone marrow transplantation. In recent years, specific targeted therapies have been developed for the treatment of leukemia. The success of treatment of acute promyelocytic leukemia with All Trans Retinoic Acid (ATRA) and CML with imatinib have lead to increased efforts to identify targets that can be inhibited by small molecules for treatment of hematological malignancies. In this review, we describe the current advances in the development of targeted therapy in acute myeloid leukemia.
Collapse
Affiliation(s)
- A Ikeda
- Division of Hematology/Oncology, Department of Pediatrics, Gwynne Hazen Cherry Memorial Laboratories, and Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, USA
| | | | | | | | | | | |
Collapse
|
5
|
Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther 2006; 5:843-52. [PMID: 16648554 DOI: 10.1158/1535-7163.mct-05-0370] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apigenin (4',5,7-trihydroxyflavone) is a promising chemopreventive agent abundantly present in fruits and vegetables that has been shown to promote cell cycle arrest and apoptosis in various malignant cell lines. To determine whether pharmacologic intervention with apigenin has a direct growth inhibitory effect on human prostate tumors implanted in athymic nude mice, we examined cell cycle regulatory molecules as precise molecular targets of apigenin action. Apigenin feeding by gavage to these mice at doses of 20 and 50 microg/mouse/d in 0.2 mL of a vehicle containing 0.5% methyl cellulose and 0.025% Tween 20 resulted in significant decreases in tumor volume and mass of androgen-sensitive 22Rv1 and androgen-insensitive PC-3-implanted cells. Oral intake of apigenin resulted in dose-dependent (a) increase in the protein expression of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18; (b) down-modulation of the protein expression of cyclins D1, D2, and E; and cyclin-dependent kinases (cdk), cdk2, cdk4, and cdk6; (c) decrease in retinoblastoma phosphorylation at serine 780; (d) increase in the binding of cyclin D1 toward WAF1/p21 and KIP1/p27; and (e) decrease in the binding of cyclin E toward cdk2 in both types of tumors. In addition, apigenin feeding resulted in stabilization of p53 by phosphorylation at serine 15 in 22Rv1 tumors, which seems to exhibit p53-dependent growth inhibitory responses. Apigenin intake by these mice also resulted in induction of apoptosis, which positively correlated with serum and tumor apigenin levels. Taken together, this is the first systematic in vivo study showing the involvement of cell cycle regulatory proteins as potential molecular targets of apigenin.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, The James and Eilleen Dicke Research Laboratory, Case Western Reserve University and University Hospitals of Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
6
|
Lu X, Jung JI, Cho HJ, Lim DY, Lee HS, Chun HS, Kwon DY, Park JHY. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr 2005; 135:2884-90. [PMID: 16317137 DOI: 10.1093/jn/135.12.2884] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fisetin, a natural flavonol present in edible vegetables, fruits, and wine, was reported to exert anticarcinogenic effects. The objective of the current study was to examine the effect of fisetin on the cell cycle progression of the human colon cancer cell line HT-29. HT-29 cells were cultured in serum-free medium with 0, 20, 40, or 60 micromol/L fisetin. Fisetin dose dependently inhibited both cell growth and DNA synthesis (P < 0.05), with a 79 +/- 1% decrease in cell number observed 72 h after the addition of 60 micromol/L fisetin. Perturbed cell cycle progression from the G(1) to S phase was observed at 8 h with 60 micromol/L fisetin treatment, whereas a G(2)/M phase arrest was observed after 24 h (P < 0.05). The phosphorylation state of the retinoblastoma proteins shifted from hyperphosphorylated to hypophosphorylated in cells treated with 40 micromol/L fisetin. (P < 0.05). Fisetin decreased the activities of cyclin-dependent kinases (CDK)2 and CDK4; these effects were likely attributable to decreases in the levels of cyclin E and D1 and an increase in p21(CIP1/WAF1) levels (P < 0.05). However, fisetin also inhibited CDk4 activity in a cell-free system (P < 0.05), indicating that it may directly inhibit CDk4 activity. The protein levels of cell division cycles (CDC)2 and CDC25C and the activity of CDC2 were also decreased in fisetin-treated cells (P < 0.05). These results indicate that inhibition of cell cycle progression in HT-29 cells after treatment with fisetin can be explained, at least in part, by modification of CDK activities.
Collapse
Affiliation(s)
- Xianghua Lu
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Katsuki M, Chuang VTG, Nishi K, Kawahara K, Nakayama H, Yamaotsu N, Hirono S, Otagiri M. Use of Photoaffinity Labeling and Site-directed Mutagenesis for Identification of the Key Residue Responsible for Extraordinarily High Affinity Binding of UCN-01 in Human α1-Acid Glycoprotein. J Biol Chem 2005; 280:1384-91. [PMID: 15509559 DOI: 10.1074/jbc.m411076200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
7-Hydroxystaurosporine (UCN-01) is a protein kinase inhibitor anticancer drug currently undergoing a phase II clinical trial. The low distribution volumes and systemic clearance of UCN-01 in human patients have been found to be caused in part by its extraordinarily high affinity binding to human alpha1-acid glycoprotein (hAGP). In the present study, we photolabeled hAGP with [3H]UCN-01 without further chemical modification. The photolabeling specificity of [3H]UCN-01 was confirmed by findings in which other hAGP binding ligands inhibited formation of covalent bonds between hAGP and [3H]UCN-01. The amino acid sequence of the photolabeled peptide was concluded to be SDVVYTDXK, corresponding to residues Ser-153 to Lys-161 of hAGP. No PTH derivatives were detected at the 8th cycle, which corresponded to the 160th Trp residue. This strongly implies that Trp-160 was photolabeled by [3H]UCN-01. Three recombinant hAGP mutants (W25A, W122A, and W160A) and wild-type recombinant hAGP were photolabeled by [3H]UCN-01. Only mutant W160A showed a marked decrease in the extent of photoincorporation. These results strongly suggest that Trp-160 plays a prominent role in the high affinity binding of [3H]UCN-01 to hAGP. A docking model of UCN-01 and hAGP around Trp-160 provided further details of the binding site topology.
Collapse
Affiliation(s)
- Masaaki Katsuki
- Department of Biopharmaceutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Facchinetti MM, De Siervi A, Toskos D, Senderowicz AM. UCN-01-Induced Cell Cycle Arrest Requires the Transcriptional Induction of p21waf1/cip1 by Activation of Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase/Extracellular Signal-Regulated Kinase Pathway. Cancer Res 2004; 64:3629-37. [PMID: 15150122 DOI: 10.1158/0008-5472.can-03-3741] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The small molecule UCN-01 is a cyclin-dependent kinase (CDK) modulator shown to have antiproliferative effects against several in vitro and in vivo cancer models currently being tested in human clinical trials. Although UCN-01 may inhibit several serine-threonine kinases, the exact mechanism by which it promotes cell cycle arrest is still unclear. We have reported previously that UCN-01 promotes G(1)-S cell cycle arrest in a battery of head and neck squamous cancer cell lines. The arrest is accompanied by an increase in both p21(waf1/cip1) and p27(kip1) CDK inhibitors leading to loss in G(1) CDK activity. In this report, we explore the role and the mechanism for the induction of these endogenous CDK inhibitors. We observed that p21 was required for the cell cycle effects of UCN-01, as HCT116 lacking p21 (HCT116 p21(-/-)) was refractory to the cell cycle effects of UCN-01. Moreover, UCN-01 promoted the accumulation of p21 at the mRNA level in the p53-deficient HaCaT cells without increase in the p21 mRNA half-life, suggesting that UCN-01 induced p21 at the transcriptional level. To study UCN-01 transcriptional activation of p21, we used several p21(waf1/cip1) promoter-driven luciferase reporter plasmids and observed that UCN-01 activated the full-length p21(waf1/cip1) promoter and a construct lacking p53 binding sites. The minimal promoter region required for UCN-01 (from -110 bp to the transcription start site) was the same minimal p21(waf1/cip1) promoter region required for Ras enhancement of p21(waf1/cip1) transcription. Neither protein kinase C nor PDK1/AKT pathways were relevant for the induction of p21 by UCN-01. In contrast, the activation of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase mitogen-activated protein kinase pathways was required for p21 induction as UCN-01 activated this pathway, and genetic or chemical MEK inhibitors blunted p21 accumulation. These results demonstrated for the first time that p21 is required for UCN-01 cell cycle arrest. Moreover, we showed that the accumulation of p21 is transcriptional via activation of the MEK pathway. This novel mechanism, by which UCN-01 exerts its antiproliferative effect, represents a promising strategy to be exploited in future clinical trials.
Collapse
Affiliation(s)
- Maria M Facchinetti
- Molecular Therapeutics Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
9
|
Zhang GJ, Safran M, Wei W, Sorensen E, Lassota P, Zhelev N, Neuberg DS, Shapiro G, Kaelin WG. Bioluminescent imaging of Cdk2 inhibition in vivo. Nat Med 2004; 10:643-8. [PMID: 15122251 DOI: 10.1038/nm1047] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 03/23/2004] [Indexed: 11/08/2022]
Abstract
Many proteins and pathways of pharmaceutical interest impinge on ubiquitin ligases or their substrates. The cyclin-dependent kinase (Cdk) inhibitor p27, for example, is polyubiquitylated in a cell cycle-dependent manner by a ubiquitin ligase complex containing the F-box protein Skp2. Regulated turnover of p27 is due, at least partly, to its phosphorylation by Cdk2 on threonine 187, which generates a Skp2-binding site. We made a p27-luciferase (p27Luc) fusion protein and show here that its abundance, like that of p27, is regulated by Skp2 in a cell cycle-dependent manner. As predicted, p27Luc levels increased after blocking Cdk2 activity with inhibitory proteins, peptides or small interfering RNA (siRNA). Accumulation of p27Luc in response to Cdk2 inhibitory drugs (flavopiridol and R-roscovitine) was demonstrable in human tumor cells in vivo using noninvasive bioluminescent imaging. In theory, the approach described here could be used to develop bioluminescent reporters for any drug target that directly or indirectly affects the turnover of a ubiquitin ligase substrate.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- Department of Adult Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
It has become clear in the past decade that most human malignancies, including lung neoplasms, have aberrations in cell cycle control. The tumor suppressor gene retinoblastoma is an important player in the G1/S transition and its function is abnormal in most human neoplasms. Retinoblastoma function is lost as a result of phosphorylation by the cyclin-dependent kinases (CDKs). Thus, modulation of CDKs may have an important use for the therapy and prevention of human neoplasms. Direct CDK modulators are small molecules that target specifically the adenosine triphosphate binding site of CDKs. In contrast, indirect CDK modulators affect CDK function by modulation of upstream pathways required for CDK activation. The first example of a direct small-molecule CDK modulator tested in the clinic, flavopiridol, is a pan-CDK inhibitor that not only promotes cell cycle arrest but also halts transcriptional elongation, promotes apoptosis, induces differentiation, and has antiangiogenic properties. The second example of direct small-molecule CDK modulators tested in clinical trials is UCN-01 (7-hydroxystaurosporine). UCN-01 has interesting preclinical features: it inhibits Ca2+-dependent protein kinase C, promotes apoptosis, arrests cell cycle progression at G1/S, and abrogates checkpoints upon DNA damage. In summary, novel small-molecule CDK modulators are being tested in the clinic with interesting results. Although these small molecules are directed toward a very prevalent cause of carcinogenesis, their role in the clinical armamentarium is still uncertain.
Collapse
Affiliation(s)
- Adrian M Senderowicz
- Molecular Therapeutics Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4330, USA.
| |
Collapse
|
11
|
The discovery of a new structural class of cyclin-dependent kinase inhibitors, aminoimidazo[1,2- a]pyridines. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1.3.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The protein kinase family represents an enormous opportunity for drug development. However, the current limitation in structural diversity of kinase inhibitors has complicated efforts to identify effective treatments of diseases that involve protein kinase signaling pathways. We have identified a new structural class of protein serine/threonine kinase inhibitors comprising an aminoimidazo[1,2-a]pyridine nucleus. In this report, we describe the first successful use of this class of aza-heterocycles to generate potent inhibitors of cyclin-dependent kinases that compete with ATP for binding to a catalytic subunit of the protein. Co-crystal structures of CDK2 in complex with lead compounds reveal a unique mode of binding. Using this knowledge, a structure-based design approach directed this chemical scaffold toward generating potent and selective CDK2 inhibitors, which selectively inhibited the CDK2-dependent phosphorylation of Rb and induced caspase-3-dependent apoptosis in HCT 116 tumor cells. The discovery of this new class of ATP-site-directed protein kinase inhibitors, aminoimidazo[1,2-a]pyridines, provides the basis for a new medicinal chemistry tool to be used in the search for effective treatments of cancer and other diseases that involve protein kinase signaling pathways.
Collapse
|
12
|
Abstract
Aberrations in cell cycle progression occur in the majority of human malignancies. The main pathway affected is the retinoblastoma (Rb) pathway. The tumor suppressor gene Rb is an important component in the G(1)/S transition and its function is abnormal in most human neoplasms. Loss in Rb function occurs by the hyperactivation of the cyclin-dependent kinases (cdk's). Therefore, modulation of cdk's may have an important use for the therapy and prevention of human neoplasms. Efforts to obtain small-molecule cdk modulators yielded two classes of modulators: direct and indirect modulators. Direct cdk modulators are small molecules that specifically target the ATP binding site of cdk's. Examples for this group include flavopiridol, roscovitine and BMS-387032. In contrast, indirect cdk modulators affect cdk function due to modulation of upstream pathways required for cdk activation. Some examples include perifosine, lovastatin, and UCN-01. The first example of a direct small-molecule cdk modulator tested in the clinic, flavopiridol, is a pan-cdk inhibitor that not only promotes cell cycle arrest but also halts transcriptional elongation, promotes apoptosis, induces differentiation, and has antiangiogenic properties. Clinical trials with this agent were performed with at least three different schedules of administration: 1-, 24- and 72-h infusions. The main toxicities for infusions >/=24-h are secretory diarrhea and proinflammatory syndrome. In addition, patients receiving shorter infusions have nausea/vomiting and neutropenia. A phase II trial of patients with advanced non-small-cell lung carcinoma using the 72-h infusion every 2 weeks was recently completed. The median overall survival for the 20 patients who received treatment was 7.5 months, a survival similar to that obtained in a randomized trial of four chemotherapy regimens containing platinum analogues in combination with taxanes or gemcitabine, or with gefitinib, a recently approved EGFR inhibitor for the treatment of advanced lung cancer. Based on these encouraging results, a phase III trial comparing standard combination chemotherapy versus combination chemotherapy plus flavopiridol is currently under investigation. The second example of direct small-molecule cdk modulator tested in clinical trials is UCN-01 (7-hydroxystaurosporine). UCN-01 has interesting preclinical features: it inhibits Ca(2+)-dependent PKCs, promotes apoptosis, arrests cell cycle progression at G(1)/S, and abrogates checkpoints upon DNA damage. The first phase I trial of UCN-01 demonstrated a very prolonged half-life. Based on this novel feature, UCN-01 is administered as a 72-h continuous infusion every 4 weeks (in second and subsequent cycles UCN-01 is administered as a 36-h infusion). Other shorter schedules (i.e. 3 h) are being tested. Dose-limiting toxicities include nausea/vomiting, hypoxemia, and insulin-resistant hyperglycemia. Combination trials with cisplatin and other DNA-damaging agents are being tested. Recently, phase I trials with two novel small-molecule cdk modulators, BMS 387032 and R-Roscovitine (CYC202), have commenced with good tolerability. In summary, novel small-molecule cdk modulators are being tested in the clinic with interesting results. Although these small molecules are directed towards a very prevalent cause of carcinogenesis, we need to test them in advanced clinical trials to determine the future of this class of agents for the prevention and therapy of human malignancies.
Collapse
Affiliation(s)
- Adrian M Senderowicz
- Molecular Therapeutics Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4330, USA.
| |
Collapse
|