1
|
Hiraki-Kajiyama T, Miyasaka N, Ando R, Wakisaka N, Itoga H, Onami S, Yoshihara Y. An atlas and database of neuropeptide gene expression in the adult zebrafish forebrain. J Comp Neurol 2024; 532:e25619. [PMID: 38831653 DOI: 10.1002/cne.25619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Zebrafish is a useful model organism in neuroscience; however, its gene expression atlas in the adult brain is not well developed. In the present study, we examined the expression of 38 neuropeptides, comparing with GABAergic and glutamatergic neuron marker genes in the adult zebrafish brain by comprehensive in situ hybridization. The results are summarized as an expression atlas in 19 coronal planes of the forebrain. Furthermore, the scanned data of all brain sections were made publicly available in the Adult Zebrafish Brain Gene Expression Database (https://ssbd.riken.jp/azebex/). Based on these data, we performed detailed comparative neuroanatomical analyses of the hypothalamus and found that several regions previously described as one nucleus in the reference zebrafish brain atlas contain two or more subregions with significantly different neuropeptide/neurotransmitter expression profiles. Subsequently, we compared the expression data in zebrafish telencephalon and hypothalamus obtained in this study with those in mice, by performing a cluster analysis. As a result, several nuclei in zebrafish and mice were clustered in close vicinity. The present expression atlas, database, and anatomical findings will contribute to future neuroscience research using zebrafish.
Collapse
Affiliation(s)
- Towako Hiraki-Kajiyama
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Laboratory of Molecular Ethology, Graduate School of Life Science, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuhiko Miyasaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Reiko Ando
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noriko Wakisaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hiroya Itoga
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Life Science Data Sharing Unit, RIKEN Information R&D and Strategy Headquarters, Kobe, Hyogo, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
2
|
El Allali K, Achaâban MR, Piro M, Ouassat M, Challet E, Errami M, Lakhdar-Ghazal N, Calas A, Pévet P. The Suprachiasmatic Nucleus of the Dromedary Camel ( Camelus dromedarius): Cytoarchitecture and Neurochemical Anatomy. Front Neuroanat 2017; 11:103. [PMID: 29249943 PMCID: PMC5715321 DOI: 10.3389/fnana.2017.00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/27/2017] [Indexed: 12/05/2022] Open
Abstract
In mammals, biological rhythms are driven by a master circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Recently, we have demonstrated that in the camel, the daily cycle of environmental temperature is able to entrain the master clock. This raises several questions about the structure and function of the SCN in this species. The current work is the first neuroanatomical investigation of the camel SCN. We carried out a cartography and cytoarchitectural study of the nucleus and then studied its cell types and chemical neuroanatomy. Relevant neuropeptides involved in the circadian system were investigated, including arginine-vasopressin (AVP), vasoactive intestinal polypeptide (VIP), met-enkephalin (Met-Enk), neuropeptide Y (NPY), as well as oxytocin (OT). The neurotransmitter serotonin (5-HT) and the enzymes tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) were also studied. The camel SCN is a large and elongated nucleus, extending rostrocaudally for 9.55 ± 0.10 mm. Based on histological and immunofluorescence findings, we subdivided the camel SCN into rostral/preoptic (rSCN), middle/main body (mSCN) and caudal/retrochiasmatic (cSCN) divisions. Among mammals, the rSCN is unusual and appears as an assembly of neurons that protrudes from the main mass of the hypothalamus. The mSCN exhibits the triangular shape described in rodents, while the cSCN is located in the retrochiasmatic area. As expected, VIP-immunoreactive (ir) neurons were observed in the ventral part of mSCN. AVP-ir neurons were located in the rSCN and mSCN. Results also showed the presence of OT-ir and TH-ir neurons which seem to be a peculiarity of the camel SCN. OT-ir neurons were either scattered or gathered in one isolated cluster, while TH-ir neurons constituted two defined populations, dorsal parvicellular and ventral magnocellular neurons, respectively. TH colocalized with VIP in some rSCN neurons. Moreover, a high density of Met-Enk-ir, 5-HT-ir and NPY-ir fibers were observed within the SCN. Both the cytoarchitecture and the distribution of neuropeptides are unusual in the camel SCN as compared to other mammals. The presence of OT and TH in the camel SCN suggests their role in the modulation of circadian rhythms and the adaptation to photic and non-photic cues under desert conditions.
Collapse
Affiliation(s)
- Khalid El Allali
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohamed R Achaâban
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohammed Piro
- PMC-EC, Department of Medicine, Surgery and Reproduction, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohammed Ouassat
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Etienne Challet
- Neurobiology of Rhythms UPR 3212 CNRS, Institute for Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Mohammed Errami
- Department of Biology, Faculty of Science, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Nouria Lakhdar-Ghazal
- Unit of Research on Biological Rhythms, Neuroscience and Environment, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| | - André Calas
- IINS, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Paul Pévet
- Neurobiology of Rhythms UPR 3212 CNRS, Institute for Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Smith L, Canal MM. Expression of circadian neuropeptides in the hypothalamus of adult mice is affected by postnatal light experience. J Neuroendocrinol 2009; 21:946-53. [PMID: 19732289 DOI: 10.1111/j.1365-2826.2009.01914.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The suprachiasmatic nuclei (SCN) of the hypothalamus are the principal pacemaker in mammals, controlling daily, circadian rhythms in physiology and behaviour. Environmental light during development has long-term effects on circadian behaviour, but it is still unclear what the relevant adaptations within the brain are. In the present study, we examined the manifestation of the circadian rhythm of locomotor activity, and the expression of arginine-vasopressin (AVP) and vasointestinal polypeptide (VIP) in the SCN of adult mice reared under different light environments during the suckling period, and synchronised to light/dark cycles after weaning. We found that animals reared under constant light had higher amplitude and more stable activity rhythms, together with lower levels of VIP- and AVP-immunostaining in the SCN, compared to mice reared under light/dark cycles or constant darkness. Differences in AVP expression were also found in the paraventricular nucleus and the supraoptic nucleus, two brain areas which receive SCN projections. These results indicate that the postnatal light experience may affect clock function and clock output, and suggest implications for the control of hormonal homeostasis and circadian behaviour.
Collapse
Affiliation(s)
- L Smith
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
4
|
Van der Zee EA, Roman V, Ten Brinke O, Meerlo P. TGFα and AVP in the mouse suprachiasmatic nucleus: Anatomical relationship and daily profiles. Brain Res 2005; 1054:159-66. [PMID: 16051199 DOI: 10.1016/j.brainres.2005.06.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 06/17/2005] [Accepted: 06/25/2005] [Indexed: 11/26/2022]
Abstract
Daily rhythms in behavior and physiology are under control of the suprachiasmatic nucleus (SCN), the main mammalian circadian pacemaker located in the hypothalamus. The SCN communicates with the rest of the brain via various output systems. The aim of the present study was to determine the neuroanatomical and temporal relationship between two output systems, arginine-vasopressin (AVP) and transforming growth factor alpha (TGFalpha), in the mouse SCN. TGFalpha-positive cells were found throughout the SCN, but more abundantly in the core than the shell area, while AVP was predominantly found in the shell. Fluorescent double labeling revealed a total lack of co-expression for the two proteins in SCN cells. The circadian profile, studied by way of optical density in immunostaining at 3 h intervals, showed peak values for AVP shortly after the LD transitions. Immunoreactivity for TGFalpha was highly variable, especially at time points before the LD transitions. In addition, strong lateralization in TGFalpha immunostaining in the SCN was found in some individuals. Daily fluctuations in the paraventricular nucleus were absent for TGFalpha, and only weakly present for AVP. The main conclusion derived from this study is that these two output systems of the biological clock are anatomically separated with different daily profiles in expression.
Collapse
Affiliation(s)
- E A Van der Zee
- Department of Molecular Neurobiology, Graduate School of Behavioural and Cognitive Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
5
|
Dardente H, Menet JS, Challet E, Tournier BB, Pévet P, Masson-Pévet M. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. ACTA ACUST UNITED AC 2004; 124:143-51. [PMID: 15135222 DOI: 10.1016/j.molbrainres.2004.01.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2004] [Indexed: 11/18/2022]
Abstract
The suprachiasmatic nuclei (SCN) of the hypothalamus are necessary for coordination of major aspects of circadian rhythmicity in mammals. Although the molecular clock mechanism of the SCN has been a field of intense research during the last decade, the role of the neuropeptides in the SCN, including arginine-vasopressin (AVP), vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP), in the clock itself or in circadian organization is still largely unknown. Previous studies mainly performed in the rat have examined the profiles of AVP, VIP and GRP mRNA and peptide levels and suggested that the AVP rhythm is controlled by the circadian clock, whereas those of VIP and GRP are directly dependent on lighting conditions. Here, both daily (i.e., under light-dark cycle [LD]) and circadian (i.e., in constant darkness [DD]) profiles of neuropeptide mRNA were investigated in the SCN of the nocturnal mouse Mus musculus and the diurnal rodent Arvicanthis ansorgei to gain insight into a possible role in circadian organization. Our data show that AVP mRNA exhibits a clear circadian rhythm in the SCN peaking by the end of the subjective day in both species. Contrary to what has been observed in rats, oscillations of VIP and GRP mRNA in the SCN are found to be clock-controlled in mice and A. ansorgei, but with different phases for peak expression. While both VIP and GRP mRNA peak during the middle of the subjective night (i.e., with a 6-h lag compared to AVP mRNA) in mice, they peak almost in phase with AVP mRNA in A. ansorgei. Contrary to what has been reported in the rat, mean levels of VIP and GRP peptide mRNA levels tended to be increased by light in the mice. The different circadian organization of SCN neuropeptides mRNA profiles in both light/dark and constant darkness conditions between mice and A. ansorgei could be related with diurnality.
Collapse
Affiliation(s)
- Hugues Dardente
- Laboratoire de Neurobiologie des Rythmes, CNRS/ULP-UMR 7518, IFR 37, 12, rue de l'université, Strasbourg 67000, France.
| | | | | | | | | | | |
Collapse
|
6
|
Zlomanczuk P, Mrugala M, de la Iglesia HO, Ourednik V, Quesenberry PJ, Snyder EY, Schwartz WJ. Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachiasmatic nucleus. Exp Neurol 2002; 174:162-8. [PMID: 11922658 DOI: 10.1006/exnr.2001.7857] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multipotent neural stem-like cells (NSCs) obtained from one brain region and transplanted to another region appear to differentiate into neuronal and glial phenotypes indigenous to the implantation site. Whether these donor-derived cells are appropriately integrated remains unanswered. In order to test this possibility, we exploited the suprachiasmatic nucleus (SCN) of the hypothalamus, site of a known circadian clock, as a novel engraftment target. When a clone of NSCs initially derived from neonatal mouse cerebellum was transplanted into mouse embryos, the cells incorporated within the SCN over a narrow gestational window that corresponded to the conclusion of SCN neurogenesis. Immunocytochemical staining suggested that donor-derived cells in the SCN synthesized a peptide neurotransmitter (arginine vasopressin) characteristic of SCN neurons. Donor-derived SCN cells reacted to light pulses by expressing immunoreactive c-Fos protein in a pattern that is appropriate for native SCN cells. This region-specific and physiologically appropriate response to the natural stimulation of a remote sensory input implies that donor-derived and endogenous cells formed true SCN chimeras, suggesting that exogenous NSCs engrafted to ectopic locations can integrate in a meaningful fashion.
Collapse
Affiliation(s)
- Piotr Zlomanczuk
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|