1
|
Bissantz C, Zampaloni C, David-Pierson P, Dieppois G, Guenther A, Trauner A, Winther L, Stubbings W. Translational PK/PD for the Development of Novel Antibiotics-A Drug Developer's Perspective. Antibiotics (Basel) 2024; 13:72. [PMID: 38247631 PMCID: PMC10812724 DOI: 10.3390/antibiotics13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Antibiotic development traditionally involved large Phase 3 programs, preceded by Phase 2 studies. Recognizing the high unmet medical need for new antibiotics and, in some cases, challenges to conducting large clinical trials, regulators created a streamlined clinical development pathway in which a lean clinical efficacy dataset is complemented by nonclinical data as supportive evidence of efficacy. In this context, translational Pharmacokinetic/Pharmacodynamic (PK/PD) plays a key role and is a major contributor to a "robust" nonclinical package. The classical PK/PD index approach, proven successful for established classes of antibiotics, is at the core of recent antibiotic approvals and the current antibacterial PK/PD guidelines by regulators. Nevertheless, in the case of novel antibiotics with a novel Mechanism of Action (MoA), there is no prior experience with the PK/PD index approach as the basis for translating nonclinical efficacy to clinical outcome, and additional nonclinical studies and PK/PD analyses might be considered to increase confidence. In this review, we discuss the value and limitations of the classical PK/PD approach and present potential risk mitigation activities, including the introduction of a semi-mechanism-based PK/PD modeling approach. We propose a general nonclinical PK/PD package from which drug developers might choose the studies most relevant for each individual candidate in order to build up a "robust" nonclinical PK/PD understanding.
Collapse
Affiliation(s)
- Caterina Bissantz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Claudia Zampaloni
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Pascale David-Pierson
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Guennaelle Dieppois
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Guenther
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrej Trauner
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Lotte Winther
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - William Stubbings
- Product Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| |
Collapse
|
2
|
Guo S, Li X, Li Y, Tong H, Wei M, Yan B, Tian M, Xu B, Shao J. Sitafloxacin pharmacokinetics/pharmacodynamics against multidrug-resistant bacteria in a dynamic urinary tract infection in vitro model. J Antimicrob Chemother 2022; 78:141-149. [PMID: 36329646 DOI: 10.1093/jac/dkac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Sitafloxacin is one of the newer generation fluoroquinolones with highly active against multidrug-resistant (MDR) bacteria. Our objectives were to identify the sitafloxacin pharmacokinetic/pharmacodynamic (PK/PD) index and breakpoints against MDR isolate in the urinary tract infection model. METHODS Forty-eight MDR isolates underwent sitafloxacin and levofloxacin microdilution susceptibility testing. A 24 h in vitro model was established that simulated the healthy subjects urodynamics of sitafloxacin fumarate injection. Ten MDR isolates (four carbapenem-resistant Escherichia coli, three carbapenem-resistant P. aeruginosa and three vancomycin-resistant E. faecium) were selected. The drug efficacy was quantified by the change in log colony counts within 24 h. A sigmoid Emax model was fitted to the killing effect data. Monte Carlo simulations were performed to assess target attainment for the sitafloxacin fumarate doses of 100 and 200 mg q24h. RESULTS Analysis indicated that the MICs of sitafloxacin were all significantly lower than that of levofloxacin (P < 0.01). The UAUC0-24h/MIC targets required to achieve stasis, 1-log10 killing and 2-log10 killing were 63.60, 79.49 and 99.45 (carbapenem-resistant E. coli), 60.85, 90.31 and 128.95 (carbapenem-resistant P. aeruginosa), 65.91, 77.81 and 103.11 (vancomycin-resistant E. faecium). Monte Carlo simulation showed the infusion of sitafloxacin fumarate 100 mg q24h was able to achieve 90% probability of target attainment against bacteria with MIC of 8 mg/L for the common complicated urinary tract infections. CONCLUSIONS Sitafloxacin fumarate injection is an alternative therapeutic agent for the treatment of UTIs caused by MDR isolates.
Collapse
Affiliation(s)
- Siwei Guo
- The Third Hospital of Changsha, Changsha, Hunan, China.,Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Xin Li
- The Third Hospital of Changsha, Changsha, Hunan, China.,Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - You Li
- The Third Hospital of Changsha, Changsha, Hunan, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huan Tong
- The Third Hospital of Changsha, Changsha, Hunan, China.,Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Minji Wei
- Institute of Clinical Pharmacology, First Hospital, Peking University, Beijing, China
| | - Bingqian Yan
- The Third Hospital of Changsha, Changsha, Hunan, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Miaomei Tian
- The Third Hospital of Changsha, Changsha, Hunan, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bing Xu
- The Third Hospital of Changsha, Changsha, Hunan, China.,Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Jing Shao
- Nanjing Yoko Pharmaceutical Co., Ltd, Nanjing, China
| |
Collapse
|
3
|
Outcomes of Beta-Lactam Allergic and Non-Beta-Lactam Allergic Patients with Intra-Abdominal Infection: A Case-Control Study. Antibiotics (Basel) 2022; 11:antibiotics11121786. [PMID: 36551442 PMCID: PMC9774689 DOI: 10.3390/antibiotics11121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background: In the case of intra-abdominal infections (IAI) in beta-lactam (BL) allergic patients, empiric antimicrobial therapy without BL is recommended; however, data regarding the outcome with alternative regimens are scarce. This study aimed to compare the outcomes of BL allergic (BLA) patients with IAI to those who were non-BLA (NBLA). Method: We conducted a case−control study in a French teaching hospital, between 1 January 2016 and 31 August 2021. BLA patients with IAI treated with fluoroquinolone or aztreonam and metronidazole were matched with controls treated with BL, on age, sex, disease severity, IAI localization, and healthcare-associated infection (HAI) status. We compared rates of therapeutic failures, adverse events, and HAI, and then assessed factors associated with therapeutic failure using a logistic regression model. Results: The therapeutic failure rate was 14% (p > 0.99) in both groups of 43 patients, and there was no significant difference in the adverse events rate (p > 0.99) and HAI rate (p = 0.154). Factors independently associated with therapeutic failure were higher BMI (OR 1.16; 95%CI [1.00−1.36]; p = 0.041), longer hospital length of stay (OR 1,20; 95%CI [1.08−1.41]; p = 0.006), and inadequate empiric antimicrobial therapy (OR 11.71; 95%CI [1.43−132.46]; p = 0.025). Conclusion: The outcomes of BLA patients with IAI treated without BL were the same as those for NBLA patients treated with BL.
Collapse
|
4
|
Population Pharmacokinetics of Moxifloxacin in Children. Paediatr Drugs 2022; 24:163-173. [PMID: 35284983 PMCID: PMC9768852 DOI: 10.1007/s40272-022-00493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/OBJECTIVE Moxifloxacin is a fluoroquinolone that is commonly used in adults, but not children. Certain clinical situations compel pediatric clinicians to use moxifloxacin, despite its potential for toxicity and limited pharmacokinetics (PK) data. Our objective was to further characterize the pharmacokinetics of moxifloxacin in children. METHODS We performed an opportunistic, open-label population PK study of moxifloxacin in children < 18 years of age who received moxifloxacin as part of standard care. A set of structural PK models and residual error models were explored using nonlinear mixed-effects modeling. Covariates with known biological relationships were investigated for their influence on PK parameters. RESULTS We obtained 43 moxifloxacin concentrations from 14 participants who received moxifloxacin intravenously (n = 8) or orally (n = 6). The dose of moxifloxacin was 10 mg/kg daily in participants ≤ 40 kg and 400 mg daily in participants > 40 kg. The population mean clearance and mean volume of distribution were 18.2 L/h and 167 L, respectively. The oral absorption was described by a first-order process. The estimated extent of oral bioavailability was highly variable (range 20-91%). Total body weight was identified as a covariate on clearance and volume of distribution, and substantially reduced the random unexplained inter-individual variability for both parameters. No participants experienced suspected serious adverse reactions related to moxifloxacin. CONCLUSION These data add to the existing literature to support use of moxifloxacin in children in certain situations; however, further prospective studies on the safety and efficacy of moxifloxacin are needed.
Collapse
|
5
|
Li X, Chen Y, Xu X, Li Y, Fan Y, Liu X, Bian X, Wu H, Zhao X, Feng M, Guo B, Zhang J. Pharmacokinetics and Pharmacodynamics of Nemonoxacin in a Neutropenic Murine Lung Infection Model Against Streptococcus Pneumoniae. Front Pharmacol 2021; 12:658558. [PMID: 34017256 PMCID: PMC8129567 DOI: 10.3389/fphar.2021.658558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Nemonoxacin, a novel nonfluorinated quinolone for the treatment of community-acquired pneumonia. We reported the pharmacokinetic/pharmacodynamic (PK/PD) targets and PK/PD breakpoints of nemonoxacin against Streptococcus pneumoniae using a neutropenic murine lung infection model. Single-dose PK analysis after subcutaneous administration of nemonoxacin at doses from 2.5 to 80 mg/kg showed maximum plasma concentration (Cmax) 0.56-7.32 mg/L, area under the concentration-time curve from 0 to 24 h (AUC0-24) 0.67-26.10 mg·h/L, and elimination half-life (T1/2) 0.8-1.4 h. The epithelial lining fluid (ELF) penetration ratio of total drug was 1.40. Dose fractionation (1.25-80 mg/kg/day, every 24, 12, 8, and 6 h) and dose escalation studies (1.25-160 mg/kg, every 24 h) were conducted. The sigmoid Emax Hill equation was used to describe the dose-response data. The free-drug plasma fAUC0-24/MIC ratio was considered the PK/PD index most closely associated with efficacy (R2 0.9268). Median fAUC0-24/MIC associated with static, 1-log10 and 2-log10 CFU reduction from baseline were 8.6, 23.2 and 44.4, respectively. Monte Carlo simulation showed 500 mg qd and 750 mg qd oral doses of nemonoxacin were able to achieve 90% probability of target attainment (PTA) against bacteria with MIC of 0.5 mg/L and 1 mg/L. We recommended susceptibility (S) ≤ 0.5 mg/L, intermediate (I) = 1 mg/L and resistant (R) ≥ 2 mg/L as the PK/PD breakpoints for nemonoxacin against S. pneumoniae.
Collapse
Affiliation(s)
- Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuancheng Chen
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyong Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
| | - Yi Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Rayner CR, Smith PF, Andes D, Andrews K, Derendorf H, Friberg LE, Hanna D, Lepak A, Mills E, Polasek TM, Roberts JA, Schuck V, Shelton MJ, Wesche D, Rowland‐Yeo K. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin Pharmacol Ther 2021; 109:867-891. [PMID: 33555032 PMCID: PMC8014105 DOI: 10.1002/cpt.2198] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Model-informed drug development (MIDD) has a long and rich history in infectious diseases. This review describes foundational principles of translational anti-infective pharmacology, including choice of appropriate measures of exposure and pharmacodynamic (PD) measures, patient subpopulations, and drug-drug interactions. Examples are presented for state-of-the-art, empiric, mechanistic, interdisciplinary, and real-world evidence MIDD applications in the development of antibacterials (review of minimum inhibitory concentration-based models, mechanism-based pharmacokinetic/PD (PK/PD) models, PK/PD models of resistance, and immune response), antifungals, antivirals, drugs for the treatment of global health infectious diseases, and medical countermeasures. The degree of adoption of MIDD practices across the infectious diseases field is also summarized. The future application of MIDD in infectious diseases will progress along two planes; "depth" and "breadth" of MIDD methods. "MIDD depth" refers to deeper incorporation of the specific pathogen biology and intrinsic and acquired-resistance mechanisms; host factors, such as immunologic response and infection site, to enable deeper interrogation of pharmacological impact on pathogen clearance; clinical outcome and emergence of resistance from a pathogen; and patient and population perspective. In particular, improved early assessment of the emergence of resistance potential will become a greater focus in MIDD, as this is poorly mitigated by current development approaches. "MIDD breadth" refers to greater adoption of model-centered approaches to anti-infective development. Specifically, this means how various MIDD approaches and translational tools can be integrated or connected in a systematic way that supports decision making by key stakeholders (sponsors, regulators, and payers) across the entire development pathway.
Collapse
Affiliation(s)
- Craig R. Rayner
- CertaraPrincetonNew JerseyUSA
- Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | | | - David Andes
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kayla Andrews
- Bill & Melinda Gates Medical Research InstituteCambridgeMassachusettsUSA
| | | | | | - Debra Hanna
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Alex Lepak
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Thomas M. Polasek
- CertaraPrincetonNew JerseyUSA
- Centre for Medicines Use and SafetyMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PharmacologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Jason A. Roberts
- Faculty of MedicineUniversity of Queensland Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Departments of Pharmacy and Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneQueenslandAustralia
- Division of Anaesthesiology Critical Care Emergency and Pain MedicineNîmes University HospitalUniversity of MontpellierMontpellierFrance
| | | | | | | | | |
Collapse
|
7
|
Bousquet-Mélou A, Schneider M, El Garch F, Broussou DC, Ferran AA, Lallemand EA, Triboulloy C, Damborg P, Toutain PL. Determination of the pharmacokinetic-pharmacodynamic cut-off values of marbofloxacin in horses to support the establishment of a clinical breakpoint for antimicrobial susceptibility testing. Equine Vet J 2020; 53:1047-1055. [PMID: 33169427 DOI: 10.1111/evj.13385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Marbofloxacin (MBX), a fluoroquinolone (FQ), is considered as a critical antibiotic requiring antimicrobial susceptibility testing (AST) for prudent use. No clinical breakpoint (CBP) currently exists to interpret the results of such tests in horses. OBJECTIVES To compute PK/PD cut-offs (PK/PDCO ) that is one of the three minimum inhibitory concentrations (MICs) considered establishing a CBP for antimicrobial susceptibility test interpretation. STUDY DESIGN A meta-analysis conducted by combining five sets of previously published pharmacokinetic data, obtained in clinical and nonclinical settings. METHODS Horses (n = 131) received MBX intravenously at doses of either 2 or 10 mg/kg BW. They were richly sampled (five or six samples per horse). A population model was built to generate a virtual population of 5000 MBX disposition curves by Monte Carlo simulations (MCS) over 24 hours. The selected PK/PD index was the ratio of Area Under the free plasma concentration-time Curve divided by the MIC (fAUC/MIC). The PK/PDCO , which is the highest MIC for which 90% of horses can achieve an a priori selected critical value for the numerical value of the PK/PD index, was established for Gram-positive and Gram-negative bacteria for a dose of 2 mg/kg. RESULTS The PK/PDCO of MBX in horses was 0.125 mg/L for Gram-positive pathogens and 0.0625 mg/L for Gram-negative pathogens. MBX MICs determined by broth microdilution for 54 Escherichia coli and 189 Streptococcus equi isolates are reported. MAIN LIMITATION No clinical data are taken into account in the determination of a PK/PDco . CONCLUSION The computed PK/PDco predicts that MBX may be efficacious in horses to treat infections associated with Enterobacteriaceae but unlikely to those involving Staphylococcus aureus or Streptococcus equi.
Collapse
Affiliation(s)
| | - Marc Schneider
- Vétoquinol, Global Drug Development Division, Lure Cedex, France
| | - Farid El Garch
- Vétoquinol, Global Drug Development Division, Lure Cedex, France
| | - Diane C Broussou
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France.,Vétoquinol, Global Drug Development Division, Lure Cedex, France
| | - Aude A Ferran
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | - Cyrielle Triboulloy
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France.,The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire, UK
| |
Collapse
|
8
|
Papich MG. Antimicrobial agent use in small animals what are the prescribing practices, use of PK-PD principles, and extralabel use in the United States? J Vet Pharmacol Ther 2020; 44:238-249. [PMID: 33098148 DOI: 10.1111/jvp.12921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
In this review, the availability and deficiencies of current antimicrobial agents for companion animals in the United States are described. Although several active agents are FDA-approved for small animals, there are many unmet needs. These needs are greatest for cats, for the treatment of antibiotic drug-resistant infections, and to treat new or emerging pathogens that were not considered on older labels. The older agents approved before 1997 are often outdated, unavailable, or have inaccurate labeling. Subsequently, veterinarians treat dogs and cats with many unapproved antimicrobial agents that are licensed for human use. Although these drugs may be effective, there are also concerns that this use can produce drug-resistant bacteria that may be a public health risk. Although this concern is real, there is also evidence that any antimicrobial use in small animals can produce resistant fecal bacteria and stewardship principles should aim at reducing any unnecessary antibiotic use. This could be accomplished by avoiding some of the older, ineffective, or outdated agents described in this paper. There is a need for incentives to approve new agents that will be more appropriate for treating infections in companion animals without increasing the risk of drug-resistant bacteria that could potentially be transferred to humans and the environment and create a public health risk.
Collapse
Affiliation(s)
- Mark G Papich
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Ndagi U, Falaki AA, Abdullahi M, Lawal MM, Soliman ME. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Adv 2020; 10:18451-18468. [PMID: 35685616 PMCID: PMC9122625 DOI: 10.1039/d0ra01484b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The use of antibiotics to manage infectious diseases dates back to ancient civilization, but the lack of a clear distinction between the therapeutic and toxic dose has been a major challenge. This precipitates the notion that antibiotic resistance was from time immemorial, principally because of a lack of adequate knowledge of therapeutic doses and continuous exposure of these bacteria to suboptimal plasma concentration of antibiotics. With the discovery of penicillin by Alexander Fleming in 1924, a milestone in bacterial infections' treatment was achieved. This forms the foundation for the modern era of antibiotic drugs. Antibiotics such as penicillins, cephalosporins, quinolones, tetracycline, macrolides, sulphonamides, aminoglycosides and glycopeptides are the mainstay in managing severe bacterial infections, but resistant strains of bacteria have emerged and hampered the progress of research in this field. Recently, new approaches to research involving bacteria resistance to antibiotics have appeared; these involve combining the molecular understanding of bacteria systems with the knowledge of bioinformatics. Consequently, many molecules have been developed to curb resistance associated with different bacterial infections. However, because of increased emphasis on the clinical relevance of antibiotics, the synergy between in silico study and in vivo study is well cemented and this facilitates the discovery of potent antibiotics. In this review, we seek to give an overview of earlier reviews and molecular and structural understanding of bacteria resistance to antibiotics, while focusing on the recent bioinformatics approach to antibacterial drug discovery. Understanding the evolution of antibiotic resistance at the molecular level as a functional tool for bioinformatic-based drug design.![]()
Collapse
Affiliation(s)
- Umar Ndagi
- Centre for Trans-Sahara Disease, Vaccine and Drug Research
- Ibrahim Badamasi Babangida University
- Lapai
- Nigeria
| | - Abubakar A. Falaki
- Department of Microbiology
- School of Agriculture and Applied Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Maryam Abdullahi
- Faculty of Pharmaceutical Sciences
- Ahmadu Bello University Zaria
- Nigeria
| | - Monsurat M. Lawal
- School of Laboratory Medicine and Medical Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. Soliman
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu Natal
- Durban 4001
- South Africa
| |
Collapse
|
10
|
Muller AE, Huttner B, Huttner A. Therapeutic Drug Monitoring of Beta-Lactams and Other Antibiotics in the Intensive Care Unit: Which Agents, Which Patients and Which Infections? Drugs 2019; 78:439-451. [PMID: 29476349 DOI: 10.1007/s40265-018-0880-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibiotics are among the medications most frequently administered to the critically ill, a population with high levels of intra- and inter-individual pharmacokinetic variability. Our knowledge of the relationships among antibiotic dosing, exposure and clinical effect in this population has increased in recent decades. Therapeutic drug monitoring (TDM) of serum antibiotic concentrations is the most practical means of assessing adequate antibiotic exposure, though until recently, it has been underutilised for this end. Now TDM is becoming more widespread, particularly for the beta-lactam antibiotics, a class historically thought to have a wide therapeutic range. We review the basic requirements, indications, and targets for effective TDM of the glycopeptides, aminoglycosides, quinolones and beta-lactam antibiotics in the adult intensive-care setting, with a special focus on TDM of the beta-lactam antibiotics, the most widely used antibiotic class.
Collapse
Affiliation(s)
- Anouk E Muller
- Department of Medical Microbiology, Haaglanden Medisch Centrum, The Hague, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Benedikt Huttner
- Division of Infectious Diseases, University Hospitals of Geneva, Rue Gabrielle-Gentil-Perret 4, 1205, Geneva, Switzerland
| | - Angela Huttner
- Division of Infectious Diseases, University Hospitals of Geneva, Rue Gabrielle-Gentil-Perret 4, 1205, Geneva, Switzerland.
| |
Collapse
|
11
|
de Velde F, Mouton JW, de Winter BCM, van Gelder T, Koch BCP. Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives. Pharmacol Res 2018; 134:280-288. [PMID: 30033398 DOI: 10.1016/j.phrs.2018.07.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022]
Abstract
Because of increasing antimicrobial resistance and the shortage of new antibiotics, there is a growing need to optimize the use of old and new antibiotics. Modelling of the pharmacokinetic/pharmacodynamic (PK/PD) characteristics of antibiotics can support the optimization of dosing regimens. Antimicrobial efficacy is determined by susceptibility of the drug to the microorganism and exposure to the drug, which relies on the PK and the dose. Population PK models describe relationships between patients characteristics and drug exposure. This article highlights three clinical applications of these models applied to antibiotics: 1) dosing evaluation of old antibiotics, 2) setting clinical breakpoints and 3) dosing individualization using therapeutic drug monitoring (TDM). For each clinical application, challenges regarding interpretation are discussed. An important challenge is to improve the understanding of the interpretation of modelling results for good implementation of the dosing recommendations, clinical breakpoints and TDM advices. Therefore, also background information on PK/PD principles and approaches to analyse PK/PD data are provided.
Collapse
Affiliation(s)
- Femke de Velde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
12
|
Ramos-Martín V, Johnson A, McEntee L, Farrington N, Padmore K, Cojutti P, Pea F, Neely MN, Hope WW. Pharmacodynamics of teicoplanin against MRSA. J Antimicrob Chemother 2018; 72:3382-3389. [PMID: 28962026 DOI: 10.1093/jac/dkx289] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 11/14/2022] Open
Abstract
Objectives The overall study aim was to identify the relevant preclinical teicoplanin pharmacokinetic (PK)/pharmacodynamic (PD) indices to predict efficacy and suppression of resistance in MRSA infection. Methods A hollow-fibre infection model and a neutropenic murine thigh infection model were developed. The PK/PD data generated were modelled using a non-parametric population modelling approach with Pmetrics. The posterior Bayesian estimates derived were used to study the exposure-effect relationships. Monte Carlo simulations from previously developed population PK models in adults and children were conducted to explore the probability of target attainment (PTA) for teicoplanin dosage regimens against the current EUCAST WT susceptibility range. Results There was a concentration-dependent activity of teicoplanin in both the in vitro and in vivo models. A total in vivo AUC/MIC of 610.4 (total AUC of 305.2 mg·h/L) for an MRSA strain with an MIC of 0.5 mg/L was needed for efficacy (2 log10 cell kill) against a total bacterial population. A total AUC/MIC ratio of ∼1500 (total AUC of ∼750 mg·h/L) was needed to suppress the emergence of resistance. The PTA analyses showed that adult and paediatric patients receiving a standard regimen were only successfully treated for the in vivo bactericidal target if the MIC was ≤0.125 mg/L in adults and ≤0.064 mg/L in children. Conclusions This study improves our understanding of teicoplanin PD against MRSA and defines an in vivo AUC/MIC target for efficacy and suppression of resistance. Additional studies are needed to further corroborate the PK/PD index in a variety of infection models and in patients.
Collapse
Affiliation(s)
- V Ramos-Martín
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - A Johnson
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - L McEntee
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - N Farrington
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - K Padmore
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - P Cojutti
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital, ASUIUD, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - F Pea
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital, ASUIUD, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - M N Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute and The Division of Paediatric Infectious Diseases, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - W W Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Abdelraouf K, Linder KE, Nailor MD, Nicolau DP. Predicting and preventing antimicrobial resistance utilizing pharmacodynamics: part II Gram-negative bacteria. Expert Opin Drug Metab Toxicol 2017; 13:705-714. [PMID: 28486001 DOI: 10.1080/17425255.2017.1329417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Antimicrobial resistance is a serious health threat worldwide. Better understanding of exposure targets that could suppress resistance amplification is necessary to guide the dosing of currently available agents as well as new therapies in the drug development process. Areas covered: This review will discuss studies that focused on predicting development of resistance using the pharmacokinetic-pharmacodynamic approach and how to design dosing regimens that can successfully suppress resistance emergence in Gram-negative bacteria. Expert opinion: Pharmacokinetic-pharmacodynamic targets could provide useful insights to guide antimicrobial dosing to prevent resistance emergence. Exposure targets required for resistance suppression are higher than those for efficacy and might not be clinically feasible. Combination therapy is a possible approach to improve the efficacy and minimize the resistance emergence for difficult-to-treat infections.
Collapse
Affiliation(s)
- Kamilia Abdelraouf
- a Center for Anti-Infective Research and Development , Hartford Hospital , Hartford , CT , USA
| | - Kristin E Linder
- b Department of Pharmacy , Hartford Hospital , Hartford , CT , USA
| | - Michael D Nailor
- b Department of Pharmacy , Hartford Hospital , Hartford , CT , USA.,c Department of Pharmacy Practice , University of Connecticut School of Pharmacy , Storrs , CT , USA
| | - David P Nicolau
- a Center for Anti-Infective Research and Development , Hartford Hospital , Hartford , CT , USA.,d Division of Infectious Diseases , Hartford Hospital , Hartford , CT , USA
| |
Collapse
|
14
|
Cooper TW, Pass SE, Brouse SD, Hall RG. Can Pharmacokinetic and Pharmacodynamic Principles Be Applied to the Treatment of Multidrug-Resistant Acinetobacter? Ann Pharmacother 2017; 45:229-40. [DOI: 10.1345/aph.1p187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE: To discuss treatment options that can be used for treatment of Acinetobacter infections. DATA SOURCES: A MEDLINE search (1966-November 2010) was conducted to identify English-language literature on pharmacotherapy of Acinetobacter and the bibliographies of pertinent articles. Programs and abstracts from infectious diseases meetings were also searched. Search terms included Acinetobacter, multidrug resistance, pharmacokinetics, pharmacodynamics, Monte Carlo simulation, nosocomial pneumonia, carbapenems, polymyxins, sulbactam, aminoglycosides, tetracyclines, tigecycline, rifampin, and fluoroquinolones. DATA SELECTION AND DATA EXTRACTION: All articles were critically evaluated and all pertinent information was included in this review. DATA SYNTHESIS: Multidrug resistant (MDR) Acinetobacter, defined as resistance to 3 or more antimicrobial classes, has increased over the past decade. The incidence of carbapenem-resistant Acinetobacter is also increasing, leading to an increased use of dose optimization techniques and/or alternative antimicrobials, which is driven by local susceptibility patterns. However, Acinetobacter infections that are resistant to all commercially available antibiotics have been reported. General principles are available to guide dose optimization of aminoglycosides, β-lactams, fluoroquinolones, and tigecycline for infections due to gram-negative pathogens. Unfortunately, data specific to patients with Acinetobacter infections are limited. Recent pharmacokinetic-pharmacodynamic information has shed light on colistin dosing. The dilemma with colistin is its concentration-dependent killing, which makes once-daily dosing seem like an attractive option, but its short postantibiotic effect limits a clinician's ability to extend the dosing interval. Localized delivery of antimicrobials is also an attractive option due to the ability to increase drug concentration at the infection site while minimizing systemic adverse events, but more data are needed regarding this approach. CONCLUSIONS: Increased reliance on dosage optimization, combination therapy, and localized delivery of antimicrobials are methods to pursue positive clinical outcomes in MDR Acinetobacter infections since novel antimicrobials will not be available for several years. Well-designed clinical trials with MDR Acinetobacter are needed to define the best treatment options for these patients.
Collapse
|
15
|
Hoover JL, Lewandowski TF, Mininger CL, Singley CM, Sucoloski S, Rittenhouse S. A Robust Pneumonia Model in Immunocompetent Rodents to Evaluate Antibacterial Efficacy against S. pneumoniae, H. influenzae, K. pneumoniae, P. aeruginosa or A. baumannii. J Vis Exp 2017. [PMID: 28117818 PMCID: PMC5408714 DOI: 10.3791/55068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Efficacy of candidate antibacterial treatments must be demonstrated in animal models of infection as part of the discovery and development process, preferably in models which mimic the intended clinical indication. A method for inducing robust lung infections in immunocompetent rats and mice is described which allows for the assessment of treatments in a model of serious pneumonia caused by S. pneumoniae, H. influenzae, P. aeruginosa, K. pneumoniae or A. baumannii. Animals are anesthetized, and an agar-based inoculum is deposited deep into the lung via nonsurgical intratracheal intubation. The resulting infection is consistent, reproducible, and stable for at least 48 h and up to 96 h for most isolates. Studies with marketed antibacterials have demonstrated good correlation between in vivo efficacy and in vitro susceptibility, and concordance between pharmacokinetic/pharmacodynamic targets determined in this model and clinically accepted targets has been observed. Although there is an initial time investment when learning the technique, it can be performed quickly and efficiently once proficiency is achieved. Benefits of the model include elimination of the neutropenic requirement, increased robustness and reproducibility, ability to study more pathogens and isolates, improved flexibility in study design and establishment of a challenging infection in an immunocompetent host.
Collapse
|
16
|
Baietto L, Corcione S, Pacini G, Perri GD, D'Avolio A, De Rosa FG. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics? Curr Drug Metab 2015; 15:581-98. [PMID: 24909419 PMCID: PMC4435065 DOI: 10.2174/1389200215666140605130935] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/17/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022]
Abstract
Drug bioavailability may vary greatly amongst individuals, affecting both efficacy and toxicity: in humans, genetic variations account for a relevant proportion of such variability. In the last decade the use of pharmacogenetics in clinical practice, as a tool to individualize treatment, has shown a different degree of diffusion in various clinical fields. In the field of infectious diseases, several studies identified a great number of associations between host genetic polymor-phisms and responses to antiretroviral therapy. For example, in patients treated with abacavir the screening for HLA-B*5701 before starting treatment is routine clinical practice and standard of care for all patients; efavirenz plasma levels are influenced by single nucleotide polymorphism (SNP) CYP2B6-516G> T (rs3745274). Regarding antibiotics, many studies investigated drug transporters involved in antibiotic bioavailability, especially for fluoroquinolones, cephalosporins, and antituberculars. To date, few data are available about pharmacogenetics of recently developed antibiotics such as tigecycline, daptomycin or linezolid. Considering the effect of SNPs in gene coding for proteins involved in antibiotics bioavailability, few data have been published. Increasing knowledge in the field of antibiotic pharmacogenetics could be useful to explain the high drug inter-patients variability and to individualize therapy. In this paper we reported an overview of pharmacokinetics, pharmacodynamics, and pharmacogenetics of antibiotics to underline the importance of an integrated approach in choosing the right dosage in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, University of Turin, Infectious Diseases at Amedeo di Savoia Hospital, Corso Svizzera 164, 10149. Turin, Italy.
| |
Collapse
|
17
|
Mazzei T, Diacciati S. Pharmacological aspects of the antibiotics used for urological diagnostic procedures. J Chemother 2015; 26 Suppl 1:S24-34. [PMID: 25245708 DOI: 10.1179/1120009x14z.000000000234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surgical antimicrobial prophylaxis is the use of an antibiotic before, during, or shortly after a urological procedure to prevent postoperative infections such as urinary tract or wound infection. The optimal antimicrobial drug must be microbiologically active against the most frequent potential pathogens and have good pharmacological properties. Correct timing of antimicrobial prophylaxis is the first critical issue in determining treatment efficacy. The antibiotic must be administered before the start of the surgical procedure in order to ensure a high tissue level at the time of microbial contamination. If using an oral antibiotic, this must be administered 1-3 hours before the operation and a parenteral antibiotic should be administered at the induction of anaesthesia. The antibiotics potentially useful for antimicrobial prophylaxis are the beta-lactams, cotrimoxazole, fluoroquinolones, and fosfomycin trometamol. The criteria for choosing the optimal antibiotic include an appropriate antimicrobial spectrum, favourable pharmacokinetic parameters (especially good tissue penetration), and elevated safety or tolerability. The use of cotrimoxazole must be restricted due to increasing chemoresistance. Unfortunately fluoroquinolone-based regimens, once the mainstay of prophylaxis guidelines, are increasingly ineffective due to a constant increase in multidrug-resistant (MDR) Gram-negative bacteria. The same concerns apply with regard to the second and third generation cephalosporins that have problems of resistance and, if administered orally, do not sufficiently penetrate prostatic tissue. An appropriate beta-lactam could be an aminopenicillin combined with a beta-lactamase inhibitor. Fosfomycin trometamol can also be a good potential choice due to its elevated activity against MDR Gram-negative bacteria and its favourable pharmacokinetic parameters, including an elevated penetration into prostatic tissue.
Collapse
|
18
|
Wicha SG, Haak T, Zink K, Kees F, Kloft C, Kees MG. Population pharmacokinetics and target attainment analysis of moxifloxacin in patients with diabetic foot infections. J Clin Pharmacol 2015; 55:639-46. [DOI: 10.1002/jcph.464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/15/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastian G. Wicha
- Department of Clinical Pharmacy and Biochemistry; Institute of Pharmacy; Freie Universitaet Berlin; Berlin Germany
| | - Thomas Haak
- Diabetes Center Mergentheim; Bad Mergentheim Germany
| | - Karl Zink
- Diabetes Center Mergentheim; Bad Mergentheim Germany
| | - Frieder Kees
- Department of Pharmacology; University of Regensburg; Regensburg Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry; Institute of Pharmacy; Freie Universitaet Berlin; Berlin Germany
| | - Martin G. Kees
- Department of Clinical Pharmacy and Biochemistry; Institute of Pharmacy; Freie Universitaet Berlin; Berlin Germany
- Department of Anesthesiology and Intensive Care; Charité Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
19
|
Moxifloxacin pharmacokinetic profile and efficacy evaluation in empiric treatment of community-acquired pneumonia. Antimicrob Agents Chemother 2015; 59:2398-404. [PMID: 25666151 DOI: 10.1128/aac.04659-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
When antimicrobials are used empirically, pathogen MICs equal to clinical breakpoints or epidemiological cutoff values must be considered. This is to ensure that the most resistant pathogen subpopulation is appropriately targeted to prevent emergence of resistance. Accordingly, we determined the pharmacokinetic (PK) profile of moxifloxacin at 400 mg/day in 18 patients treated empirically for community-acquired pneumonia. We developed a population pharmacokinetic model to assess the potential efficacy of moxifloxacin and to simulate the maximal MICs for which recommended pharmacokinetic-pharmacodynamic (PK-PD) estimates are obtained. Moxifloxacin plasma concentrations were determined the day after therapy initiation using ultra-high-performance liquid chromatography. Peak drug concentrations (Cmax) and area under the free drug concentration-time curve from 0 to 24 h (fAUC0-24) values predicted for each patient were evaluated against epidemiological cutoff MIC values for Streptococcus pneumoniae, Haemophilus influenzae, and Legionella pneumophila. PK-PD targets adopted were a Cmax/MIC of ≥12.2 for all pathogens, an fAUC0-24/MIC of >34 for S. pneumoniae, and an fAUC0-24/MIC of >75 for H. influenzae and L. pneumophila. Individual predicted estimates for Cmax/MIC and fAUC0-24/MIC as well as simulated maximal MICs resulting in target attainment for oral and intravenous administration of the drug were suitable for S. pneumoniae and H. influenzae but not for L. pneumophila. These results indicate that caution must be taken when moxifloxacin is used as monotherapy to treat community-acquired pneumonia caused by L. pneumophila. In conclusion, this report reveals key information relevant to the empirical treatment of community-acquired pneumonia while highlighting the robust and flexible nature of this population pharmacokinetic model to predict therapeutic success. (Clinical Trials Registration no. NCT01983839.).
Collapse
|
20
|
Pai MP, Cojutti P, Pea F. Levofloxacin Dosing Regimen in Severely Morbidly Obese Patients (BMI ≥40 kg/m2) Should Be Guided by Creatinine Clearance Estimates Based on Ideal Body Weight and Optimized by Therapeutic Drug Monitoring. Clin Pharmacokinet 2014; 53:753-62. [DOI: 10.1007/s40262-014-0154-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
How severe is antibiotic pharmacokinetic variability in critically ill patients and what can be done about it? Diagn Microbiol Infect Dis 2014; 79:441-7. [PMID: 24985764 DOI: 10.1016/j.diagmicrobio.2014.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 12/29/2022]
Abstract
The pharmacokinetics (PK) of antimicrobial agents administered to critically ill patients exhibit marked variability. This variability results from pathophysiological changes that occur in critically ill patients. Changes in volume of distribution, clearance, and tissue penetration all affect the drug concentrations at the site of infection. PK-pharmacodynamic indices (fCmax:MIC; AUC0-24:MIC; fT>MIC; fCmin:MIC) for both antimicrobial effect and suppression of emergence of resistance are described for many antimicrobial drugs. Changing the regimen by which antimicrobial drugs are delivered can help overcome the PK variability and optimise target attainment. This will deliver optimised antimicrobial chemotherapy to individual critically ill patients. Delivery of β-lactams antimicrobial agents by infusions, rather than bolus dosing, is effective at increasing the duration of the dosing interval that the drug concentration is above the MIC. Therapeutic drug monitoring, utilising population PK mathematical models with Bayesian estimation, can also be used to optimise regimens following measurement of plasma drug concentrations. Clinical trials are required to establish if patient outcomes can be improved by implementing these techniques.
Collapse
|
22
|
Abbott I, Cerqueira GM, Bhuiyan S, Peleg AY. Carbapenem resistance inAcinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti Infect Ther 2014; 11:395-409. [DOI: 10.1586/eri.13.21] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Scaglione F, Paraboni L. Influence of pharmacokinetics/pharmacodynamics of antibacterials in their dosing regimen selection. Expert Rev Anti Infect Ther 2014; 4:479-90. [PMID: 16771624 DOI: 10.1586/14787210.4.3.479] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The choice of antimicrobial dosing in clinical practice in the past was based upon a 'penicillin mentality', that is, on the assumption that the in vivo antimicrobial efficacy is dependent on the duration of drug levels above the minimum inhibitory concentration of target microorganisms. Really, a rational antimicrobial therapy is strongly related to a basic understanding of the influence the patient has on the antibiotic (pharmacokinetics [PKs]) and the patient's response to the specific drug effects (pharmacodynamics [PDs]). PK/PD parameters are essential in facilitating the translation of microbiological activity into clinical situations, ensuring a successful outcome. This review will analyze the typical patterns of antimicrobial activity and the corresponding PK/PD parameters, with a special focus on a PK/PD dosing approach with the most commonly utilized antimicrobial agent classes.
Collapse
Affiliation(s)
- Francesco Scaglione
- University of Milan, Department of Pharmacology, Chemotherapy and Toxicology, Faculty of Medicine, Via Vanvitelli 32, 20129, Milan, Italy.
| | | |
Collapse
|
24
|
Mazzei T, Novelli A. Pharmacological Rationale for Antibiotic Treatment of Intra-abdominal Infections. J Chemother 2013; 21 Suppl 1:19-29. [DOI: 10.1179/joc.2009.21.supplement-1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Kumar A. An alternate pathophysiologic paradigm of sepsis and septic shock: implications for optimizing antimicrobial therapy. Virulence 2013; 5:80-97. [PMID: 24184742 PMCID: PMC3916387 DOI: 10.4161/viru.26913] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The advent of modern antimicrobial therapy following the discovery of penicillin during the 1940s yielded remarkable improvements in case fatality rate of serious infections including septic shock. Since then, pathogens have continuously evolved under selective antimicrobial pressure resulting in a lack of significant improvement in clinical effectiveness in the antimicrobial therapy of septic shock despite ever more broad-spectrum and potent drugs. In addition, although substantial effort and money has been expended on the development novel non-antimicrobial therapies of sepsis in the past 30 years, clinical progress in this regard has been limited. This review explores the possibility that the current pathophysiologic paradigm of septic shock fails to appropriately consider the primacy of the microbial burden of infection as the primary driver of septic organ dysfunction. An alternate paradigm is offered that suggests that has substantial implications for optimizing antimicrobial therapy in septic shock. This model of disease progression suggests the key to significant improvement in the outcome of septic shock may lie, in great part, with improvements in delivery of existing antimicrobials and other anti-infectious strategies. Recognition of the role of delays in administration of antimicrobial therapy in the poor outcomes of septic shock is central to this effort. However, therapeutic strategies that improve the degree of antimicrobial cidality likely also have a crucial role.
Collapse
Affiliation(s)
- Anand Kumar
- Section of Critical Care Medicine; Section of Infectious Diseases; Health Sciences Centre; Winnipeg, MB Canada
| |
Collapse
|
26
|
Leroy B, Uhart M, Maire P, Bourguignon L. Evaluation of fluoroquinolone reduced dosage regimens in elderly patients by using pharmacokinetic modelling and Monte Carlo simulations. J Antimicrob Chemother 2012; 67:2207-12. [DOI: 10.1093/jac/dks195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
27
|
Winterboer TM, Lecci KA, Olsen KM. Continuing education: alternative approaches to optimizing antimicrobial pharmacodynamics in critically ill patients. J Pharm Pract 2012; 23:6-18. [PMID: 21507788 DOI: 10.1177/0897190009356550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Critical illness results in a constellation of physiologic changes that subsequently impact antibiotic pharmacokinetic and pharmacodynamic parameters. These changes can result in poorly treated infections that in turn lead to longer intensive care unit (ICU) and hospital stays, prolonged use of mechanical ventilation, and higher mortality rates. Research has expanded our understanding of antibiotic pharmacodynamics among ICU patients, and some investigators and clinicians have questioned traditional antibiotic dosing schemes among this population. Alternative dosing strategies to optimize antibiotic pharmacodynamics of aminoglycosides, beta-lactams, fluoroquinolones, and vancomycin have been explored. Appropriate duration of exposure to beta-lactam antibiotics has been recognized as an important parameter associated with successful treatment outcomes. To maximize this exposure, continuous infusions over a 24-hour period have resulted in higher clinical response rates and improved surrogate markers of infection. Equally as promising is the alternative of extending the infusion time to increase exposure while maintaining the same daily beta-lactam dose and frequency. Data from clinical trials have suggested that the area under the concentration-time curve to minimum inhibitory concentration ratio for aminoglycosides, fluoroquinolones, and vancomycin is a better correlate for successful treatment outcomes. Optimizing antibiotic pharmacodynamics by changing dosage methods should be considered in ICU patients to improve treatment response and success.
Collapse
Affiliation(s)
- Tammy M Winterboer
- Department of Pharmaceutical and Nutrition Services, The Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
28
|
Mouton J, Brown D, Apfalter P, Cantón R, Giske C, Ivanova M, MacGowan A, Rodloff A, Soussy CJ, Steinbakk M, Kahlmeter G. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect 2012; 18:E37-45. [DOI: 10.1111/j.1469-0691.2011.03752.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Abstract
There is a clear association between antibiotic use and resistance both on individual and population levels. In the European Union, countries with large antibiotic consumption have higher resistance rates. Antibiotic resistance leads to failed treatments, prolonged hospitalisations, increased costs and deaths. With few new antibiotics in the Research & Development pipeline, prudent antibiotic use is the only option to delay the development of resistance. Antibiotic policy consists of prescribing strategies to optimise the indication, selection, dosing, route of administration, duration and timing of antibiotic therapy to maximise clinical cure or prevention of infection whilst limiting the unintended consequences of antibiotic use, including toxicity and selection of resistant microorganisms. A secondary goal is to reduce healthcare costs without adversely affecting the quality of care. The purpose of this paper is to provide the evidence base of prudent antibiotic policy. Special emphasis is placed on urinary tract infections. The value and support of antibiotic committees, guidelines, ID consultants and/or antimicrobial stewardship teams to prolong the efficacy of available antibiotics will be discussed.
Collapse
Affiliation(s)
- Inge C Gyssens
- Nijmegen Institute for Infection, Inflammation, and Immunity (N4i) and Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Proksch JW, Ward KW. Ocular pharmacokinetics/pharmacodynamics of besifloxacin, moxifloxacin, and gatifloxacin following topical administration to pigmented rabbits. J Ocul Pharmacol Ther 2011; 26:449-58. [PMID: 20874668 DOI: 10.1089/jop.2010.0054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The purpose of this investigation was to evaluate the ocular pharmacokinetic/pharmacodynamic (PK/PD) relationship for besifloxacin, moxifloxacin, and gatifloxacin using rabbit ocular PK data, along with in vitro minimum inhibitory concentration (MIC90) values against methicillin- and ciprofloxacin-resistant Staphylococcus aureus (MRSA-CR) and Staphylococcus epidermidis (MRSE-CR). METHODS Rabbits received a topical instillation of Besivance™ (besifloxacin ophthalmic suspension, 0.6%), Vigamox (moxifloxacin hydrochloride ophthalmic solution, 0.5% as base), or Zymar (gatifloxacin ophthalmic solution, 0.3%), and ocular tissues and plasma were collected from 4 animals/treatment/collection time at 8 predetermined time intervals during the 24h after dosing. Ocular levels of each agent were measured by LC/MS/MS, and PK parameters (Cmax, Tmax, and AUC₀₋₂₄) were determined. AUC₀₋₂₄/MIC₉₀ ratios were calculated for tears, conjunctiva, cornea, and aqueous humor using previously reported MIC₉₀values for MRSA-CR and MRSE-CR. RESULTS All of the fluoroquinolones tested demonstrated rapid penetration into ocular tissues after a single instillation. Besifloxacin demonstrated the highest exposure in tear fluid, while exposure in conjunctiva was comparable for all 3 compounds. Peak concentrations of all fluoroquinolones in aqueous humor were at or below ~1g/mL. In comparison with their MIC₉₀values against MRSE-CR and MRSA-CR, besifloxacin achieved an AUC₀₋₂₄/MIC₉₀ ratio of ~800 in tears, compared with values of ≤10 for moxifloxacin and gatifloxacin. In cornea, conjunctiva, and aqueous humor, the AUC₀₋₂₄/MIC₉₀ ratios were <10 for all compounds. However, in these tissues AUC₀₋₂₄/MIC₉₀ ratios for besifloxacin were 1.5- to 38-fold higher than moxifloxacin and gatifloxacin. CONCLUSIONS In rabbits, besifloxacin demonstrates a nonclinical ocular PK profile characterized by high and sustained concentrations in tear fluid, resulting in AUC₀₋₂₄/MIC₉₀ ratios of ~800 for ciprofloxacin-resistant MRSE and MRSA after a single administration. Although besifloxacin had the highest AUC₀₋₂₄/MIC₉₀ratios for intraocular tissues, the ratios for all of the drugs were below the target values needed for effective bacterial killing of ciprofloxacin-resistant MRSE and MRSA. Taken together, these nonclinical data indicate that besifloxacin has a favorable ocular PK/PD profile, consistent with the reported clinical efficacy of besifloxacin in the treatment of bacterial conjunctivitis, and consistent with the profile needed for ocular surface sterilization.
Collapse
Affiliation(s)
- Joel W Proksch
- Global Pharmaceutical Research & Development , Bausch & Lomb, Incorporated, Rochester, NY 14609, USA.
| | | |
Collapse
|
31
|
Bhagunde P, Singh R, Ledesma KR, Chang KT, Nikolaou M, Tam VH. Modelling biphasic killing of fluoroquinolones: guiding optimal dosing regimen design. J Antimicrob Chemother 2011; 66:1079-86. [DOI: 10.1093/jac/dkr054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Mazzei T. The pharmacokinetics and pharmacodynamics of the carbapanemes: focus on doripenem. J Chemother 2010; 22:219-25. [PMID: 20685624 DOI: 10.1179/joc.2010.22.4.219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Carbapenems are the most potent group of beta-lactam agents, having a broad spectrum of bactericidal activity against both Gram-negative and Gram-positive bacteria including anaerobes. Doripenem is a new carbapenem endowed with excellent bactericidal activity, a wide spectrum of antibacterial activity against difficult nosocomial pathogens, including extended-spectrum beta-lactamase producers. Its high stability in solution render it extremely flexible for dosing and infusion time. It is the only carbapenem which has been registered officially for administration as an extended infusion of more than 4 hours, which can thus enhance its potential clinical efficacy against difficult bacterial pathogens with MICs of 4-8 mg/L.
Collapse
Affiliation(s)
- T Mazzei
- Department of Pharmacology, University of Florence, Florence, Italy.
| |
Collapse
|
33
|
Eyler RF, Mueller BA. Antibiotic pharmacokinetic and pharmacodynamic considerations in patients with kidney disease. Adv Chronic Kidney Dis 2010; 17:392-403. [PMID: 20727509 DOI: 10.1053/j.ackd.2010.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 12/31/2022]
Abstract
Although pharmacokinetic changes occurring in kidney disease are well described, pharmacodynamics in kidney disease is rarely considered. Knowledge of pharmacodynamic principles can allow a clinician to maximize an antibiotic's effectiveness while minimizing adverse effects and antibacterial resistance. An antibiotic's pharmacokinetic and pharmacodynamic profiles should drive dose adjustment decisions in patients with kidney disease. For example, although the half-lives of beta-lactams and aminoglycosides are both prolonged in these patients, beta-lactams exhibit time-dependent antibacterial activity; consequently, maintenance doses should be smaller but given at the same interval. In contrast, aminoglycosides are concentration-dependent antibiotics; hence prolongation of the dosing interval while using larger doses may be advantageous. The timing of drug administration in relation to hemodialysis may be used to achieve specific pharmacodynamic goals. Aminoglycosides given before hemodialysis generate high peaks, whereas subsequent dialytic drug removal minimizes the area under the serum concentration-time curve, potentially decreasing the risk of developing toxicity. Furthermore, new dialysis prescribing patterns (eg, automated peritoneal dialysis, nocturnal dialysis) affect pharmacokinetic and pharmacodynamic parameters in ways not appreciated by clinicians. Studies quantifying the often considerable drug removal with these therapies, as well as efforts to identify pharmacodynamic targets in patients with kidney disease are essential. This paper reviews pharmacodynamic as well as pharmacokinetic issues that should be considered when prescribing antibiotics to treat infections in this population.
Collapse
|
34
|
Peterson JW, Moen ST, Healy D, Pawlik JE, Taormina J, Hardcastle J, Thomas JM, Lawrence WS, Ponce C, Chatuev BM, Gnade BT, Foltz SM, Agar SL, Sha J, Klimpel GR, Kirtley ML, Eaves-Pyles T, Chopra AK. Protection Afforded by Fluoroquinolones in Animal Models of Respiratory Infections with Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Open Microbiol J 2010; 4:34-46. [PMID: 21127743 PMCID: PMC2995158 DOI: 10.2174/1874285801004010034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 11/28/2022] Open
Abstract
Successful treatment of inhalation anthrax, pneumonic plague and tularemia can be achieved with fluoroquinolone antibiotics, such as ciprofloxacin and levofloxacin, and initiation of treatment is most effective when administered as soon as possible following exposure. Bacillus anthracis Ames, Yersinia pestis CO92, and Francisella tularensis SCHU S4 have equivalent susceptibility in vitro to ciprofloxacin and levofloxacin (minimal inhibitory concentration is 0.03 μg/ml); however, limited information is available regarding in vivo susceptibility of these infectious agents to the fluoroquinolone antibiotics in small animal models. Mice, guinea pig, and rabbit models have been developed to evaluate the protective efficacy of antibiotic therapy against these life-threatening infections. Our results indicated that doses of ciprofloxacin and levofloxacin required to protect mice against inhalation anthrax were approximately 18-fold higher than the doses of levofloxacin required to protect against pneumonic plague and tularemia. Further, the critical period following aerosol exposure of mice to either B. anthracis spores or Y. pestis was 24 h, while mice challenged with F. tularensis could be effectively protected when treatment was delayed for as long as 72 h postchallenge. In addition, it was apparent that prolonged antibiotic treatment was important in the effective treatment of inhalation anthrax in mice, but short-term treatment of mice with pneumonic plague or tularemia infections were usually successful. These results provide effective antibiotic dosages in mice, guinea pigs, and rabbits and lay the foundation for the development and evaluation of combinational treatment modalities.
Collapse
Affiliation(s)
- Johnny W Peterson
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd. Galveston, Texas 77555-0610
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The fluoroquinolones ciprofloxacin, levofloxacin, moxifloxacin and gemifloxacin are widely used for the treatment of various types of bacterial infections. Overall, these antibacterial agents can be considered safe and well tolerated drugs. Comparative studies have evaluated the use of quinolones in elderly and younger populations. Although age per se does not seem to decrease their tolerability, specific adverse effects of the quinolones must be considered when they are chosen for antibacterial treatment. Renal function declines consistently with age and doses of renally excreted quinolones (e.g. ofloxacin, levofloxacin, gatifloxacin) need to be adjusted if a clinically relevant reduction of creatinine clearance is identified. Reactions of the gastrointestinal tract, such as nausea, dyspepsia, vomiting or diarrhoea, are among the most often registered adverse drug reactions during therapy with fluoroquinolones. Treatment with a quinolone causes diarrhoea less frequently than treatment with other classes of antimicrobials. Conflicting data have been published with respect to the incidence of Clostridium difficile-associated diarrhoea in quinolone-treated patients. Hypersensitivity reactions, often manifested on the skin, occur less commonly during therapy with quinolones than, for example, during therapy with beta-lactam antibacterials. Adverse reactions of the CNS are of particular concern in the elderly population. Given the CNS excitatory effects of quinolones, elderly patients should be monitored carefully for such symptoms. It is likely that many signs of possible adverse reactions, such as confusion, weakness, loss of appetite, tremor or depression, are often mistakenly attributed to old age and remain unreported. Quinolones should be used with caution in patients with known or suspected CNS disorders that predispose to seizures (e.g. severe cerebral arteriosclerosis or epilepsy). Quinolones can cause QT interval prolongation. They should be avoided in patients with known prolongation of the QT interval, patients with uncorrected hypokalaemia or hypomagnesaemia and patients receiving class IA (e.g. quinidine, procainamide) or class III (e.g. amiodarone, sotalol) antiarrhythmic agents. Tendinitis and tendon ruptures are recognized as quinolone-induced adverse effects that can occur during treatment or as late as several months after treatment. Chronic renal diseases, concomitant use of corticosteroids and age >60 years are known risk factors for quinolone-induced tendopathies. Overall, the specific adverse-effect profile of quinolones must be considered when they are chosen for treatment of bacterial infections. Because of physiological changes in renal function and when certain co-morbidities are present, some special considerations are necessary when elderly patients are treated with these drugs.
Collapse
Affiliation(s)
- Ralf Stahlmann
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
36
|
Abstract
This article reviews pharmacodynamics of antibacterial drugs, which can be used to optimize treatment strategies, prevent emergence of resistance and rationalize the determination of antimicrobial susceptibility. Important pharmacodynamic concepts include the requirements for bactericidal therapy for endocarditis and meningitis, for synergistic combinations to treat enterococcal endocarditis or to shorten the course of antimicrobial therapy, for obtaining maximal plasma concentration/minimal inhibitory concentration (MIC) ratios that are greater than 10 or 24 hour-area under the plasma concentration curve (AUC)/MIC ratios that are greater than 100-125 for concentration-dependent agents against gram-negative bacilli and 25-35 against Streptococcus pneumoniae, and for obtaining percent of time that drug levels are greater than the MIC that is at least 40% to 50% of the dosing interval for time-dependent agents.
Collapse
Affiliation(s)
- Matthew E Levison
- Drexel University, 708 Mt. Pleasant Road, Bryn Mawr, Philadelphia, PA 19010, USA.
| | | |
Collapse
|
37
|
Proksch JW, Granvil CP, Siou-Mermet R, Comstock TL, Paterno MR, Ward KW. Ocular pharmacokinetics of besifloxacin following topical administration to rabbits, monkeys, and humans. J Ocul Pharmacol Ther 2009; 25:335-44. [PMID: 19492955 DOI: 10.1089/jop.2008.0116] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Studies were conducted to evaluate the ocular penetration and systemic exposure to besifloxacin, a fluoroquinolone antibiotic, following topical ocular administration to animals and humans. METHODS Besifloxacin ophthalmic suspension (0.6%) was administered as a topical ocular instillation to pigmented rabbits, cynomolgus monkeys, and human subjects. At predetermined intervals after dosing, samples of ocular tissues and plasma were collected and analyzed for besifloxacin levels using HPLC/MS/MS methods. RESULTS Besifloxacin demonstrated good ocular penetration in rabbits and monkeys, with rapid absorption and sustained concentrations observed in anterior ocular tissues through 24 h after a single administration. Maximum besifloxacin concentrations in conjunctiva, cornea, and aqueous humor of monkeys were 6.43 microg/g, 2.10 microg/g, and 0.796 microg/mL, respectively, after a single topical dose, and concentrations declined in these tissues with an apparent half-life of 5-14 h. Following a single topical ocular administration to humans, the maximum besifloxacin concentration in tears was 610 microg/g with concentrations decreasing to approximately 1.6 microg/g at 24 h. The resulting pharmacokinetic parameters for besifloxacin in human tears were evaluated relative to the MIC(90) values (microg/mL) for besifloxacin against Streptococcus pneumoniae (0.125), Staphylococcus aureus (0.25), Staphylococcus epidermidis (0.5), and Haemophilus influenzae (0.06). Following a single topical administration, the C(max)/MIC(90) ratios for besifloxacin in human tears were > or =1,220, and the AUC((0-24))/MIC(90) ratios were > or =2,500 for these relevant ocular pathogens. Following repeated 3-times daily (TID) topical ocular administration to human subjects with clinically diagnosed bacterial conjunctivitis, maximum besifloxacin concentrations in plasma were less than 0.5 ng/mL, on average. CONCLUSIONS Taken together, the results of the current investigation provide a PK/PD-based rationale that supports the use of besifloxacin for the safe and effective treatment of ocular infections.
Collapse
Affiliation(s)
- Joel W Proksch
- Global Research and Development, Bausch & Lomb, 1400 N. Goodman Street, Rochester, NY 14609, USA.
| | | | | | | | | | | |
Collapse
|
38
|
In vivo dynamics of carbapenem-resistant Pseudomonas aeruginosa selection after suboptimal dosing. Diagn Microbiol Infect Dis 2009; 64:427-33. [DOI: 10.1016/j.diagmicrobio.2009.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 02/27/2009] [Accepted: 03/28/2009] [Indexed: 11/18/2022]
|
39
|
Owens RC, Shorr AF. Rational dosing of antimicrobial agents: Pharmacokinetic and pharmacodynamic strategies. Am J Health Syst Pharm 2009; 66:S23-30. [DOI: 10.2146/090087d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Robert C. Owens
- Antimicrobial Stewardship Program, Department of Pharmacy, and Clinical Pharmacy Specialist, Infectious Diseases, Division of Infectious Diseases, Maine Medical Center, Portland, ME
| | - Andrew F. Shorr
- Pulmonary Critical Care, Department of Medicine, Washington Hospital Center, Washington, DC
| |
Collapse
|
40
|
van Zanten AR, Polderman KH, van Geijlswijk IM, van der Meer GY, Schouten MA, Girbes AR. Ciprofloxacin pharmacokinetics in critically ill patients: A prospective cohort study. J Crit Care 2008; 23:422-30. [DOI: 10.1016/j.jcrc.2007.11.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Revised: 10/04/2007] [Accepted: 11/01/2007] [Indexed: 11/28/2022]
|
41
|
Scaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. Int J Antimicrob Agents 2008; 32:294-301. [PMID: 18621508 DOI: 10.1016/j.ijantimicag.2008.03.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 12/18/2022]
Abstract
Patients admitted to Intensive Care Units (ICUs) are at very high risk of developing severe nosocomial infections. Consequently, antimicrobials are among the most important and commonly prescribed drugs in the management of these patients. Critically ill patients in ICUs include representatives of all age groups with a range of organ dysfunction related to severe acute illness that may complicate long-term illness. The range of organ dysfunction, together with drug interactions and other therapeutic interventions (e.g. haemodynamically active drugs and continuous renal replacement therapies), may strongly impact on antimicrobial pharmacokinetics in critically ill patients. In the last decade, it has become apparent that the intrinsic pharmacokinetic (PK) and pharmacodynamic (PD) properties are the major determinants of in vivo efficacy of antimicrobial agents. PK/PD parameters are essential in facilitating the translation of microbiological activity into clinical situations, ensuring a successful outcome. In this review, we analyse the typical patterns of antimicrobial activity and the corresponding PK/PD parameters, with a special focus on a PK/PD dosing approach of the antimicrobial agent classes commonly utilised in the ICU setting.
Collapse
Affiliation(s)
- Francesco Scaglione
- Department of Pharmacology, Chemotherapy and Toxicology, Faculty of Medicine, University of Milan, Milan, Italy.
| | | |
Collapse
|
42
|
Lode HM, Schmidt-Ionas M, Stahlmann R. Gemifloxacin for community-acquired pneumonia. Expert Opin Investig Drugs 2008; 17:779-86. [PMID: 18447602 DOI: 10.1517/13543784.17.5.779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Newer fluoroquinolones have become an important therapeutic choice in the treatment of community-acquired pneumonia (CAP). Gemifloxacin is one of the newest members of this class of antibiotics and has performed favourably in this indication. OBJECTIVE To analyse the microbiological activity, pharmacokinetic/pharmacodynamic properties and clinical activity of gemifloxacin in CAP, as well as the safety reported in controlled clinical studies. METHODS Literature research of English publications in the last 10 years addressing all aspects of gemifloxacin in CAP. RESULTS/CONCLUSIONS Gemifloxacin is microbiologically the most active fluoroquinolone against Streptococcus pneumoniae--the leading pathogen of CAP. In several comparative studies gemifloxacin was highly effective and well tolerated in the treatment of mild-to-moderate severe CAP.
Collapse
Affiliation(s)
- Hartmut M Lode
- RCMS, Hohenzollerndamm 2, Ecke Bundesallee, D-10717 Berlin-Wilmersdorf, Germany.
| | | | | |
Collapse
|
43
|
Wisell KT, Kahlmeter G, Giske CG. Trimethoprim and enterococci in urinary tract infections: new perspectives on an old issue. J Antimicrob Chemother 2008; 62:35-40. [DOI: 10.1093/jac/dkn147] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
44
|
Rubino CM, Bradley JS. Optimizing therapy with antibacterial agents: use of pharmacokinetic-pharmacodynamic principles in pediatrics. Paediatr Drugs 2008; 9:361-9. [PMID: 18052406 DOI: 10.2165/00148581-200709060-00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The appropriate dosage of antibacterial agents is essential in achieving both clinical and microbiologic success in the treatment of infections in children. By using in vitro experimental data and animal model outcome data, the pharmacokinetic-pharmacodynamic (PK-PD) parameters predictive of antibacterial effect have been elucidated. For time-dependent drugs such as beta-lactams, the PK-PD parameter of interest is the percentage of time in a dosage interval for which drug concentrations remain above the minimum inhibitory concentration (MIC) of the infecting organism. For concentration-dependent drugs such as aminoglycosides, the PK-PD parameter of interest is the ratio of the area under the plasma concentration-time curve to the MIC. Recent studies using data on clinical and microbiologic outcomes from infected adults and children, combined with data on drug exposure, have confirmed the importance of these parameters and provided estimates of the PK-PD goals of therapy for various antibacterial agents. Application of these PK-PD principles allows rational dosage regimen selection, both for serious infections in critically ill children and for non-life-threatening community-acquired infections.
Collapse
Affiliation(s)
- Christopher M Rubino
- Institute for Clinical Pharmacodynamics, Ordway Research Institute, Albany, NY 12206-1072, USA.
| | | |
Collapse
|
45
|
Lee DG, Shin HH. Pharmacokinetics and Pharmacodynamics of Antibiotics : General Concepts and Recent Advances. Infect Chemother 2008. [DOI: 10.3947/ic.2008.40.3.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun-Ho Shin
- Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
46
|
Bergman SJ, Speil C, Short M, Koirala J. Pharmacokinetic and Pharmacodynamic Aspects of Antibiotic Use in High-Risk Populations. Infect Dis Clin North Am 2007; 21:821-46, x. [PMID: 17826625 DOI: 10.1016/j.idc.2007.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The study of pharmacokinetics includes the absorption, distribution, metabolism, and elimination of drugs. The pharmacologic effect that a medication has on the body is known as pharmacodynamics. With antimicrobials, pharmacokinetic and pharmacodynamic parameters become especially important because of the association between host drug concentrations, microorganism eradication, and resistance. This article focuses on the pharmacokinetic changes that can occur with antimicrobials when they are used in patients at high risk of infections and how they influence pharmacodynamic effects. The populations described here include patients with obesity and diabetes mellitus, renal or hepatic failure, chronic lung disease, severe burns, and long-term prosthetic devices and the elderly.
Collapse
Affiliation(s)
- Scott J Bergman
- Department of Pharmacy Practice, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, IL, USA.
| | | | | | | |
Collapse
|
47
|
Schmidt S, Schuck E, Kumar V, Burkhardt O, Derendorf H. Integration of pharmacokinetic/pharmacodynamic modeling and simulation in the development of new anti-infective agents – minimum inhibitory concentration versus time-kill curves. Expert Opin Drug Discov 2007; 2:849-60. [DOI: 10.1517/17460441.2.6.849] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Rubino CM, Capparelli EV, Bradley JS, Blumer JL, Kearns GL, Reed M, Jacobs RF, Cirincione B, Grasela DM. Population pharmacokinetic model for gatifloxacin in pediatric patients. Antimicrob Agents Chemother 2007; 51:1246-52. [PMID: 17220409 PMCID: PMC1855513 DOI: 10.1128/aac.00685-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broad spectrum of antimicrobial activity, oral bioavailability, extensive tissue distribution, and once-daily intravenous or oral dosing of gatifloxacin, an expanded-spectrum 8-methoxy fluoroquinolone, make it a potentially useful agent for the treatment of pediatric infections. A population pharmacokinetic model was developed to describe the pharmacokinetics of gatifloxacin in children. Data for analysis were obtained from a single-dose safety/pharmacokinetic study utilizing intensive blood sampling in patients aged 6 months to 16 years. Each subject received a single oral dose of gatifloxacin as a suspension, at doses of 5, 10, or 15 mg/kg of body weight. A total of 845 samples were obtained from 82 patients. A one-compartment model with first-order absorption and elimination was the most appropriate to describe the gatifloxacin concentrations. Covariate analysis using forward selection and backward elimination found that apparent clearance was related to body surface area, and apparent volume of distribution was related to body weight. No effect of age on drug clearance could be identified once clearance was corrected for body surface area. Based on pharmacokinetic simulations, the 10-mg/kg (maximum, 400 mg) once-daily dose of gatifloxacin is expected to provide drug exposure similar to that in healthy adults. The population pharmacokinetic model described herein will be used for Bayesian analyses of sparse pharmacokinetic sampling in phase II/III clinical trials and for Monte Carlo simulation experiments. The success of this strategy provides a model for future pediatric drug development programs.
Collapse
|
49
|
Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL. Antimicrobial Resistance: Pharmacokinetics‐Pharmacodynamics of Antimicrobial Therapy: It’s Not Just for Mice Anymore. Clin Infect Dis 2007; 44:79-86. [PMID: 17143821 DOI: 10.1086/510079] [Citation(s) in RCA: 538] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/01/2006] [Indexed: 11/03/2022] Open
Abstract
Since the advent of the modern era of antimicrobial chemotherapy in the 1930s, animal infection models have allowed for the in vivo evaluation of antimicrobial agents for the treatment of experimentally induced infection. Today, animal pharmacokinetic-pharmacodynamic (PK-PD) infection models serve as a cornerstone of the preclinical assessment process for antibacterial agents and dose and dosing interval selection, as decision support for setting in vitro susceptibility breakpoints, and, finally, for the evaluation of the meaning of in vitro resistance. Over the past 15 years, considerable PK-PD data have been derived from infected patients for many classes of antimicrobial agents. These data provide the opportunity to confirm knowledge gained from animal PK-PD infection models.
Collapse
Affiliation(s)
- Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Ordway Research Institute, Albany, NY 12208, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND/PURPOSE Infrequent toxicities associated with certain drugs and drug classes have recently gained much attention from different health-care perspectives. To protect the patient, continued surveillance of safety and tolerability data is essential. Data from preclinical testing, phase 1-3 trials, and postmarketing surveillance may be used to objectively assess the risks associated with a specific drug or family of compounds. This review summarizes safety and tolerability data for the quinolones. MAIN FINDINGS The most common adverse events associated with the quinolone class involve the gastrointestinal tract (nausea and diarrhea) and central nervous system (CNS) (headache and dizziness). These adverse events are usually mild and do not require discontinuation of therapy. Uncommon and potentially serious quinolone-related adverse events involve the cardiovascular system (rate-corrected electrocardiographic QT interval prolongation), musculoskeletal system (tendinitis and tendon rupture), endocrine system (glucose homeostasis dysregulation), renal system (crystalluria, interstitial nephritis, and acute renal failure), and the CNS (seizures). Severe idiosyncratic adverse events are specific to individual agents that may share some structural congruity, such as the 1-(2,4)-difluorophenyl group shared by trovafloxacin (associated with hepatitis), temafloxacin (associated with hemolytic-uremic syndrome), and tosufloxacin (associated with eosinophilic pneumonitis). Overall, discontinuation rates from clinical trials were <4% for the currently marketed quinolones. Quinolones with higher discontinuation rates, such as trovafloxacin (7.0%) and grepafloxacin (6.4%), are no longer available for general use. CONCLUSIONS The currently marketed quinolones are well tolerated, with safety profiles similar to those of other antimicrobial classes. Although adverse effects are unusual, some, including tendinitis and CNS-related effects, are more common with quinolones than with other antimicrobial classes. Rare adverse effects attributed to some members of the quinolone family (e.g., Torsades de Pointes, hepatotoxicity, and dysglycemias) are more likely to occur in select "susceptible" populations. These adverse events can often be circumvented by avoiding exposure to the specific quinolone. In some cases, the therapeutic value offered by a quinolone may outweigh its potential risks.
Collapse
Affiliation(s)
- Robert C Owens
- Division of Infectious Diseases, Department of Clinical Pharmacy Services, Maine Medical Center, Portland, Maine 04102, USA.
| | | |
Collapse
|