1
|
Jiménez AG, Marolf C, Swanson DL. Oxidative stress across multiple tissues in house sparrows (Passer domesticus) acclimated to warm, stable cold, and unpredictable cold thermal treatments. J Comp Physiol B 2024; 194:899-907. [PMID: 38995419 DOI: 10.1007/s00360-024-01572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024]
Abstract
With climate change increasing not just mean temperatures but the frequency of cold snaps and heat waves, animals occupying thermally variable areas may be faced with thermal conditions for which they are not prepared. Studies of physiological adaptations of temperate resident birds to such thermal variability are largely lacking in the literature. To address this gap, we acclimated winter-phenotype house sparrows (Passer domesticus) to stable warm, stable cold, and fluctuating cold temperatures. We then measured several metrics of the oxidative stress (OS) system, including enzymatic and non-enzymatic antioxidants and lipid oxidative damage, in brain (post-mitotic), kidney (mitotic), liver (mitotic) and pectoralis muscle (post-mitotic). We predicted that high metabolic flexibility could be linked to increases in reactive oxygen damage. Alternatively, if variation in ROS production is not associated with metabolic flexibility, then we predict no antioxidant compensation with thermal variation. Our data suggest that ROS production is not associated with metabolic flexibility, as we found no differences across thermal treatment groups. However, we did find differences across tissues. Brain catalase activity demonstrated the lowest values compared with kidney, liver and muscle. In contrast, brain glutathione peroxidase (GPx) activities were higher than those in kidney and liver. Muscle GPx activities were intermediate to brain and kidney/liver. Lipid peroxidation damage was lowest in the kidney and highest in muscle tissue.
Collapse
Affiliation(s)
| | - Chelsi Marolf
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | - David L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
2
|
Voronkov NS, Popov SV, Naryzhnaya NV, Prasad NR, Petrov IM, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Maslov LN. Effect of Cold Adaptation on the State of Cardiovascular System and Cardiac Tolerance to Ischemia/Reperfusion Injury. IRANIAN BIOMEDICAL JOURNAL 2024; 28:59-70. [PMID: 38770843 PMCID: PMC11186613 DOI: 10.61186/ibj.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/08/2023] [Indexed: 05/22/2024]
Abstract
Despite the unconditional success achieved in the treatment and prevention of AMI over the past 40 years, mortality in this disease remains high. Hence, it is necessary to develop novel drugs with mechanism of action different from those currently used in clinical practices. Studying the molecular mechanisms involved in the cardioprotective effect of adapting to cold could contribute to the development of drugs that increase cardiac tolerance to the impact of ischemia/reperfusion. An analysis of the published data shows that the long-term human stay in the Far North contributes to the occurrence of cardiovascular diseases. At the same time, chronic and continuous exposure to cold increases tolerance of the rat heart to ischemia/ reperfusion. It has been demonstrated that the cardioprotective effect of cold adaptation depends on the activation of ROS production, stimulation of the β2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP channel.
Collapse
Affiliation(s)
- Nikita S. Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
- Department of Physiology, Tomsk State University, Tomsk, Russia
| | - Sergey V. Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | | | | | | | | | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
3
|
Jiménez AG, Nash-Braun E, Meyers JR. Chronic Thermal Acclimation Effects on Critical Thermal Maxima (CT max) and Oxidative Stress Differences in White Epaxial Muscle between Surface and Cave Morphotypes of the Mexican Cavefish ( Astyanax mexicanus). Physiol Biochem Zool 2023; 96:369-377. [PMID: 37713718 DOI: 10.1086/726338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractIn the face of increasing environmental temperatures, operative differences between mitochondrial function and whole-animal phenotypic response to the environment are underrepresented in research, especially in subtemperate ectothermic vertebrates. A novel approach to exploring this connection is to examine model species that are genetically similar but that have different whole-animal phenotypes, each of which inhabits different environments. The blind Mexican cavefish (Astyanax mexicanus) has the following two morphotypes: a surface form found in aboveground rivers and an obligate cave-dwelling form. Each morphotype inhabits vastly different thermal and oxygen environments. Whole-animal and mitochondrial responses to thermal acclimation and oxidative stress, with respect to increasing temperatures, have not been previously determined in either morphotype of this species. Here, we chronically acclimated both morphotypes to three temperatures (14°C, 25°C, and 31°C) to establish potential for acclimation and critical thermal maxima (CTmax) for each morphotype of this species. After measuring CTmax in six cohorts, we additionally measured enzymatic antioxidant capacity (catalase, superoxide dismutase, and glutathione peroxidase activities), peroxyl scavenging capacity, and lipid peroxidation damage in white epaxial muscle for each individual. We found a significant effect of acclimation temperature on CTmax (F = 29.57 , P < 0.001 ) but no effect of morphotype on CTmax (F = 2.092 , P = 0.162 ). Additionally, we found that morphotype had a significant effect on glutathione peroxidase activity, with the surface morphotype having increased glutathione peroxidase activity compared with the cave morphotype (F = 6.270 , P = 0.020 ). No other oxidative stress variable demonstrated significant differences. Increases in CTmax with chronic thermal acclimation to higher temperatures suggests that there is some degree of phenotypic plasticity in this species that nominally occupies thermally stable environments. The decreased glutathione peroxidase activity in the cave morphotype may be related to decreased environmental oxygen concentration and decreased metabolic rate in this environmentally constrained morphotype compared to in its surface-living counterparts.
Collapse
|
4
|
Zhou N, Tian Y, Liu W, Tu B, Xu W, Gu T, Zou K, Lu L. Protective Effects of Resveratrol and Apigenin Dietary Supplementation on Serum Antioxidative Parameters and mRNAs Expression in the Small Intestines of Diquat-Challenged Pullets. Front Vet Sci 2022; 9:850769. [PMID: 35711792 PMCID: PMC9196582 DOI: 10.3389/fvets.2022.850769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Poultry as a large-scale intensive farming is vulnerable to oxidative stress. Resveratrol and apigenin are recognized to have many beneficial bioactive functions. This study tested the hypothesis that dietary resveratrol and apigenin supplementation alleviates oxidative stress in the small intestine of diquat-challenged pullets. A total of 200 healthy pullets were randomly divided into four treatment groups: control group fed with a basal diet (CON), diquat group fed with a basal diet (DIQ), resveratrol group fed with a basal diet containing 500 mg/kg resveratrol (RES), and an apigenin group fed with a basal diet containing 500 mg/kg apigenin (API) and injected intraperitoneally with either 1 ml of saline (CON) or 8 mg/kg body weight of diquat (DIQ, RES, and API) to induce oxidative stress. The day of the injection was considered as day 0. The results indicated that resveratrol and apigenin were able to decrease the malondialdehyde (MDA) level and upregulate total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) levels in serum on day 1 and 10 after being diquat-challenged. In addition, resveratrol increased mRNA expression of NQO1 (NAD(P)H dehydrogenase quinone 1) and HO-1 (heme oxygenase-1) in ileum and jejunum on day 10, while apigenin upregulated nuclear factor erythroid 2-related factor 2 (NRF2), NQO1, and HO-1 in ileum and jejunum on day 10. Both resveratrol and apigenin increased the mRNA expression of CLAUDIN-1 in ileum and jejunum on day 1 and that of ZO-1 (zonula occludens-1) in ileum on day 10 post-diquat-injection. These findings indicate that dietary supplementation with resveratrol and apigenin attenuates oxidative stress involving NRF2 signaling pathways in diquat-challenged pullets to some extent. These observations are valuable for the chicken industry and resveratrol and apigenin applications in animal husbandry.
Collapse
Affiliation(s)
- Ning Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Wenchao Liu
- Huzhou Lvchang Ecoagriculture Co., Ltd., Huzhou, China
| | - Bingjiang Tu
- Animal Disease Prevention and Control Center, Huzhou Wuxing District Agricultural and Rural Bureau, Huzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Kang Zou
| | - Lizhi Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Lizhi Lu
| |
Collapse
|
5
|
Zagkle E, Martinez-Vidal PA, Bauchinger U, Sadowska ET. Manipulation of Heat Dissipation Capacity Affects Avian Reproductive Performance and Output. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal life requires hard work but the ability to endure such workload appears to be limited. Heat dissipation limit (HDL) hypothesis proposes that the capacity to dissipate the excess of body heat during hard work may limit sustained energy use. Experimental facilitations of heat loss rate via feather-clipping in free-living birds seem to support HDL hypothesis but testing of HDL through laboratory experiments under controlled conditions is not reported. We employed a two-factorial experimental design to test HDL hypothesis by manipulating the capacity to dissipate heat through exposure of captive zebra finches (Taeniopygia guttata) to a cold and warm ambient temperature (14°C and 25°C), and through manipulation of the insulating layer of feathers around the brood patch in females (clipped and unclipped). To simulate foraging costs encountered in the wild we induced foraging effort by employing a feeding system that necessitated hovering to access food, which increased energetic costs of reproduction despite ad libitum conditions in captivity. We quantified the outcome of reproductive performance at the level of both parents, females, and offspring. Thermal limitations due to warm temperature appeared at the beginning of reproduction for both parents with lower egg-laying success, smaller clutch size and lower egg mass, compared to the cold. After hatching, females with an enhanced ability to dissipate heat through feather-clipping revealed higher body mass compared to unclipped females, and these clipped females also raised heavier and bigger nestlings. Higher levels for oxidative stress in plasma of females were detected prior to reproduction in warm conditions than in the cold. However, oxidative stress biomarkers of mothers were neither affected by temperature nor by feather-clipping during the reproductive activities. We document upregulation of antioxidant capacity during reproduction that seems to prevent increased levels of oxidative stress possibly due to the cost of female body condition and offspring growth. Our study on reproduction under laboratory-controlled conditions corroborates evidence in line with the HDL hypothesis. The link between temperature-constrained sustained performance and reproductive output in terms of quality and quantity is of particular interest in light of the current climate change, and illustrates the emerging risks to avian populations.
Collapse
|
6
|
Ma L, Li C, Lian S, Xu B, Lv H, Liu Y, Lu J, Ji H, Li S, Guo J, Yang H. Procyanidin B2 alleviates liver injury caused by cold stimulation through Sonic hedgehog signalling and autophagy. J Cell Mol Med 2021; 25:8015-8027. [PMID: 34155807 PMCID: PMC8358862 DOI: 10.1111/jcmm.16733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Procyanidin B2 (PB2), a naturally occurring flavonoid abundant in a wide range of fruits, has been shown to exert antioxidant, anti‐inflammatory and anticancer properties. However, the role of PB2 in the prevention of cold stimulation (CS)‐induced liver injury. The present study was undertaken to determine the effects of PB2 on liver injury induced by cold stimulation and its potential molecular mechanisms. The present study results showed that treatment with PB2 significantly reduced CS‐induced liver injury by alleviating histopathological changes and serum levels of alanine transaminase and aspartate transaminase. Moreover, treatment with PB2 inhibited secretion of inflammatory cytokines and oxidative stress in cold‐stimulated mice. PB2 reduced cold stimulation‐induced inflammation by inhibiting TLR4/NF‐κB and Txnip/NLRP3 signalling. Treatment with PB2 reduced oxidative stress by activating Nrf‐2/Keap1, AMPK/GSK3β signalling pathways and autophagy. Furthermore, simultaneous application of Shh pathway inhibitor cyclopamine proved that PB2 targets the Hh pathway. More importantly, co‐treatment with PB2 and cyclopamine showed better efficacy than monotherapy. In conclusion, our findings provide new evidence that PB2 has protective potential against CS‐induced liver injury, which might be closely linked to the inhibition of Shh signalling pathway.
Collapse
Affiliation(s)
- Li Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chengxu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanzhi Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
7
|
Guo H, Zhou G, Tian G, Liu Y, Dong N, Li L, Zhang S, Chai H, Chen Y, Yang Y. Changes in Rumen Microbiota Affect Metabolites, Immune Responses and Antioxidant Enzyme Activities of Sheep under Cold Stimulation. Animals (Basel) 2021; 11:ani11030712. [PMID: 33807979 PMCID: PMC7999998 DOI: 10.3390/ani11030712] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Under a cold environment, the animal’s weight is reduced and even health is affected. As we all know, microbiota is beneficial to animal health. It can produce metabolites to improve animal immunity and avoid damage. Therefore, we aimed to understand the self-protection mechanisms of sheep under cold stress. To investigate this mechanism, we designed two experiments to explore the effects of low temperature and wind speed on sheep phenotypes, rumen microbes, immune cytokines and oxidative stress. Our results identified that the sheep remained healthy in a cold environment. This may be due to the enrichment of Lachnospiraceae in the rumen. A large amount of propionate may enter into the gluconeogenesis reaction, resulting in a decrease in the content of propionate in the rumen, thereby reducing animal’s immunity. In summary, the increase of Lachnospiraceae and propionate in the rumen may help sheep live in a cold environment. Our experiments provide some direction for the healthy feeding of animals in cold environments. Abstract Low-temperature environments can strongly affect the normal growth and health of livestock. In winter, cold weather can be accompanied by strong winds that aggravate the effects of cold on livestock. In this study, two experiments were conducted to investigate the effect of low temperature and/or wind speed on physiological indices, rumen microbiota, immune responses and oxidative stress in sheep. When sheep were exposed to cold temperature and/or stronger wind speeds, the average daily gain (ADG) decreased (p < 0.05), and the abundance of Lachnospiraceae was significantly higher (p < 0.05). The acetate and propionate contents and the proportion of propionate in the rumen also significantly reduced (p < 0.05). The immunoglobulin G (IgG) and TH1-related cytokines in the blood were significantly lower (p < 0.05). However, antioxidant enzyme contents were significantly increased and the concentration of malondialdehyde (MDA) was reduced (p < 0.05). In a cold environment, the abundance of Lachnospiraceae in the rumen of sheep was highly enriched, and the decreasing of propionate might be one of the factors affecting the immunity of the animals, the sheep did not suffer from oxidative damage during the experiment.
Collapse
|
8
|
Kong X, Liu H, He X, Sun Y, Ge W. Unraveling the Mystery of Cold Stress-Induced Myocardial Injury. Front Physiol 2020; 11:580811. [PMID: 33250775 PMCID: PMC7674829 DOI: 10.3389/fphys.2020.580811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Exposure to low ambient temperature imposes great challenge to human health. Epidemiological evidence has noted significantly elevated emergency admission and mortality rate in cold climate in many regions, in particular, adverse events in cardiovascular system. Cold stress is becoming one of the important risk factors for cardiovascular death. Through recent advance in echocardiography and myocardial histological techniques, both clinical and experimental experiments have unveiled that cold stress triggers a variety of pathological and pathophysiological injuries, including ventricular wall thickening, cardiac hypertrophy, elevated blood pressure, decreased cardiac function, and myocardial interstitial fibrosis. In order to examine the potential mechanism of action behind cold stress-induced cardiovascular anomalies, ample biochemical and molecular biological experiments have been conducted to denote a role for mitochondrial injury, intracellular Ca2+ dysregulation, generation of reactive oxygen species (ROS) and other superoxide, altered gene and protein profiles for apoptosis and autophagy, and increased adrenergic receptor sensitivity in cold stress-induced cardiovascular anomalies. These findings suggest that cold stress may damage the myocardium through mitochondrial injury, apoptosis, autophagy, metabolism, oxidative stress, and neuroendocrine pathways. Although the precise nature remains elusive for cold stress-induced cardiovascular dysfunction, endothelin (ET-A) receptor, endoplasmic reticulum (ER) stress, transient receptor potential vanilloid, mitochondrial-related protein including NRFs and UCP-2, ROS, Nrf2-Keap1 signaling pathway, Bcl-2/Bax, and lipoprotein lipase (LPL) signaling may all play a pivotal role. For myocardial injury evoked by cold stress, more comprehensive and in-depth mechanisms are warranted to better define the potential therapeutic options for cold stress-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Xue Kong
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haitao Liu
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaole He
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Singh S, Nandi A, Banerjee O, Bhattacharjee A, Prasad SK, Maji BK, Saha A, Mukherjee S. Cold stress modulates redox signalling in murine fresh bone marrow cells and promotes osteoclast transformation. Arch Physiol Biochem 2020; 126:348-355. [PMID: 30468085 DOI: 10.1080/13813455.2018.1538249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: Alteration of redox signalling and RANK-L expression in FBMCs of mice exposed to different intensities of cold stress (15 °C, 8 °C and 4 °C) were studied.Objective: To understand the effects of varying intensities of cold stress on murine FBMCs and its impact on osteoclastogenesis.Materials and methods: FBMCs were isolated from mice exposed to different intensities of cold stress and used for immunoblotting and biochemical assays. Bone histometry was also done.Results: Different intensities of cold stress perturb redox signalling in FBMCs and alters bone histometry. Higher RANK-L expressions were noted in FBMCs of mice exposed to 8 °C and 4 °C as compared with 15 °C.Discussion and conclusion: Cold stress boosts free radical production in FBMC's, which might enhance RANK-L expression, an indicator of osteoclastogenesis. Thus, we speculate that stronger cold stress (8 °C and 4 °C) contributes to the development of early bone loss.
Collapse
Affiliation(s)
| | - Ajeya Nandi
- Department of Physiology, Serampore College, Serampore, India
| | - Oly Banerjee
- Department of Physiology, Serampore College, Serampore, India
| | | | | | | | - Adipa Saha
- Department of Physiology, Serampore College, Serampore, India
| | | |
Collapse
|
10
|
Wu Y, Wang Y, Yin D, Mahmood T, Yuan J. Transcriptome analysis reveals a molecular understanding of nicotinamide and butyrate sodium on meat quality of broilers under high stocking density. BMC Genomics 2020; 21:412. [PMID: 32552672 PMCID: PMC7302154 DOI: 10.1186/s12864-020-06827-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background In recent years, increased attention has been focused on breast muscle yield and meat quality in poultry production. Supplementation with nicotinamide and butyrate sodium can improve the meat quality of broilers. However, the potential molecular mechanism is not clear yet. This study was designed to investigate the effects of supplementation with a combination of nicotinamide and butyrate sodium on breast muscle transcriptome of broilers under high stocking density. A total of 300 21-d-old Cobb broilers were randomly allocated into 3 groups based on stocking density: low stocking density control group (L; 14 birds/m2), high stocking density control group (H; 18 birds/m2), and high stocking density group provided with a combination of 50 mg/kg nicotinamide and 500 mg/kg butyrate sodium (COMB; 18 birds/m2), raised to 42 days of age. Results The H group significantly increased cooking losses, pH decline and activity of lactate dehydrogenase in breast muscle when compared with the L group. COMB showed a significant decrease in these indices by comparison with the H group (P < 0.05). The transcriptome results showed that key genes involved in glycolysis, proteolysis and immune stress were up-regulated whereas those relating to muscle development, cell adhesion, cell matrix and collagen were down-regulated in the H group as compared to the L group. In contrast, genes related to muscle development, hyaluronic acid, mitochondrial function, and redox pathways were up-regulated while those associated with inflammatory response, acid metabolism, lipid metabolism, and glycolysis pathway were down-regulated in the COMB group when compared with the H group. Conclusions The combination of nicotinamide and butyrate sodium may improve muscle quality by enhancing mitochondrial function and antioxidant capacity, inhibiting inflammatory response and glycolysis, and promoting muscle development and hyaluronic acid synthesis.
Collapse
Affiliation(s)
- Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Youli Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tahir Mahmood
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Jimenez AG, Ruhs EC, Tobin KJ, Anderson KN, Le Pogam A, Regimbald L, Vézina F. Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell. J Exp Biol 2020; 223:jeb218826. [PMID: 32165437 DOI: 10.1242/jeb.218826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 01/21/2023]
Abstract
Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches -10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to -20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (-5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly.
Collapse
Affiliation(s)
| | - Emily Cornelius Ruhs
- Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada G6V 0A6
| | - Kailey J Tobin
- Colgate University, Department of Biology, Hamilton, NY 13346 , USA
| | - Katie N Anderson
- Colgate University, Department of Biology, Hamilton, NY 13346 , USA
| | - Audrey Le Pogam
- Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada G6V 0A6
| | - Lyette Regimbald
- Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada G6V 0A6
| | - François Vézina
- Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada G6V 0A6
| |
Collapse
|
12
|
Jimenez AG, O'Connor ES, Tobin KJ, Anderson KN, Winward JD, Fleming A, Winner C, Chinchilli E, Maya A, Carlson K, Downs CJ. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress. Integr Comp Biol 2020; 59:953-969. [PMID: 30924869 DOI: 10.1093/icb/icz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions.
Collapse
Affiliation(s)
- A G Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - E S O'Connor
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K J Tobin
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K N Anderson
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - J D Winward
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - A Fleming
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - C Winner
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - E Chinchilli
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - A Maya
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - K Carlson
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - C J Downs
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
13
|
Sawecki J, Miros E, Border SE, Dijkstra PD. Reproduction and maternal care increase oxidative stress in a mouthbrooding cichlid fish. Behav Ecol 2019. [DOI: 10.1093/beheco/arz133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractInvestment in reproduction and postzygotic parental care is an energetically costly yet fundamental aspect of the life-history strategies in many species. Recently, oxidative stress has received attention as a potential mediator in the trade-off between reproduction, growth, and survival. During activities that increase metabolic activity, such as providing offspring care, an overproduction of reactive oxygen species can occur that cannot be counteracted by antioxidants, leading to oxidative stress and tissue damage. Here, we investigated the oxidative costs of reproduction and maternal care over the course of the reproductive cycle in a mouthbrooding cichlid fish within socially stable and unstable environments. We manipulated social stability by disrupting the habitat in socially unstable tanks. We expected to see an increase in the burden of maternal care within unstable environments due to increased male harassment of females as a byproduct of increased male–male aggression. We found that brooding females have higher levels of oxidative stress than nonbrooding females and oxidative stress fluctuates throughout the reproductive cycle. These fluctuations were driven by a spike in reactive oxygen metabolites at the beginning of brood care followed by an increase in antioxidant defense. Surprisingly, the link between reproduction and oxidative stress was not different between females from stable or unstable environments. Our study illustrates a more complete picture of the physiological costs of reproduction and parental care throughout different stages of care rather than a simplistic end-point observation of how reproduction and parental care affect an individual.
Collapse
Affiliation(s)
- Jacob Sawecki
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Emily Miros
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Shana E Border
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
14
|
Xu DL, Xu MM, Wang DH. Effect of temperature on antioxidant defense and innate immunity in Brandt's voles. Zool Res 2019; 40:305-316. [PMID: 31310064 PMCID: PMC6680122 DOI: 10.24272/j.issn.2095-8137.2019.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/22/2019] [Indexed: 11/23/2022] Open
Abstract
Ambient temperature is an important factor influencing many physiological processes, including antioxidant defense and immunity. In the present study, we tested the hypothesis that antioxidant defense and immunity are suppressed by high and low temperature treatment in Brandt's voles (Lasiopodomys brandtii). Thirty male voles were randomly assigned into different temperature groups (4, 23, and 32 °C, n=10 for each group), with the treatment course lasting for 27 d. Results showed that low temperature increased gross energy intake (GEI) and liver, heart, and kidney mass, but decreased body fat mass and dry carcass mass. With the decline in temperature, hydrogen peroxide (H2O2) concentration, which is indicative of reactive oxygen species (ROS) levels, increased in the liver, decreased in the heart, and was unchanged in the kidney, testis, and small intestine. Lipid peroxidation indicated by malonaldehyde (MDA) content in the liver, heart, kidney, testis, and small intestine did not differ among groups, implying that high and low temperature did not cause oxidative damage. Similarly, superoxide dismutase (SOD) and catalase (CAT) activities and total antioxidant capacity (T-AOC) in the five tissues did not respond to low or high temperature, except for elevation of CAT activity in the testis upon cold exposure. Bacteria killing capacity, which is indicative of innate immunity, was nearly suppressed in the 4 °C group in contrast to the 23 °C group, whereas spleen mass and white blood cells were unaffected by temperature treatment. The levels of testosterone, but not corticosterone, were influenced by temperature treatment, though neither were correlated with innate immunity, H2O2 and MDA levels, or SOD, CAT, and T-AOC activity in any detected tissues. Overall, these results showed that temperature had different influences on oxidative stress, antioxidant enzymes, and immunity, which depended on the tissues and parameters tested. Up-regulation or maintenance of antioxidant defense might be an important mechanism for voles to survive highly variable environmental temperatures.
Collapse
Affiliation(s)
- De-Li Xu
- College of Life Sciences, Qufu Normal University, Qufu Shandong 273165, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Burraco P, Iglesias-Carrasco M, Cabido C, Gomez-Mestre I. Eucalypt leaf litter impairs growth and development of amphibian larvae, inhibits their antipredator responses and alters their physiology. CONSERVATION PHYSIOLOGY 2018; 6:coy066. [PMID: 30546907 PMCID: PMC6287674 DOI: 10.1093/conphys/coy066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Consequences of human actions like global warming, spread of exotic species or resource consumption are pushing species to extinction. Even species considered to be at low extinction risk often show signs of local declines. Here, we evaluate the impact of eucalypt plantations, the best-known exotic tree species worldwide and its interaction with temperature and predators on amphibian development, growth, antipredator responses and physiology. For this purpose, we applied a fully factorial experiment crossing two types of leaf litter (native oak or eucalypt), two temperatures (15 and 20°C) and presence/absence of native predators. We found that leachates of eucalypt leaf litter reduced amphibian development and growth, compromised their antipredator responses and altered their metabolic rate. Increased temperature itself also posed serious alterations on development, growth, antioxidant ability and the immune status of tadpoles. However, the combined effects of eucalypt leaf litter and increased temperature were additive, not synergistic. Therefore, we show that non-lethal levels of a globally spread disruptor such as leachates from eucalypt leaf litter can seriously impact the life history and physiology of native amphibian populations. This study highlights the need to evaluate the status of wild populations exposed to human activities even if not at an obvious immediate risk of extinction, based on reliable stress markers, in order to anticipate demographic declines that may be hard to reverse once started. Replacing eucalypt plantations with native trees in protected areas would help improving the health of local amphibian larvae. In zones of economic interest, we would recommend providing patches of native vegetation around ponds and removing eucalypt leaf litter from pond basins during their dry phase.
Collapse
Affiliation(s)
- Pablo Burraco
- Ecology, Evolution and Development Group, Doñana Biological Station (CSIC), C/ Americo Vespucio 26, Sevilla, Spain
- Evolutionary Biology Centre, Uppsala University Norbyvägen 18 D, Uppsala, Sweden
| | - Maider Iglesias-Carrasco
- Department of Evolutionary Ecology, National Museum of Natural History (CSIC), Calle de José Gutiérrez Abascal, 2, Madrid, Spain
- Department of Herpetology, Aranzadi Society of Sciences, Zorroagagaina, 11, San Sebastian, Spain
- Research School of Biology, Australian National University, 134, Linnaeus Way, Acton ACT Canberra, ACT, Australia
| | - Carlos Cabido
- Department of Herpetology, Aranzadi Society of Sciences, Zorroagagaina, 11, San Sebastian, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Doñana Biological Station (CSIC), C/ Americo Vespucio 26, Sevilla, Spain
| |
Collapse
|
16
|
Casagrande S, Hau M. Enzymatic antioxidants but not baseline glucocorticoids mediate the reproduction-survival trade-off in a wild bird. Proc Biol Sci 2018; 285:rspb.2018.2141. [PMID: 30487312 DOI: 10.1098/rspb.2018.2141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The trade-off between reproductive investment and survival is central to life-history theory, but the relative importance and the complex interactions among the physiological mechanisms mediating it are still debated. Here we experimentally tested whether baseline glucocorticoid hormones, the redox system or their interaction mediate reproductive investment-survival trade-offs in wild great tits (Parus major). We increased the workload of parental males by clipping three feathers on each wing, and 5 days later determined effects on baseline corticosterone concentrations (Cort), redox state (reactive oxygen metabolites, protein carbonyls, glutathione peroxidase [GPx], total non-enzymatic antioxidants), body mass, body condition, reproductive success and survival. Feather-clipping did not affect fledgling numbers, chick body condition, nest provisioning rates or survival compared with controls. However, feather-clipped males lost mass and increased both Cort and GPx concentrations. Within feather-clipped individuals, GPx increases were positively associated with reproductive investment (i.e. male nest provisioning). Furthermore, within all individuals, males that increased GPx suffered reduced survival rates. Baseline Cort increases were related to mass loss but not to redox state, nest provisioning or male survival. Our findings provide experimental evidence that changes in the redox system are associated with the trade-off between reproductive investment and survival, while baseline Cort may support this trade-off indirectly through a link with body condition. These results also emphasize that plastic changes in individuals, rather than static levels of physiological signals, may mediate life-history trade-offs.
Collapse
Affiliation(s)
- Stefania Casagrande
- Department of Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Starnberg, Germany
| | - Michaela Hau
- Department of Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Starnberg, Germany
| |
Collapse
|
17
|
Wei H, Zhang R, Su Y, Bi Y, Li X, Zhang X, Li J, Bao J. Effects of Acute Cold Stress After Long-Term Cold Stimulation on Antioxidant Status, Heat Shock Proteins, Inflammation and Immune Cytokines in Broiler Heart. Front Physiol 2018; 9:1589. [PMID: 30483152 PMCID: PMC6243113 DOI: 10.3389/fphys.2018.01589] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
To investigate the effects of acute cold stress (ACS) on chicken heart after cold stimulation, female broilers were raised in either normal (C) or gradually decreasing temperatures (CS I and CS II) for 34 days followed by a 24 h ACS at 7°C. Cardiac tissues were collected from the pre-ACS and ACS time points to analyze the histopathological changes, antioxidant status and the expression of heat shock proteins, inflammatory factors and immune-related cytokines. The CS II heart tissues showed shrunken cell membranes and nuclei, disordered or ruptured myocardial fibers, higher MDA content and upregulation in HSP27, HSP40, HSP70, NF-κB, COX-2, PTGEs, iNOS, TNF-α and IL-4 mRNAs, and in protein levels of HSP40, NF-κB and iNOS and reduction in CAT, GSH-px and SOD activity, as well as HSP90 and IFN-γ levels compared to the control tissues before ACS. In contrast, the HSPs were significantly increased, and the inflammatory and immune related factors were unaltered prior to the ACS in the CS I compared to the C group. Following ACS, MDA content was significantly increased and antioxidant activity was significantly decreased in the CS I and CS II groups compared to the C group. The levels of HSP27, HSP70, HSP90, inflammatory factors and IL-4 were significantly reduced and that of IFN-γ was significantly increased in CS I broiler hearts; the reverse trends were seen in CS II relative to CS I. Compared to the pre-ACS levels, that of HSP27, HSP40, HSP60, inflammatory factors and IL-4 were increased and IFN-γ was decreased in the C and CS II groups after ACS. Therefore, cold stimulation at drastically lower temperatures induced cardiac damage, which was further aggravated by ACS. In contrast, cold stimulation at only 3°C lower than normal temperature improved the adaptability of the broilers to ACS.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yingying Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Morosinotto C, Rainio M, Ruuskanen S, Korpimäki E. Antioxidant Enzyme Activities Vary with Predation Risk and Environmental Conditions in Free-Living Passerine Birds. Physiol Biochem Zool 2018; 91:837-848. [PMID: 29494281 DOI: 10.1086/697087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Prolonged physiological stress response may lead to an excessive production of reactive oxygen species (ROS) and ultimately to oxidative stress and severe fitness costs. We investigated whether natural variation in predation risk, induced by pygmy owls (Glaucidium passerinum), modifies the oxidative status of two free-living food-supplemented passerine bird species-the great tit (Parus major) and the willow tit (Poecile montanus)-in March 2012 and 2013. Predation risk significantly affected antioxidant enzyme activities of willow tits. Antioxidant enzyme activities (principal component factor 2 [PC2] representing glutathione-S-transferase and superoxide dismutase activities) were higher in high predation risk areas in 2013 than in low predation risk areas in the same year. Higher enzyme activities may suggest higher ROS production in birds living under high predation risk. In addition, antioxidant enzyme activities (PC2) were also higher in high predation risk areas in 2013 than in high predation risk areas in the previous year, 2012. This may represent variation in the risk represented by pygmy owls, which is probably inversely related to the natural fluctuations in the densities of their main prey, voles. In willow tits, PC1 (representing catalase, total glutathione, the ratio of reduced to oxidized glutathione, and protein carbonylation) was not affected by perceived predation risk, nor were antioxidant levels or enzyme activities in great tits. Higher enzyme activities observed in willow tits suggest that predator presence can modify the antioxidant status of avian prey, but the response also seem to be influenced by other environmental characteristics, like harsh winter conditions.
Collapse
|
19
|
Su Y, Wei H, Bi Y, Wang Y, Zhao P, Zhang R, Li X, Li J, Bao J. Pre‐cold acclimation improves the immune function of trachea and resistance to cold stress in broilers. J Cell Physiol 2018; 234:7198-7212. [DOI: 10.1002/jcp.27473] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yingying Su
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Haidong Wei
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Yanju Bi
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Yanan Wang
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Peng Zhao
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Runxiang Zhang
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Xiang Li
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Jianhong Li
- Laboratory of Genetics, College of Life Science, Northeast Agricultural University Harbin China
| | - Jun Bao
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| |
Collapse
|
20
|
Farcas AD, Mot AC, Zagrean-Tuza C, Toma V, Cimpoiu C, Hosu A, Parvu M, Roman I, Silaghi-Dumitrescu R. Chemo-mapping and biochemical-modulatory and antioxidant/prooxidant effect of Galium verum extract during acute restraint and dark stress in female rats. PLoS One 2018; 13:e0200022. [PMID: 29969484 PMCID: PMC6029781 DOI: 10.1371/journal.pone.0200022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022] Open
Abstract
Galium verum is a well-known medicinal plant which is used in various pathologies. G. verum extracts are characterized here using chromatography, where among the rich pool of phenolic acids of flavonoids two known anti-stress modulators, chlorogenic acid and rutin are identified in high quantities. Additionally, the extracts are characterized using a series of in vitro assays (EPR, DPPH, TPC and TEAC). Considering the chemical findings, the potential beneficial effects of the G. verum extract are explored here in a living organism exposed to stress induced oxidative damages. Thus, the biochemical-modulatory and antioxidant roles of two doses of G. verum extract are examined in animals exposed to acute restraint and dark stress (S). The animals were divided in groups [control, S, SG1 (exposed to 25 mg G. verum extract), SG2 (50 mg extract)]. Increased levels of lipid peroxidation (TBARS from 4.43 to 8.06 nmol/mL), corticosterone from 0.43 to 1.96 μg/dL and epinephrine from 44.43 to 126.7 μg/mL, as well as decreased antioxidant enzymes activities (SOD/CAT) were observed in the S group. The G. verum extract afforded a near-normal equilibrium within the biochemical parameters of animals exposed to RS, by reducing oxidative damage (TBARS at a 3.73 nmol/mL; CS at 0.90 μg/dL; EP at 63.72 μg/mL) and by restoring the antioxidant balance.
Collapse
Affiliation(s)
- Anca D. Farcas
- Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Institute of Biological Research, Cluj-Napoca, branch of NIRDSB, București, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Augustin C. Mot
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Cezara Zagrean-Tuza
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Vlad Toma
- Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Institute of Biological Research, Cluj-Napoca, branch of NIRDSB, București, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Anamaria Hosu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Marcel Parvu
- Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Ioana Roman
- Institute of Biological Research, Cluj-Napoca, branch of NIRDSB, București, Romania
| | - Radu Silaghi-Dumitrescu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
21
|
Li G, Zhang Y, Ni Y, Wang Y, Xu B, Guo X. Identification of a melatonin receptor type 1A gene (AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress. Naturwissenschaften 2018; 105:24. [DOI: 10.1007/s00114-018-1546-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
|
22
|
Zhang C, Yang L, Zhao X, Chen X, Wang L, Geng Z. Effect of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1216-1221. [PMID: 28741661 DOI: 10.1002/jsfa.8576] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The naturally occurring polyphenol resveratrol has been acknowledged with many beneficial biological effects. The aim of this study was to evaluate the influence of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers. One hundred and eighty 21-day-old male Cobb broilers were randomly assigned to two groups and fed on a 0 mg kg-1 or 400 mg kg-1 resveratrol-supplemented diet for 21 days. Then, chickens were slaughtered and pectoralis major muscle (PM) samples were collected for analysis. RESULTS The results showed that resveratrol not only tended to increase (P < 0.10) PM pH24h but also significantly decreased (P < 0.05) PM L*45min , pH decline, drip loss and lactate content. Meanwhile, PM total antioxidative capacity and catalase activity were significantly increased (P < 0.05) by resveratrol, while malondialdehyde content was decreased (P < 0.10). Moreover, resveratrol significantly increased (P < 0.05) PM peroxisome proliferator-activated receptor γ coactivator 1α and nuclear respiratory factor 1 mRNA levels, along with increased (P < 0.05) citrate synthase activity. CONCLUSION Resveratrol can be used as a feed additive to improve meat quality of broilers, which may be associated with improved muscle antioxidative status and mitochondrial biogenesis. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaohui Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Li Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
23
|
Zhang W, Niu C, Jia H, Chen X. Effects of acute cold exposure on oxidative balance and total antioxidant capacity in juvenile Chinese soft-shelled turtle, Pelodiscus sinensis. Integr Zool 2017; 12:371-378. [PMID: 27991724 DOI: 10.1111/1749-4877.12247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute cold exposure may disturb the physiological homeostasis of the body in ectotherms. To date, there has been no information on the effects of cold exposure on homeostasis of reactive oxygen species (ROS) or antioxidant defense response in the Chinese soft-shelled turtle, Pelodiscus sinensis. In this study, P. sinensis juveniles were acclimated at 28 °C, transferred to 8 °C as cold exposure for 12 h, then moved back to 28 °C rewarming for 24 h. We measured the ROS level and total antioxidant capacity (TAC) in the brain, liver, kidney and spleen at 2 and 12 h cold exposure, and at the end of the rewarming period. Malonaldehyde (MDA) and carbonyl protein were used as markers of oxidative damage. Turtles being maintained simultaneously at 28 °C were used as the control group. Cold exposure did not disturb the ROS balance in all 4 tissues, while rewarming raised the ROS level in the brain and kidney of P. sinensis. Cold exposure and rewarming decreased the TAC in the brain, liver and spleen but did not change the TAC in the kidney. MDA and carbonyl protein levels did not increase during the treatment, indicating no oxidative damage in all 4 tissues of P. sinensis. Our results indicated that extreme cold exposure did not impact the inner oxidative balance of P. sinensis, but more ROS was produced during rewarming. P. sinensis showed good tolerance to the harsh temperature change through effective protection of its antioxidant defense system to oxidative damage. This study provides basic data on the stress biology of P. sinensis.
Collapse
Affiliation(s)
- Wenyi Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hui Jia
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xutong Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
24
|
Kopena R, López P, Martín J. Immune challenged male Iberian green lizards may increase the expression of some sexual signals if they have supplementary vitamin E. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2401-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Li J, Huang F, Li X, Su Y, Li H, Bao J. Effects of intermittent cold stimulation on antioxidant capacity and mRNA expression in broilers. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Zhang W, Niu C, Liu Y, Chen B. Glutathione redox balance in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. Comp Biochem Physiol B Biochem Mol Biol 2017; 207:9-14. [DOI: 10.1016/j.cbpb.2017.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
|
27
|
Jothery AHA, Vaanholt LM, Mody N, Arnous A, Lykkesfeldt J, Bünger L, Hill WG, Mitchell SE, Allison DB, Speakman JR. Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance. Sci Rep 2016; 6:36353. [PMID: 27841266 PMCID: PMC5107891 DOI: 10.1038/srep36353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage caused by reactive oxygen species has been hypothesised to underpin the trade-off between reproduction and somatic maintenance, i.e., the life-history-oxidative stress theory. Previous tests of this hypothesis have proved equivocal, and it has been suggested that the variation in responses may be related to the tissues measured. Here, we measured oxidative damage (protein carbonyls, 8-OHdG) and antioxidant protection (enzymatic antioxidant activity and serum antioxidant capacity) in multiple tissues of reproductive (R) and non-reproductive (N) mice from two mouse strains selectively bred for high (H) or low (L) food intake, which differ in their reproductive performance, i.e., H mice have increased milk energy output (MEO) and wean larger pups. Levels of oxidative damage were unchanged (liver) or reduced (brain and serum) in R versus N mice, and no differences in multiple measures of oxidative protection were found between H and L mice in liver (except for Glutathione Peroxidase), brain or mammary glands. Also, there were no associations between an individual’s energetic investment (e.g., MEO) and most of the oxidative stress measures detected in various tissues. These data are inconsistent with the oxidative stress theory, but were more supportive of, but not completely consistent, with the ‘oxidative shielding’ hypothesis.
Collapse
Affiliation(s)
- Aqeel H Al Jothery
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Karbala, Karbala, Iraq
| | - Lobke M Vaanholt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Foresterhill Health Campus, Aberdeen, United Kingdom
| | - Anis Arnous
- Section of Experimental Animal Models, Faculty of Health &Medical Sciences,University of Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Faculty of Health &Medical Sciences,University of Copenhagen, Denmark
| | - Lutz Bünger
- Animal and Veterinary Science Group, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| | - William G Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David B Allison
- School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
28
|
Hamilton KL, Miller BF. What is the evidence for stress resistance and slowed aging? Exp Gerontol 2016; 82:67-72. [DOI: 10.1016/j.exger.2016.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/03/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
|
29
|
Borowiec AS, Sion B, Chalmel F, D Rolland A, Lemonnier L, De Clerck T, Bokhobza A, Derouiche S, Dewailly E, Slomianny C, Mauduit C, Benahmed M, Roudbaraki M, Jégou B, Prevarskaya N, Bidaux G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. FASEB J 2016; 30:3155-70. [PMID: 27317670 PMCID: PMC5001517 DOI: 10.1096/fj.201600257r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022]
Abstract
Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.
Collapse
Affiliation(s)
| | - Benoit Sion
- Pharmacologie Fondamentale et Clinique de la Douleur, INSERM, U1107, Neuro-Dol, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | - Loïc Lemonnier
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France
| | - Tatiana De Clerck
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France
| | - Alexandre Bokhobza
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France
| | - Sandra Derouiche
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France
| | - Etienne Dewailly
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France
| | - Christian Slomianny
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France
| | - Claire Mauduit
- Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, INSERM, U1065, Nice, France; and
| | - Mohamed Benahmed
- Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, INSERM, U1065, Nice, France; and
| | - Morad Roudbaraki
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France
| | - Bernard Jégou
- INSERM, U1085-Irset, Campus de Beaulieu, Rennes, France
| | - Natalia Prevarskaya
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France
| | - Gabriel Bidaux
- Physiologie Cellulaire (PHYCEL), INSERM, U1003, Université Lille, Lille, France; Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), UMR8523, Biophotonic Team, Villeneuve d'Ascq, France
| |
Collapse
|
30
|
Food restriction attenuates oxidative stress in brown adipose tissue of striped hamsters acclimated to a warm temperature. J Therm Biol 2016; 58:72-9. [DOI: 10.1016/j.jtherbio.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/30/2022]
|
31
|
Chen XY, Jiang RS, Geng ZY. Differential effects of two indigenous broilers exposed to cold stress and characters of follicle density and diameter. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2011.e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Kern P, Cramp RL, Seebacher F, Ghanizadeh Kazerouni E, Franklin CE. Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits. Comp Biochem Physiol A Mol Integr Physiol 2015; 190:75-82. [DOI: 10.1016/j.cbpa.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 01/01/2023]
|
33
|
Effect of temperature on oxidative stress, antioxidant levels and uncoupling protein expression in striped hamsters. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:84-90. [DOI: 10.1016/j.cbpa.2015.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 01/18/2023]
|
34
|
Zhao XY, Zhang JY, Cao J, Zhao ZJ. Oxidative Damage Does Not Occur in Striped Hamsters Raising Natural and Experimentally Increased Litter Size. PLoS One 2015; 10:e0141604. [PMID: 26505889 PMCID: PMC4624642 DOI: 10.1371/journal.pone.0141604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
Life-history theory assumes that animals can balance the allocation of limited energy or resources to the competing demands of growth, reproduction and somatic maintenance, while consequently maximizing their fitness. However, somatic damage caused by oxidative stress in reproductive female animals is species-specific or is tissue dependent. In the present study, several markers of oxidative stress (hydrogen peroxide, H2O2 and malonadialdehyde, MDA) and antioxidant (catalase, CAT and total antioxidant capacity, T-AOC) were examined in striped hamsters during different stages of reproduction with experimentally manipulated litter size. Energy intake, resting metabolic rate (RMR), and mRNA expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and UCP3 in skeletal muscle were also examined. H2O2 and MDA levels did not change in BAT and liver, although they significantly decreased in skeletal muscle in the lactating hamsters compared to the non-reproductive group. However, H2O2 levels in the brain were significantly higher in lactating hamsters than non-reproductive controls. Experimentally increasing litter size did not cause oxidative stress in BAT, liver and skeletal muscle, but significantly elevated H2O2 levels in the brain. CAT activity of liver decreased, but CAT and T-AOC activity of BAT, skeletal muscle and the brain did not change in lactating hamsters compared to non-reproductive controls. Both antioxidants did not change with the experimentally increasing litter size. RMR significantly increased, but BAT UCP1 mRNA expression decreased with the experimentally increased litter size, suggesting that it was against simple positive links between metabolic rate, UCP1 expression and free radicals levels. It may suggest that the cost of reproduction has negligible effect on oxidative stress or even attenuates oxidative stress in some active tissues in an extensive range of animal species. But the increasing reproductive effort may cause oxidative stress in the brain, indicating that oxidative stress in response to reproduction is tissue dependent. These findings provide partial support for the life-history theory.
Collapse
Affiliation(s)
- Xiao-Ya Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ji-Ying Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- * E-mail:
| |
Collapse
|
35
|
Zheng GX, Lin JT, Zheng WH, Cao J, Zhao ZJ. Energy intake, oxidative stress and antioxidant in mice during lactation. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:95-102. [PMID: 25855228 DOI: 10.13918/j.issn.2095-8137.2015.2.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reproduction is the highest energy demand period for small mammals, during which both energy intake and expenditure are increased to cope with elevated energy requirements of offspring growth and somatic protection. Oxidative stress life history theory proposed that reactive oxygen species (ROS) were produced in direct proportion to metabolic rate, resulting in oxidative stress and damage to macromolecules. In the present study, several markers of oxidative stress and antioxidants activities were examined in brain, liver, kidneys, skeletal muscle and small intestine in non-lactating (Non-Lac) and lactating (Lac) KM mice. Uncoupling protein (ucps) gene expression was examined in brain, liver and muscle. During peak lactation, gross energy intake was 254% higher in Lac mice than in Non-Lac mice. Levels of H2O2 of Lac mice were 17.7% higher in brain (P<0.05), but 21.1% (P<0.01) and 14.5% (P<0.05) lower in liver and small intestine than that of Non-Lac mice. Malonadialdehyde (MDA) levels of Lac mice were significantly higher in brain, but lower in liver, kidneys, muscle and small intestine than that of Non-Lac mice. Activity of glutathione peroxidase (GSH-PX) was significantly decreased in brain and liver in the Lac group compared with that in the Non-Lac group. Total antioxidant capacity (T-AOC) activity of Lac mice was significantly higher in muscle, but lower in kidneys than Non-Lac mice. Ucp4 and ucp5 gene expression of brain was 394% and 577% higher in Lac mice than in Non-Lac mice. These findings suggest that KM mice show tissue-dependent changes in both oxidative stress and antioxidants. Activities of antioxidants may be regulated physiologically in response to the elevated ROS production in several tissues during peak lactation. Regulations of brain ucp4 and ucp5 gene expression may be involved in the prevention of oxidative damage to the tissue.
Collapse
Affiliation(s)
- Guo-Xiao Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiang-Tao Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei-Hong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
36
|
Treidel LA, Carter AW, Bowden RM. Temperature experienced during incubation affects antioxidant capacity but not oxidative damage in hatchling red-eared slider turtles (Trachemys scripta elegans). J Exp Biol 2015; 219:561-70. [DOI: 10.1242/jeb.128843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022]
Abstract
Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine if temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5°C) or daily fluctuating temperature incubation (28.7±3°C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes; 28.7±3°C fluctuations every 12 (Hyper), 24 (Normal), or 48 hours (Hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5°C (Low), 27.1°C (Medium), or 27.7°C (High). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that while sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially due to temperature mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival.
Collapse
Affiliation(s)
- L. A. Treidel
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| | - A. W. Carter
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| | - R. M. Bowden
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| |
Collapse
|
37
|
Chen KX, Wang CM, Wang GY, Zhao ZJ. Energy budget, oxidative stress and antioxidant in striped hamster acclimated to moderate cold and warm temperatures. J Therm Biol 2014; 44:35-40. [DOI: 10.1016/j.jtherbio.2014.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 11/30/2022]
|
38
|
Asha Devi S, Manjula KR. Intermittent cold-induced hippocampal oxidative stress is associated with changes in the plasma lipid composition and is modifiable by vitamins C and E in old rats. Neurochem Int 2014; 74:46-52. [PMID: 24834867 DOI: 10.1016/j.neuint.2014.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 11/28/2022]
Abstract
This study primarily investigated the effects of intermittent cold exposure (ICE) on oxidative stress (OS) in the hippocampus(HC) and plasma lipid profile of old male rats. Secondly, it evaluated structural changes in the hippocampus region of the rat's brain. Thirdly, it attempted an evaluation of the effectiveness of the combined supplement of vitamins C and E in alleviating cold stress in terms of these biochemical parameters. Thirty male rats aged 24 months were divided into groups of five each: control (CON), cold-exposed at 10 °C (C10), cold-exposed at 5 °C (C5), supplemented control (CON+S), and supplemented cold-exposed at either 5 °C (C5+S) or 10 °C (C10+S). The rats were on a daily supplement of vitamin C and vitamin E. Cold exposure lasted 2 h/day for 4 weeks. Rats showed increased levels of hydrogen peroxide (H2O2), and thiobarbituric acid reactive substances (TBARS) in the HC at 10 °C with further increase at 5 °C. Cold also induced neuronal loss in the hippocampus with concomitant elevations in total cholesterol (TCH), triglycerides (TG) and low-density lipoproteins (LDL-C) levels, and a depletion in high-density lipoprotein (HDL-C). A notable feature was the hyperglycaemic effects of ICE and depleted levels of vitamins C and E in the hippocampus and plasma while supplementation increased their levels. More importantly, a positive correlation was observed between plasmatic LDL-C, TCH and TG and hippocampal TBARS and H2O2 levels. Further, intensity of cold emerged as a significant factor impacting the responses to vitamin C and E supplementation. These results suggest that cold-induced changes in the plasma lipid profile correlate with OS in the hippocampus, and that vitamin C and E together are effective in protecting from metabolic and possible cognitive consequences in the old under cold exposures.
Collapse
Affiliation(s)
- S Asha Devi
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore 560 056, India.
| | - K R Manjula
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore 560 056, India
| |
Collapse
|
39
|
Different susceptibility of prefrontal cortex and hippocampus to oxidative stress following chronic social isolation stress. Mol Cell Biochem 2014; 393:43-57. [DOI: 10.1007/s11010-014-2045-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022]
|
40
|
Identification of differentially expressed genes in hypothalamus of chicken during cold stress. Mol Biol Rep 2014; 41:2243-8. [DOI: 10.1007/s11033-014-3075-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 01/04/2014] [Indexed: 11/25/2022]
|
41
|
Speakman JR, Garratt M. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. Bioessays 2013; 36:93-106. [DOI: 10.1002/bies.201300108] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- John R. Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- Institute of Biological and Environmental sciences; University of Aberdeen; Aberdeen Scotland UK
| | - Michael Garratt
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| |
Collapse
|
42
|
Yang DB, Xu YC, Wang DH, Speakman JR. Effects of reproduction on immuno-suppression and oxidative damage, and hence support or otherwise for their roles as mechanisms underpinning life history trade-offs, are tissue and assay dependent. ACTA ACUST UNITED AC 2013; 216:4242-50. [PMID: 23997195 DOI: 10.1242/jeb.092049] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life history parameters appear to be traded off against each other, but the physiological mechanisms involved remain unclear. One hypothesis is that potentially energetically costly processes such as immune function and protection from oxidative stress may be compromised during reproductive attempts because of selective resource allocation. Lower temperatures also impose energy costs, and hence allocation decisions might be more pronounced when animals are forced to reproduce in the cold. Here, we experimentally tested whether reproduction at different ambient temperatures was associated with elevated oxidative stress and suppressed immune function in Mongolian gerbils (Meriones unguiculatus). Using a variety of different markers for both immune function and oxidative stress, we found that some measures of immune function (serum bactericidal capacity and size of the thymus) were significantly suppressed, while some measures of oxidative protection [serum superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity] were also reduced, and a marker of oxidative damage (protein carbonyls in serum) was increased in lactating compared with non-reproductive gerbils. These changes were in line with the selective resource allocation predictions. However, the phytohaemagglutinin response and serum total immunoglobulin (IgG) were not suppressed, and other markers of oxidative damage [malondialdehyde (MDA) (TBARS) and protein carbonyls in the liver] were actually lower in lactating compared with non-reproductive gerbils, consistent with increased levels of SOD activity and total antioxidant capacity in the liver. These latter changes were opposite of the expectations based on resource allocation. Furthermore, other measures of protection (GPx levels in the liver and protein thiols in both serum and liver) and damage [MDA (TBARS) in serum] were unrelated to reproductive status. Ambient temperature differences did not impact on these patterns. Collectively, our results indicated that the inferred effects of reproduction on immunosuppression and oxidative damage, and hence support or otherwise for particular physiological mechanisms that underpin life history trade-offs, are critically dependent on the exact markers and tissues used. This may be because during reproduction individuals selectively allocate protection to some key tissues, but sacrifice protection of others.
Collapse
Affiliation(s)
- Deng-Bao Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
43
|
Zlatković J, Bernardi RE, Filipović D. Protective effect of Hsp70i against chronic social isolation stress in the rat hippocampus. J Neural Transm (Vienna) 2013; 121:3-14. [PMID: 23851625 DOI: 10.1007/s00702-013-1066-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/02/2013] [Indexed: 12/29/2022]
Abstract
Stress-related glucocorticoids and glutamate release has been implicated in depression. Glutamate neurotoxicity is mediated, in part, by the production of nitric oxide via nitric oxide synthase (NOS) isoforms and mitochondrial damage. We previously reported that chronic social isolation stress triggers proapoptotic signaling in the rat prefrontal cortex, but not in the hippocampus. Given that the hippocampus is highly sensitive to stress, we examined signaling cascades underlying the hippocampal cellular protection through the NOS pathway, antioxidant capacity and heat shock protein (Hsp) expression. We investigated neuronal (nNOS) and inducible (iNOS) protein levels, subcellular protein distributions of nuclear factor-κB (NF-κB), CuZnSOD and MnSOD activity, reduced glutathione (GSH), stress-inducible Hsp70 (Hsp70i) protein expression and serum corticosterone (CORT) levels of rats exposed to 21 days of chronic social isolation, an animal model of depression, alone or in combination with 2 h of acute immobilization or cold stress (combined stress). Both acute stressors elevated CORT, with lesser magnitude increase in chronically isolated rats exposed to novel acute stress as compared to acute stressors alone, indicating compromised HPA axis activity. Acute cold decreased nuclear CuZnSOD activity and stimulated NF-κB nuclear translocation. Chronic social isolation resulted in no activation of NF-κB, but led to decreased GSH, iNOS and increased nNOS and Hsp70i levels, alterations that remained following combined stressors. Decreased mitochondrial MnSOD activity after combined stressors suggests compromised detoxifying capacity. These data indicate that Hsp70i upregulation may provide hippocampal cellular protection against chronic social isolation stress mediated by downregulation of iNOS protein expression through suppression of NF-κB activation.
Collapse
Affiliation(s)
- Jelena Zlatković
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, P. O. Box 522-090, 11001, Belgrade, Serbia
| | | | | |
Collapse
|
44
|
Chronic social isolation induces NF-κB activation and upregulation of iNOS protein expression in rat prefrontal cortex. Neurochem Int 2013; 63:172-9. [PMID: 23770205 DOI: 10.1016/j.neuint.2013.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 06/03/2013] [Indexed: 01/13/2023]
Abstract
Exposure of an organism to stress, results in oxidative stress and increased nitric oxide (NO) production in the brain. The role of the processes caused by chronic stress in the prefrontal cortex has not been fully investigated. Considering that chronic stress increases NO production by the enzyme nitric oxide synthase (NOS), we examined the cytosolic neuronal (nNOS) or inducible (iNOS) protein levels in the prefrontal cortex of rats exposed to 21d of chronic social isolation stress, an animal model of depression, alone or in combination with 2h of acute immobilization or cold (4°C) stress (combined stress). Antioxidative status via cytosolic CuZnSOD and mitochondrial MnSOD activity, cytosolic redox status via reduced glutathione (GSH) concentration were determined. Furthermore, cytosolic inducible heat shock protein 70 (Hsp70i), cytosolic/nuclear distributions of NF-κB and serum corticosterone (CORT) were also investigated to elucidate the possible mechanism involved in the cellular NOS pathway. Our results showed that both acute stressors led to increases of CORT and nNOS protein while iNOS protein expression was unaffected. In contrast to the acute stress, chronic social isolation compromised hypothalamic-pituitary-adrenal axis functioning such that the normal stress response was impaired following subsequent acute stressors. Downregulated redox GSH status as well as decreased activity of CuZnSOD and MnSOD suggests the existence of oxidative stress which remained as such following combined stressors. Changes in redox-status associated with decreased Hsp70i protein expression enabled NF-κB translocation into the nucleus, causing increased cytosolic nNOS and iNOS protein expression. Results suggest that NOS signaling pathway plays a differential role between acute and chronic stress whereby state of oxidative/nitrosative stress after chronic social isolation is caused, at least in part, by NF-κB activation and increased iNOS protein expression.
Collapse
|
45
|
Protection Against Oxidative Stress Caused by Intermittent Cold Exposure by Combined Supplementation with Vitamin E and C in the Aging Rat Hypothalamus. Neurochem Res 2013; 38:876-85. [DOI: 10.1007/s11064-013-0993-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/27/2013] [Accepted: 01/29/2013] [Indexed: 11/26/2022]
|
46
|
Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches. J Comp Physiol B 2013; 183:675-83. [PMID: 23358864 DOI: 10.1007/s00360-013-0745-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is therefore often assumed that oxidative stress is proportional to energy consumption. In mammals, an increased metabolic rate induced by cold exposure generally increases oxidative stress. However, compared to mammals, birds generate fewer free radicals per ATP produced and hence it is not obvious that, in birds, a cold-induced increase of metabolic rate increase oxidative stress. We tested whether cold-induced increase in metabolic rate increased oxidative stress in zebra finches by exposing individuals to cold and warm overnight temperatures. We registered metabolic rate and plasma levels of non-enzymatic antioxidants and reactive oxygen metabolites (ROMs), a measure of oxidative damage. Metabolic rate was on average 88 % higher in cold compared to warm temperature, with females being stronger affected than males. However, temperature had no effect on plasma antioxidants or our measure of oxidative damage. Middle-age birds had higher levels of plasma antioxidants than younger and older birds, but age was unrelated to ROMs. Birds showed repeatability of plasma ROMs across temperatures but not of non-enzymatic antioxidants. In contrast to similar studies in mammals, our results do not show evidence of increased oxidative stress in plasma after an acute cold-induced increase of metabolic rate but research in more bird species is needed to assess the generality of this pattern.
Collapse
|
47
|
Ostojić JN, Mladenović D, Ninković M, Vučević D, Bondžić K, Ješić-Vukićević R, Radosavljević T. The effects of cold-induced stress on liver oxidative injury during binge drinking. Hum Exp Toxicol 2012; 31:387-96. [PMID: 22297701 DOI: 10.1177/0960327111433899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of our study was to evaluate the effects of cold stress on hepatic oxidative damage during binge drinking in rats. Male Wistar rats were divided into the following groups: group 1: control; group 2: ethanol-treated; group 3: stress-exposed; group 4: stress-exposed and ethanol-treated group. Oxidative and nitrosative stress parameters in the liver were determined spectrophotometrically, 12 h after treatment. Liver malondialdehyde concentration was significantly higher in group 4 when compared with groups 2 and 3. The highest increase in nitric oxide concentration was demonstrated in group 4 in comparison with groups 2 and 3. Superoxide dismutase (SOD) activity was significantly lower in group 4 when compared with groups 2 and 3. Ethanol administration induced a larger decrease in the activity of copper-/zinc-SOD in group 4 in comparison with group 2. Activity of manganese-SOD (Mn-SOD) was significantly higher in groups 3 and 4, when compared with control values, but the greatest increase in the activity of Mn-SOD was demonstrated in group 2. We also evaluated statistically significant decrease in the level of reduced gluthatione in the liver of group 4 in comparison with group 3. Based on our study, it can be concluded that cold-exposed stress and binge ethanol drinking have additive effects in imbalance between pro-oxidant and antioxidant defense system in liver.
Collapse
|
48
|
Chen X, Huang Z, Chen D, Jia G, Mao X, Wu X. Role of NYGGF4 in insulin resistance. Mol Biol Rep 2011; 39:5367-71. [PMID: 22160469 DOI: 10.1007/s11033-011-1336-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 12/03/2011] [Indexed: 01/07/2023]
Abstract
Insulin resistance is a clinical condition that is characterized by reducing glucose uptake in response to insulin. A major factor in the development of insulin resistance syndrome is obesity. NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese subjects. NYGGF4 induced the secretion of FFAs and TNF-α and caused mitochondrial dysfunction, which may cause insulin resistance. This review will summarize the effect of NYGGF4 on the adipogenesis, glucose uptake and mitochondrial dysfunction in vitro, and the possible mechanism and signal pathway of NYGGF4 for insulin resistance.
Collapse
Affiliation(s)
- Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, 625014, Sichuan, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
49
|
Celic T, Spanjol J, Grskovic A, Markic D, Prebilic I, Fuckar Z, Bobinac D. Bone Morphogenetic Protein-7 Reduces Cold Ischemic Injury in Rat Kidney. Transplant Proc 2011; 43:2505-9. [DOI: 10.1016/j.transproceed.2011.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/02/2011] [Indexed: 01/22/2023]
|
50
|
Na JM, Im HN, Lee KH. Expression and Purification of Recombinant Superoxide Dismutase (PaSOD) from Psychromonas arctica in Escherichia coli. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.7.2405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|