1
|
Bačkor M, Goga M, Singh P, Tuptová V. Mechanisms of Copper Toxicity and Tolerance in the Aquatic Moss Taxiphyllum barbieri. PLANTS (BASEL, SWITZERLAND) 2023; 12:3607. [PMID: 37896070 PMCID: PMC10609954 DOI: 10.3390/plants12203607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Aquatic habitats are very frequently polluted with different kinds of xenobiotics, including heavy metals. For biomonitoring studies of aquatic pollution, algae are frequently used, as they do not contain protective cuticle on the surface of their thalli and can accumulate pollutants over the whole surface of thalli. However, this is a feature of most cryptogams. For this reason, we assessed the sensitivity of the aquatic moss Taxiphyllum barbieri (Java moss) to copper excess in a short-term study. Moss T. barbieri belongs to the common aquatic plants originating from Southeast Asia. To test the sensitivity (or tolerance) of the moss to excess Cu, selected concentrations (50, 250 and 500 µM) were employed in our 24 h studies. Total and intracellular Cu accumulation positively correlated with Cu availability in the water. This total and intracellular Cu accumulation was negatively correlated with decreased intracellular K content. Excess Cu negatively affected the composition of assimilation pigments and soluble proteins. Cu caused increased peroxidation of membrane lipids assessed using TBARS assay. Excess Cu decreased GSH to GSSG ratio and ascorbic acid content. We did not observe phytochelatin synthesis in this moss. The roles of selected amino acids, their intermediates and derivatives, as well as S-containing nucleosides and phenolic acids in Cu homeostasis and toxicity or tolerance were evaluated. We assume that this moss has potential for future employment in water quality evaluation.
Collapse
Affiliation(s)
- Martin Bačkor
- Department of Biochemistry and Biotechnology, Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (M.G.); (P.S.); (V.T.)
| | - Michal Goga
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (M.G.); (P.S.); (V.T.)
| | - Pragya Singh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (M.G.); (P.S.); (V.T.)
| | - Viktória Tuptová
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (M.G.); (P.S.); (V.T.)
| |
Collapse
|
2
|
Cani M, Turco F, Butticè S, Vogl UM, Buttigliero C, Novello S, Capelletto E. How Does Environmental and Occupational Exposure Contribute to Carcinogenesis in Genitourinary and Lung Cancers? Cancers (Basel) 2023; 15:2836. [PMID: 37345174 PMCID: PMC10216822 DOI: 10.3390/cancers15102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Environmental and occupational exposures have been associated with an increased risk of different types of cancers, although the exact mechanisms of higher carcinogenesis risk are not always well understood. Lung cancer is the leading cause of global cancer mortality, and, also, genitourinary neoplasms are among the main causes of cancer-related deaths in Western countries. The purpose of this review is to describe the main environmental and occupational factors that increase the risk of developing lung and genitourinary cancers and to investigate carcinogenesis mechanisms that link these agents to cancer onset. Further objectives are to identify methods for the prevention or the early detection of carcinogenic agents and, therefore, to reduce the risk of developing these cancers or to detect them at earlier stages.
Collapse
Affiliation(s)
- Massimiliano Cani
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Fabio Turco
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Simona Butticè
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Ursula Maria Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Consuelo Buttigliero
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Silvia Novello
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Enrica Capelletto
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| |
Collapse
|
3
|
Zhang X, Xu L, Ma W, Shi B, Liu Q, Song Y, Fang C, Liu P, Qiao S, Cai J, Zhang Z. N-acetyl-L-cysteine alleviated the oxidative stress-induced inflammation and necroptosis caused by excessive NiCl2 in primary spleen lymphocytes. Front Immunol 2023; 14:1146645. [PMID: 37090713 PMCID: PMC10117970 DOI: 10.3389/fimmu.2023.1146645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionNickel (Ni) is widely used in industrial manufacturing and daily life due to its excellent physical and chemical properties. However, Ni has the potential to harm animals' immune system, and spleen is a typical immune organ. Therefore, it is crucial to understand the mechanism of NiCl2 damage to the spleen. The purpose of this study is to investigate the effects of different concentrations of NiCl2 exposure and intervening with strong antioxidants on spleen lymphocytes to better understand the damage mechanism of Ni on spleen lymphocytes.MethodsIn this experiment, mice spleen lymphocytes were used as the research object. We first measured the degree of oxidative stress, inflammation, and necroptosis caused by different NiCl2 concentrations. Subsequently, we added the powerful antioxidant N-acetyl-L-cysteine (NAC) and used hydrogen peroxide (H2O2) as the positive control in subsequent experiments.ResultsOur findings demonstrated that NiCl2 could cause spleen lymphocytes to produce a large number of reactive oxygen species (ROS), which reduced the mRNA level of antioxidant enzyme-related genes, the changes in GSH-PX, SOD, T-AOC, and MDA, the same to the mitochondrial membrane potential. ROS caused the body to produce an inflammatory response, which was manifested by tumor necrosis factor (TNF-α) in an immunofluorescence experiment, and the mRNA level of related inflammatory genes significantly increased. In the case of caspase 8 inhibition, TNF-α could cause the occurrence of necroptosis mediated by RIP1, RIP3, and MLKL. AO/EB revealed that spleen lymphocytes exposed to NiCl2 had significant necroptosis, and the mRNA and protein levels of RIP1, RIP3, and MLKL increased significantly. Moreover, the findings demonstrated that NAC acted as an antioxidant to reduce oxidative stress, inflammation, and necroptosis caused by NiCl2 exposure.DiscussionOur findings showed that NiCl2 could cause oxidative stress, inflammation, and necroptosis in mice spleen lymphocytes, which could be mitigated in part by NAC. The study provides a point of reference for understanding the toxicological effect of NiCl2. The study suggests that NAC may be useful in reducing the toxicological effect of NiCl2 on the immune system. The research may contribute to the development of effective measures to prevent and mitigate the toxicological effects of NiCl2 on the immune system.
Collapse
Affiliation(s)
- Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yinghao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Ziwei Zhang, ; Jingzeng Cai,
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- *Correspondence: Ziwei Zhang, ; Jingzeng Cai,
| |
Collapse
|
4
|
Li Z, Kuang H, Li L, Wu M, Liao Z, Zeng K, Ye Y, Fan R. What adverse health effects will environmental heavy metal co-exposure bring us: based on a biological monitoring study of sanitation workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35769-35780. [PMID: 36538233 DOI: 10.1007/s11356-022-24805-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
To investigate the relationship between health effect profile and co-exposure to heavy metal, 254 sanitation workers from Guangzhou, China, were recruited. Ten urinary metals were determined by inductively coupled plasma mass spectrometry. Parameters of physical examination, including blood lipid metabolism, renal function, blood pressure, and lung function, were tested for each participant. The hazard quotients (HQs) of eight heavy metals were evaluated. Cobalt, copper (Cu), molybdenum (Mo), nickel (Ni), and tin (Sn) demonstrated the top five associations with human health with the ∑19β as 2.220, 1.351, 1.234, 0.957, and 0.930, respectively. Most physical examination parameters of workers were under the normal ranges, except the levels of forced mid expiratory flow rate (MMEF75/25), the maximum expiratory flow rate at 25% vital capacity (MEF25) and apolipoprotein B in the first quartile, and the level of uric acid in the third quartile of sanitation works. Moreover, Cu was significantly associated with diastolic pressure, pulse, and high density lipid (p < 0.05). Each unit increase in Mo level was related to a 120% increase odd ratio (OR) of abnormal of systolic pressure, but was significantly and negatively correlated with high density lipoprotein and apolipoprotein A, suggesting that Mo exposure may be a risk factor of cardiovascular disease. Each unit increase in Ni and Sn levels was associated with an increased OR of abnormal rate of MMEF75/25 and MEF25 (p < 0.001), suggesting the increasing risks of respiratory diseases. Sanitation workers exposed to Ni and Pb alone had no carcinogenic risks (HQ < 1). However, 23.8%, 34.6%, and 87.3% of sanitation workers confronted non-carcinogenic risks when exposed to Cu, Mo alone (HQ > 1), or co-exposed to the four heavy metals (HI > 1). Our study preliminarily revealed the potential sensitive health indicators of heavy metal co-exposure, which will provide beneficial health protection suggestions for the occupational populations.
Collapse
Affiliation(s)
- Zhilin Li
- South China Normal University-Panyu Central Hospital Joint Laboratory of Basic and Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, 511486, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hongxuan Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Leizi Li
- South China Normal University-Panyu Central Hospital Joint Laboratory of Basic and Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, 511486, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Maorong Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zengquan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Keqin Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yufeng Ye
- South China Normal University-Panyu Central Hospital Joint Laboratory of Basic and Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, 511486, China.
- Medical Imaging Institute of Panyu, Guangzhou, 511486, China.
| | - Ruifang Fan
- South China Normal University-Panyu Central Hospital Joint Laboratory of Basic and Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, 511486, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
5
|
Kumar A, Jigyasu DK, Kumar A, Subrahmanyam G, Mondal R, Shabnam AA, Cabral-Pinto MMS, Malyan SK, Chaturvedi AK, Gupta DK, Fagodiya RK, Khan SA, Bhatia A. Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. CHEMOSPHERE 2021; 275:129996. [PMID: 33647680 DOI: 10.1016/j.chemosphere.2021.129996] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Nickel (Ni) has been a subject of interest for environmental, physiological, biological scientists due to its dual effect (toxicity and essentiality) in terrestrial biota. In general, the safer limit of Ni is 1.5 μg g-1 in plants and 75-150 μg g-1 in soil. Litreature review indicates that Ni concentrations have been estimated up to 26 g kg-1 in terrestrial, and 0.2 mg L-1 in aquatic resources. In case of vegetables and fruits, mean Ni content has been reported in the range of 0.08-0.26 and 0.03-0.16 mg kg-1. Considering, Ni toxicity and its potential health hazards, there is an urgent need to find out the suitable remedial approaches. Plant vascular (>80%) and cortical (<20%) tissues are the major sequestration site (cation exchange) of absorbed Ni. Deciphering molecular mechanisms in transgenic plants have immense potential for enhancing Ni phytoremediation and microbial remediation efficiency. Further, it has been suggested that integrated bioremediation approaches have a potential futuristic path for Ni decontamination in natural resources. This systematic review provides insight on Ni effects on terrestrial biota including human and further explores its transportation, bioaccumulation through food chain contamination, human health hazards, and possible Ni remediation approaches.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Dharmendra K Jigyasu
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Amit Kumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Gangavarapu Subrahmanyam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Raju Mondal
- Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textiles, Thally Road, Hosur, Tamil Nadu, 635109, India.
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - M M S Cabral-Pinto
- Department of Geosciences, Geobiotec Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee, Uttarakhand, 247667, India.
| | - Ashish K Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, Kerala, 673571, India.
| | - Dipak Kumar Gupta
- ICAR-Central Arid Zone Research Institute Regional Research Station Pali Marwar, Rajasthan, 342003, India.
| | - Ram Kishor Fagodiya
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | - Shakeel A Khan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Arti Bhatia
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
6
|
Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human Health and Environmental Toxicology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E679. [PMID: 31973020 PMCID: PMC7037090 DOI: 10.3390/ijerph17030679] [Citation(s) in RCA: 481] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Nickel is a transition element extensively distributed in the environment, air, water, and soil. It may derive from natural sources and anthropogenic activity. Although nickel is ubiquitous in the environment, its functional role as a trace element for animals and human beings has not been yet recognized. Environmental pollution from nickel may be due to industry, the use of liquid and solid fuels, as well as municipal and industrial waste. Nickel contact can cause a variety of side effects on human health, such as allergy, cardiovascular and kidney diseases, lung fibrosis, lung and nasal cancer. Although the molecular mechanisms of nickel-induced toxicity are not yet clear, mitochondrial dysfunctions and oxidative stress are thought to have a primary and crucial role in the toxicity of this metal. Recently, researchers, trying to characterize the capability of nickel to induce cancer, have found out that epigenetic alterations induced by nickel exposure can perturb the genome. The purpose of this review is to describe the chemical features of nickel in human beings and the mechanisms of its toxicity. Furthermore, the attention is focused on strategies to remove nickel from the environment, such as phytoremediation and phytomining.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| |
Collapse
|
7
|
Åkerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S, Derr R, Odnevall Wallinder I, Hendriks G, Karlsson HL, Johnson G. Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:211-222. [PMID: 29243303 PMCID: PMC5888189 DOI: 10.1002/em.22163] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 05/11/2023]
Abstract
Nickel (Ni) compounds are classified as carcinogenic to humans but the underlying mechanisms are still poorly understood. Furthermore, effects related to nanoparticles (NPs) of Ni have not been fully elucidated. The aim of this study was to investigate genotoxicity and mutagenicity of Ni and NiO NPs and compare the effect to soluble Ni from NiCl2 . We employed different models; i.e., exposure of (1) human bronchial epithelial cells (HBEC) followed by DNA strand break analysis (comet assay and γ-H2AX staining); (2) six different mouse embryonic stem (mES) reporter cell lines (ToxTracker) that are constructed to exhibit fluorescence upon the induction of various pathways of relevance for (geno)toxicity and cancer; and (3) mES cells followed by mutagenicity testing (Hprt assay). The results showed increased DNA strand breaks (comet assay) for the NiO NPs and at higher doses also for the Ni NPs whereas no effects were observed for Ni ions/complexes from NiCl2 . By employing the reporter cell lines, oxidative stress was observed as the main toxic mechanism and protein unfolding occurred at cytotoxic doses for all three Ni-containing materials. Oxidative stress was also detected in the HBEC cells following NP-exposure. None of these materials induced the reporter related to direct DNA damage and stalled replication forks. A small but statistically significant increase in Hprt mutations was observed for NiO but only at one dose. We conclude that Ni and NiO NPs show more pronounced (geno)toxic effects compared to Ni ions/complexes, indicating more serious health concerns. Environ. Mol. Mutagen. 59:211-222, 2018. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Emma Åkerlund
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | - Francesca Cappellini
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | - Sebastiano Di Bucchianico
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | - Shafiqul Islam
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | - Sara Skoglund
- Division of Surface and Corrosion Science, School of Chemical Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden
| | - Remco Derr
- Toxys, Robert Boyleweg 4, 2333 CGLeidenthe Netherlands
| | - Inger Odnevall Wallinder
- Division of Surface and Corrosion Science, School of Chemical Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden
| | - Giel Hendriks
- Toxys, Robert Boyleweg 4, 2333 CGLeidenthe Netherlands
| | - Hanna L. Karlsson
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | | |
Collapse
|
8
|
Metformin alleviates nickel-induced autophagy and apoptosis via inhibition of hexokinase-2, activating lipocalin-2, in human bronchial epithelial cells. Oncotarget 2017; 8:105536-105552. [PMID: 29285270 PMCID: PMC5739657 DOI: 10.18632/oncotarget.22317] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular recycling and degradation process for regulating tumor progression, survival and drug resistance. Nickel compounds have been identified as human carcinogens. However, the role of nickel-induced autophagy in lung carcinogenesis has not yet been fully elucidated. In this study, we determined that hexokinase 2 (HK2), which phosphorylates glucose and regulates autophagy, is the key mediator in nickel-induced autophagy in lung bronchial epithelial cells. We attempted to investigate the effects of the antidiabetic drug metformin on HK2 expression and lung cancer chemoprevention. Our results showed that metformin decreases nickel-induced autophagy and activation of apoptosis through inhibition of HK2 gene, protein and activity. Furthermore, we demonstrated that lipocalin 2 (LCN2), which is released by neutrophils at sites of infection and inflammation is involved in HK2-driven autophagy pathway. Knockdown of endogenous HK2 and LCN2 by shRNA reduced nickel-elicited autophagy and apoptosis, illustrating that metabolic alteration and inflammatory action are important in nickel-elicited carcinogenesis. We also determined the association between nickel-induced autophagy and apoptosis. Inhibition of nickel-induced autophagy abolished apoptotic cell death in chloroquine-treated, shLC3 Beas-2B cells and Atg5−/− MFFs. From TGCA database and immunohistochemistry analysis, HK2 and LCN2 expression increased in lung squamous cell carcinoma and their related adjacent normal tissues. Taken together, our results demonstrated that metformin alleviates NiCl2-induced autophagy and apoptosis via HK2-driven LCN2 activation in human bronchial epithelial cells. This novel mechanism provides a strategy for targeting nickel-elicited lung cancer progression, as well as for preventing HK2 cumulative damage triggered by environmental carcinogens.
Collapse
|
9
|
Halatek T, Stanislawska M, Kaminska I, Cieslak M, Swiercz R, Wasowicz W. The time-dependent health and biochemical effects in rats exposed to stainless steel welding dust and its soluble form. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:265-273. [PMID: 27901646 DOI: 10.1080/10934529.2016.1253397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. The principal objective of this study was to determine the dynamics of toxic effects of inhalation exposure to morphologically rated welding dust from stainless steel welding and its soluble form in TSE System with a dynamic airflow. We assessed the pulmonary toxicity of welding dust in Wistar rats exposed to 60.0 mg/m3 of respirable-size welding dust (mean diameter 1.17 µm) for 2 weeks (6 h/day, 5 days/week); the aerosols were generated in the nose-only exposure chambers (NOEC). An additional aim included the study of the effect of betaine supplementation on oxidative deterioration in rat lung during 2 weeks of exposure to welding dust or water-soluble dust form. The animals were divided into eight groups (n = 8 per group): control, dust, betaine, betaine + dust, soluble-form dust, soluble-form dust + betaine, saline and saline + betaine groups. Rats were euthanized 1 or 2 weeks after the last exposure for assessment of pulmonary toxicity. Differential cell counts, total protein concentrations and cellular enzyme (lactate dehydrogenase-LDH) activities were determined in bronchoalveolar lavage (BAL) fluid, and corticosterone and thiobarbituric acid reactive substances (TBARS) concentrations were assessed in serum. The increase in polymorphonuclear (PMN) leukocytes in BAL fluid (a cytological index of inflammatory responses of the lung) is believed to reflect pulmonary toxicity of heavy metals. Biomarkers of toxicity assessed in bronchoalveolar fluids indicate that the level of the toxic effect depends mainly on the solubility of studied metal compounds; biomarkers that showed treatment effects included: total cell, neutrophil and lymphocyte counts, total protein concentrations, and cellular enzyme (lactate dehydrogenase) activity. Betaine supplementation at 250 mg/kg/day in all study rats groups attenuated stress indices, and corticosterone and TBARS serum levels, and simultaneously stimulated increase of polymorphonuclear cells in BALF of rats. The study confirmed deleterious effect of transitory metals and particles during experimental inhalation exposure to welding dusts, evidenced in the lungs and brain by increased levels of total protein, higher cellular influx, rise of LDH in BALF, elevated TBARS and increased corticosterone in serum of rats. Our result confirm also the hypothesis about the effect of the welding dusts on the oxidative stress responsible for disturbed systemic homeostasis and impairment of calcium regulation.
Collapse
Affiliation(s)
- Tadeusz Halatek
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Magdalena Stanislawska
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Irena Kaminska
- b Scientific Department of Unconventional Technologies and Textiles , Textile Research Institute , Lodz , Poland
| | - Malgorzata Cieslak
- b Scientific Department of Unconventional Technologies and Textiles , Textile Research Institute , Lodz , Poland
| | - Radoslaw Swiercz
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Wojciech Wasowicz
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| |
Collapse
|
10
|
Chang CH, Liu CS, Liu HJ, Huang CP, Huang CY, Hsu HT, Liou SH, Chung CJ. Association between levels of urinary heavy metals and increased risk of urothelial carcinoma. Int J Urol 2015; 23:233-9. [PMID: 26663353 DOI: 10.1111/iju.13024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/01/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate possible sources of exposure to heavy metals in the general population, and to determine the association between urinary heavy metals and urothelial carcinoma risk. METHODS We recruited 205 patients with urothelial carcinoma and 406 control participants for a case-control study between June 2011 and December 2013. The control participants were frequency-matched with cases according to sex and age. We measured the urinary levels of arsenic, cadmium, chromium, nickel and lead by using inductively coupled plasma mass spectrometry. We collected environmental exposure-related information through questionnaires. Multivariate logistic regression and 95% confidence intervals were applied to estimate the urothelial carcinoma risk and potential effects of urothelial carcinoma-related risk factors on the levels of urinary heavy metals. RESULTS Patients with urothelial carcinoma showed higher urinary levels of arsenic, cadmium, chromium, nickel and lead than the controls. After considering other potential risk factors, a significantly increased risk for urothelial carcinoma was observed in patients with increased urinary levels of cadmium, chromium, nickel and lead. Smokers showed a high urinary cadmium level. In addition to cadmium, a high urinary lead level was associated with cumulative cigarette smoking and herbal medicine use. CONCLUSION Environmental factors might contribute to higher urinary levels of heavy metals and ultimately result in urothelial carcinoma carcinogenesis. These findings can promote proper environmental surveillance of exposure to heavy metals in the general population.
Collapse
Affiliation(s)
- Chao-Hsiang Chang
- Department of Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Urology, China Medical University and Hospital, Taichung, Taiwan
| | - Chiu-Shong Liu
- Department of Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Family Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Huei-Ju Liu
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chi-Ping Huang
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Tsung Hsu
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | - Saou-Hsing Liou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Shen CC, Shen DS, Shentu JL, Wang MZ, Wan MY. Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:2074-2081. [PMID: 26511644 DOI: 10.1039/c5em00288e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of the study was to determine whether humic acid (HA) prevented gene and biochemical toxic effects in earthworms (Eisenia foetida) exposed to nickel and deltamethrin (at 100 and 1 mg kg(-1), respectively) in soil. Cellular- and molecular-level toxic effects of nickel and deltamethrin in earthworms were evaluated by measuring damage to lipid membranes and DNA and the production of protein carbonyls over 42 days of exposure. Nickel and deltamethrin induced significant levels of oxidative stress in earthworms, increasing the production of peroxidation products (malondialdehyde and protein carbonyls) and increasing the comet assay tail DNA% (determined by single-cell gel electrophoresis). DNA damage was the most sensitive of the three indices because it gave a higher sample/control ratio than did the other indices. The presence of HA alleviated (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes caused by nickel and deltamethrin. A low HA dose (0.5-1% HA in soil) prevented a great deal of lipid membrane damage, but the highest HA dose (3% HA in soil) prevented still more DNA damage. However, the malondialdehyde concentrations in earthworms were higher at the highest HA dose than at the lower HA doses. The amounts of protein carbonyls produced at different HA doses were not significantly different. The toxic effects to earthworms caused by increased oxidizable nickel concentrations could be relieved by adding HA.
Collapse
Affiliation(s)
- Chen-Chao Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Dong-Sheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Jia-Li Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Mei-Zhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Ming-Yang Wan
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
12
|
Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
Badding MA, Fix NR, Antonini JM, Leonard SS. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages. PLoS One 2014; 9:e101310. [PMID: 24977413 PMCID: PMC4076336 DOI: 10.1371/journal.pone.0101310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/04/2014] [Indexed: 02/02/2023] Open
Abstract
Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI), this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI) and Mn. A new nickel (Ni) and copper (Cu)-based material (Ni-Cu WF) is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS) or stainless steel (GMA-SS) electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml) for up to 24 hours. Cell viability, reactive oxygen species (ROS) production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI) and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu) may not necessarily improve welder safety.
Collapse
Affiliation(s)
- Melissa A. Badding
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- * E-mail:
| | - Natalie R. Fix
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - James M. Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Stephen S. Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| |
Collapse
|
14
|
Hiraku Y, Sakai K, Shibata E, Kamijima M, Hisanaga N, Ma N, Kawanishi S, Murata M. Formation of the nitrative DNA lesion 8-nitroguanine is associated with asbestos contents in human lung tissues: a pilot study. J Occup Health 2014; 56:186-96. [PMID: 24598051 DOI: 10.1539/joh.13-0231-oa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Asbestos causes lung cancer and malignant mesothelioma, and chronic inflammation is considered to participate in carcinogenesis. However, biomarkers to evaluate its carcinogenic risk have not been established. Reactive oxygen/nitrogen species are generated in biological systems under inflammatory conditions and may contribute to carcinogenesis by causing DNA damage. In this study, we examined the relationship between the formation of 8-nitroguanine (8-nitroG), a mutagenic DNA lesion formed during inflammation, and asbestos contents in human lung tissues. METHODS We obtained non-tumor lung tissues from patients with (n=15) and without mesothelioma (n=21). The expression of 8-nitroG and related molecules was examined by immunohistochemistry, and their staining intensities were semiquantitatively evaluated. Asbestos contents in lung tissues were analyzed by analytical transmission electron microscopy. RESULTS In subjects without mesothelioma, staining intensities of 8-nitroG and apurinic/apyrimidinic endonuclease 1 (APE1) were significantly correlated with total asbestos and amphibole contents (p<0.05), but not with chrysotile content. In mesothelioma patients, their staining intensities were not correlated with asbestos contents. The double immunofluorescence technique revealed that APE1 was expressed in 8-nitroG-positive cells, suggesting that abasic sites were formed possibly due to the removal of 8-nitroG. The staining intensities of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative DNA lesion, and its repair enzyme 8-oxoguanine DNA-glycosylase were correlated with age (p<0.05), but not with asbestos contents in subjects without mesothelioma. CONCLUSIONS This is the first study to demonstrate that 8-nitroG formation is associated with asbestos contents in human lung tissues. This finding raises a possibility that 8-nitroG serves as a biomarker that can be used to evaluate asbestos exposure and carcinogenic risk.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
15
|
González A, Pokrovsky O. Metal adsorption on mosses: Toward a universal adsorption model. J Colloid Interface Sci 2014; 415:169-78. [DOI: 10.1016/j.jcis.2013.10.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
|
16
|
Foldbjerg R, Irving ES, Wang J, Thorsen K, Sutherland DS, Autrup H, Beer C. The toxic effects of single-walled carbon nanotubes are linked to the phagocytic ability of cells. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50099c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
17
|
Volke A, Rünkorg K, Wegener G, Vasar E, Volke V. Dual effect of nickel on L-arginine/nitric oxide system in RAW 264.7 macrophages. Int Immunopharmacol 2013; 15:511-6. [PMID: 23415871 DOI: 10.1016/j.intimp.2013.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/20/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
The immunogenic mechanisms of the potent contact allergen nickel are not completely clear. Nitric oxide (NO) serves as a fundamental signalling and effector molecule in the immune system, but little is known about its possible role in immune reactions elicited by nickel. We investigated the effects of nickel on the L-arginine/inducible NO synthase (iNOS) system in a murine macrophage cell line, RAW 264.7. Both LPS-stimulated and non-stimulated RAW 264.7 cells were incubated in the presence of 0-100 μM nickel sulphate for 24 h. Subsequently, NO production, iNOS protein expression, L-arginine uptake and gene expression of iNOS and cationic amino acid transporter systems (CAT) were measured. We found that 100 μM NiSO4 increased LPS-induced nitrite production as well as the formation of [(3)H]-L-citrulline from [(3)H]-L-arginine in the RAW 264.7 cells. Correspondingly, the expression of iNOS gene and protein was also remarkably enhanced. Nevertheless, nickel had an inhibitory effect on L-arginine transport which disappeared gradually upon LPS-stimulation in parallel with an increase in NO output. LPS was found to significantly amplify CAT-3 as well as CAT-2 mRNA expression, mirroring the increase in L-arginine transport. In the range of 1-10 μM, NiSO4 did not have any additional effect on CAT mRNA expression, but at 100 μM it was able to enhance CAT-1 and CAT-3 mRNA expression upon LPS stimulation. Our data indicate that nickel interferes with macrophages' L-arginine/NOS system on multiple levels. Considering the potent biological effects of NO, these influences may contribute to nickel toxicity.
Collapse
Affiliation(s)
- Annika Volke
- Department of Dermatology, University of Tartu, Raja 31, 50417 Tartu, Estonia.
| | | | | | | | | |
Collapse
|
18
|
Schuster B, Roszell L, Murr L, Ramirez D, Demaree J, Klotz B, Rosencrance A, Dennis W, Bao W, Perkins E, Dillman J, Bannon D. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys. Toxicol Appl Pharmacol 2012; 265:128-38. [DOI: 10.1016/j.taap.2012.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 11/25/2022]
|
19
|
Kim HL, Seo YR. Identification of potential molecular biomarkers in response to thioredoxin reductase 1 deficiency under nickel exposure. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6208-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Witkowska D, Rowinska-Zyrek M, Valensin G, Kozlowski H. Specific poly-histidyl and poly-cysteil protein sites involved in Ni2+ homeostasis in Helicobacter pylori. Impact of Bi3+ ions on Ni2+ binding to proteins. Structural and thermodynamic aspects. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Kim HL, Seo YR. Synergistic genotoxic effect between gene and environmental pollutant: Oxidative DNA damage induced by thioredoxin reductase 1 silencing under nickel treatment. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0031-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Identification of Proteins Related to Nickel Homeostasis in Helicobater pylori by Immobilized Metal Affinity Chromatography and Two-Dimensional Gel Electrophoresis. Met Based Drugs 2011; 2008:289490. [PMID: 18288244 PMCID: PMC2225478 DOI: 10.1155/2008/289490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 10/21/2007] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a widespread human pathogen causing peptic ulcers and chronic gastritis. Maintaining nickel homeostasis is crucial for the establishment of
H. pylori infection in humans. We used immobilized-nickel affinity chromatography to isolate Ni-related proteins from H. pylori cell extracts. Two-dimensional gel electrophoresis and mass spectrometry were employed to separate and identify twenty two Ni-interacting proteins in H. pylori. These Ni-interacting proteins can be classified into several general functional categories, including cellular processes (HspA, HspB, TsaA, and NapA), enzymes (Urease, Fumarase, GuaB, Cad, PPase, and DmpI), membrane-associated proteins (OM jhp1427 and HpaA), iron storage protein (Pfr), and hypothetical proteins (HP0271, HP jhp0216, HP jhp0301, HP0721, HP0614, and HP jhp0118). The implication of these proteins in nickel homeostasis is discussed.
Collapse
|
23
|
Di Giorgio ML, Bucchianico SD, Ragnelli AM, Aimola P, Santucci S, Poma A. Effects of single and multi walled carbon nanotubes on macrophages: Cyto and genotoxicity and electron microscopy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 722:20-31. [DOI: 10.1016/j.mrgentox.2011.02.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 01/07/2011] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
|
24
|
Saikia JP, Paul S, Konwar BK, Samdarshi SK. Nickel oxide nanoparticles: A novel antioxidant. Colloids Surf B Biointerfaces 2010; 78:146-8. [DOI: 10.1016/j.colsurfb.2010.02.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/11/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
|
25
|
Goodman JE, Prueitt RL, Dodge DG, Thakali S. Carcinogenicity assessment of water-soluble nickel compounds. Crit Rev Toxicol 2009; 39:365-417. [PMID: 19514913 DOI: 10.1080/10408440902762777] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.
Collapse
Affiliation(s)
- Julie E Goodman
- Gradient Corporation, 20 University Road, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
26
|
Wang Q, Guo H, Li S, Gao F, Fang D. Synthesis, Electrochemical Characteristics of [Ni(phen)(H2O)4]SO4⋅2H2O and Its Interaction Mechanism with DNA. J SOLUTION CHEM 2009. [DOI: 10.1007/s10953-009-9425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Durgo K, Oreščanin V, Lulić S, Kopjar N, elježić DZ, Čolić JF. The assessment of genotoxic effects of wastewater from a fertilizer factory. J Appl Toxicol 2009; 29:42-51. [DOI: 10.1002/jat.1381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Révész C, Forgács Z, Lázár P, Mátyás S, Rajczy K, Krizsa F, Bernard A, Gáti I. Effect of Nickel (Ni2+) on Primary Human Ovarian Granulosa Cells In Vitro. Toxicol Mech Methods 2008; 14:287-92. [DOI: 10.1080/15376520490434566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Okada F. Beyond foreign-body-induced carcinogenesis: Impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int J Cancer 2007; 121:2364-72. [PMID: 17893867 DOI: 10.1002/ijc.23125] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Foreign-body-induced carcinogenesis is a traditional, maybe old, way of understanding cancer development. A number of novel approaches are available today to elucidate cancer development. However, there are things we learn from the old, and thus I bring out some examples of various clinical cases and experimental models of foreign-body-induced tumorigenesis. What is notable is that the foreign bodies themselves are unrelated to each other, whereas commonly underlying in them is to induce inflammatory reaction, especially stromal proliferation, where those exogenous materials are incorporated and undigested. Such foreign-body-induced carcinogenesis is also recognized in the step of tumor progression, the final step of carcinogenesis that tumor cells acquire malignant phenotypes including metastatic properties. And the phenomenon is universally observed in several cell lines of different origins. In this review I would like to show the evidence that tumor development and progression are accelerated inevitably by inflammation caused from foreign bodies, and that reactive oxygen species derived from inflammatory cells are one of the most important genotoxic mediators to accelerate the process.
Collapse
Affiliation(s)
- Futoshi Okada
- Department of Biomolecular Function, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
30
|
Kawanishi S, Hiraku Y. Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation. Antioxid Redox Signal 2006; 8:1047-58. [PMID: 16771694 DOI: 10.1089/ars.2006.8.1047] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen and nitrogen species are known to participate in a wide variety of human diseases. Oxidative DNAdamage is involved in chemical carcinogenesis and aging. Monocyclic chemicals induce mainly oxidative DNAdamage, whereas polycyclic chemicals can induce oxidative DNA damage in addition to DNA adduct formation. Recently, chronic infection and inflammation have been recognized as important factors for carcinogenesis. Nitrative DNA damage as well as oxidative DNA damage is induced in relation to inflammationrelated carcinogenesis. The authors examined the formation of 8-nitroguanine, a nitrative DNA lesion, in humans and animals under inflammatory conditions. An immunofluorescence labeling study demonstrated that 8-nitroguanine was strongly formed in gastric gland epithelial cells in gastritis patients with H. pylori infection, in hepatocytes in patients with hepatitis C, and in oral epithelium of patients with oral lichen planus. 8-Nitroguanine was also formed in colonic epithelial cells of model mice of inflammatory bowel diseases and patients with ulcerative colitis. Interestingly, 8-nitroguanine was formed at the sites of carcinogenesis regardless of etiology. Therefore, 8-nitroguanine could be used as a potential biomarker to evaluate the risk of inflammation- related carcinogenesis.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | | |
Collapse
|
31
|
Ge R, Watt R, Sun X, Tanner J, He QY, Huang JD, Sun H. Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem J 2006; 393:285-93. [PMID: 16164421 PMCID: PMC1383687 DOI: 10.1042/bj20051160] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hpn is a small cytoplasmic protein found in Helicobacter pylori, which binds Ni2+ ions with moderate affinity. Consisting of 60 amino acids, the protein is rich in histidine (28 residues, 46.7%), as well as glutamate, glycine and serine residues (in total 31.7%), and contains short repeating motifs. In the present study, we report the detailed biophysical characterization of the multimeric status and Ni2+-binding properties of purified recombinant Hpn under physiologically relevant conditions. The protein exists as an equilibration of multimeric forms in solution, with 20-mers (approx. 136 kDa) being the predominant species. Using equilibrium dialysis, ICP-MS (inductively coupled plasma MS) and UV/visible spectroscopy, Hpn was found to bind five Ni2+ ions per monomer at pH 7.4, with a dissociation constant (K(d)) of 7.1 microM. Importantly, Ni2+ binding to Hpn is reversible: metal is released either in the presence of a chelating ligand such as EDTA, or at a slightly acidic pH (pH for half dissociation, pH1/2 approximately 6.3). Ni2+ binding induces conformational changes within the protein, increasing beta-sheet and reducing alpha-helical content, from 22% to 37%, and 20% to 10% respectively. Growth curves of Escherichia coli BL21(DE3) both with and without the hpn gene performed under Ni2+ pressure clearly implied a role for Hpn to protect the cells from higher concentrations of external metal ions. Similarly, the accumulation of Ni2+ in these cells expressing Hpn from a plasmid was approx. 4-fold higher than in uninduced controls or control cultures that lacked the plasmid. Similarly, levels of Ni2+ in wild-type H. pylori 26695 cells were higher than those in H. pylori hpn-deletion mutant strains. Hpn may potentially serve multiple roles inside the bacterium: storage of Ni2+ ions in a 'reservoir'; donation of Ni2+ to other proteins; and detoxification via sequestration of excess Ni2+.
Collapse
Affiliation(s)
- Ruiguang Ge
- *Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Rory M. Watt
- *Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
- †Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Xuesong Sun
- *Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Julian A. Tanner
- †Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Qing-Yu He
- *Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Jian-Dong Huang
- †Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
- Correspondence may be addressed to either of these authors (email or )
| | - Hongzhe Sun
- *Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
32
|
Faure K, Loughran M, Glennon JD. Microchip metal complex speciation: The nickel–bathophenanthroline disulfonic acid system. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.10.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
SUGAWARA H, GOTO H, KOMOTORI J. Effect of Thermal Oxidation Treatment on Surface Characteristic and Corrosion Resistance of Ni-Ti Shape Memory Alloy. ACTA ACUST UNITED AC 2006. [DOI: 10.2472/jsms.55.965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Piao F, Ma N, Hiraku Y, Murata M, Oikawa S, Cheng F, Zhong L, Yamauchi T, Kawanishi S, Yokoyama K. Oxidative DNA damage in relation to neurotoxicity in the brain of mice exposed to arsenic at environmentally relevant levels. J Occup Health 2005; 47:445-9. [PMID: 16230839 DOI: 10.1539/joh.47.445] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To clarify the association between oxidative DNA damage and the neurotoxicity of arsenic, the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as an index of oxidative DNA damage in the brain was examined in mice fed with drinking water containing 1 or 2 ppm arsenic, using an HPLC-electrochemical detector and immunohistochemical method. 8-OHdG levels were significantly increased in the brain of mice given arsenic and its immunoreactivity was distributed in the cerebral and cerebellar cortexes. Cerebral cortex neurons and Purkinje cells in the cerebellar cortex showed degenerative changes in accordance with the distribution of 8-OHdG immunoreactivity. The levels of arsenic in this study were lower than those reported in epidemiological studies. Thus, we conclude that environmentally relevant levels of arsenic induce pathological changes through oxidative DNA damage in the brain tissues in vivo and that cerebral and cerebellar cortex neurons seem to be the major targets of arsenic neurotoxicity.
Collapse
Affiliation(s)
- Fengyuan Piao
- Department of Hygiene, Dalian Medical University, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shan F, Guo T. Ultrafast selected energy x-ray absorption spectroscopy investigations of Ni and Zn species. J Chem Phys 2005; 122:244710. [PMID: 16035796 DOI: 10.1063/1.1943411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The results of ultrafast selected energy x-ray absorption spectroscopy (USEXAS) investigations of Ni and Zn species are presented. The USEXAS measurements described here employed characteristic x-ray radiation of L(alpha) and L(beta) from an ultrafast laser-driven W x-ray target to probe the K absorption edges of Ni and Zn, respectively. Static x-ray absorption edge spectra of six Ni and Zn species in either solid or solution form were obtained. Simulations of near-edge x-ray absorption spectra of these Ni and Zn species were carried out with FEFF. The results of USEXAS measurements were in general agreement with the theoretically simulated spectra and those measured with synchrotron x-ray radiation.
Collapse
Affiliation(s)
- Fang Shan
- Department of Chemistry, University of California, Davis, 95616, USA
| | | |
Collapse
|
36
|
Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL. Effect of titanium dioxide on the oxidative metabolism of alveolar macrophages: An experimental study in rats. J Biomed Mater Res A 2005; 73:142-9. [PMID: 15742364 DOI: 10.1002/jbm.a.30230] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metallic implants of titanium are used therapeutically in biomedicine because of its excellent biocompatibility. However, no metal or alloy is completely inert. We have previously shown that titanium oxide (TiO(2)) is transported in blood by phagocytic monocytes and deposited in organs such as liver, spleen, and lung 6 months after intraperitoneal injection (ip). Furthermore, it is well known that exposure to metal traces alters the cellular redox status. Thus, the aim of the present study was to determine the presence of titanium in target organs after chronic exposure, assess the potential structural alterations, and evaluate the oxidative metabolism of alveolar macrophages (AM) in the lung. Rats were ip injected with 1.60 g/100 g body wt of TiO(2) in saline solution. Organs (liver, spleen, lung) were processed for histological evaluation. Reactive oxygen species (ROS) in AM obtained by bronchoalveolar lavage (BAL) were evaluated using the nitroblue tetrazolium test and quantitative evaluation by digital image analysis. The histological analysis of organs revealed the presence of titanium in the parenchyma of these organs with no associated tissue damage. Although in lung alveolar macrophages TiO(2) induced a significant rise in ROS generation, it failed to cause tissue alteration. This finding may be attributed to an adaptive response.
Collapse
Affiliation(s)
- Daniel G Olmedo
- Department of Oral Pathology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
37
|
Murata M, Kawanishi S. Oxidative DNA damage induced by nitrotyrosine, a biomarker of inflammation. Biochem Biophys Res Commun 2004; 316:123-8. [PMID: 15003520 DOI: 10.1016/j.bbrc.2004.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Indexed: 01/10/2023]
Abstract
Inflammation has been postulated as a risk factor for several cancers. 3-Nitrotyrosine is a biochemical marker for inflammation. We investigated the ability of nitrotyrosine and nitrotyrosine-containing peptides (nitroY-peptide) to induce DNA damage by the experiments using 32P-labeled DNA fragments obtained from the human p53 tumor suppressor gene and an HPLC-electrochemical detector. Nitrotyrosine and nitroY-peptide caused Cu(II)-dependent DNA damage in the presence of P450 reductase, which is considered to yield nitroreduction. Catalase inhibited DNA damage, suggesting the involvement of H2O2. Nitrotyrosine and nitroY-peptide increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, an indicator of oxidative DNA damage. Nitrotyrosine-containing peptides of histone induced 8-oxodG formation more efficiently than free nitrotyrosine. We propose the possibility that nitrotyrosine-induced H2O2 formation and DNA damage contribute to inflammation-associated carcinogenesis.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University School of Medicine, Edobashi, Tsu, Mie 514-8507, Japan
| | | |
Collapse
|
38
|
Cruz MT, Gonçalo M, Figueiredo A, Carvalho AP, Duarte CB, Lopes MC. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line. Exp Dermatol 2004; 13:18-26. [PMID: 15009112 DOI: 10.1111/j.0906-6705.2004.00105.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO(4)) and increases the expression of the iNOS protein, as determined by immunofluorescence and Western blot analysis. The sensitizer NiSO(4) increased cytoplasmic iNOS expression by 31.9 +/- 10.3% and nitrite production, as assayed by the Griess reaction, by 27.6 +/- 9.5%. Electrophoretic mobility shift assay (EMSA), showed that 30 min of FSDC exposure to NiSO(4) activates the transcription factor NF-kB by 58.2 +/- 7.0% and 2 h of FSDC exposure to NiSO(4) activates the transcription factor AP-1 by 26.0 +/- 1.4%. Together, these results indicate that NiSO(4) activates the NF-kB and AP-1 pathways and induces iNOS expression in skin dendritic cells.
Collapse
Affiliation(s)
- M Teresa Cruz
- Faculdade de Farmácia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.
| | | | | | | | | | | |
Collapse
|
39
|
Pinlaor S, Yongvanit P, Hiraku Y, Ma N, Semba R, Oikawa S, Murata M, Sripa B, Sithithaworn P, Kawanishi S. 8-nitroguanine formation in the liver of hamsters infected with Opisthorchis viverrini. Biochem Biophys Res Commun 2003; 309:567-71. [PMID: 12963027 DOI: 10.1016/j.bbrc.2003.08.039] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleic acid damage by reactive nitrogen and oxygen species may contribute to the carcinogenesis associated with chronic infection and inflammation. We examined 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation and nitric oxide (NO) production in hamsters infected with Opisthorchis viverrini (OV). Formation of 8-nitroguanine was assessed immunohistochemically with an antibody specific for 8-nitroguanine. 8-nitroguanine formation was found mainly in the cytoplasm and slightly in the nucleus of inflammatory cells and epithelial lining of bile duct at inflammatory areas in the liver. 8-nitroguanine immunoreactivity reached the highest intensity on day 30. A time profile of 8-nitroguanine formation was closely associated with that of plasma nitrate/nitrite. HPLC with an electrochemical detector revealed that the amount of 8-oxodG in the liver reached the maximal level on day 21. The mechanisms of 8-oxodG and 8-nitroguanine formation via O2*- and NO production triggered by OV infection were discussed in relation to cholangiocarcinoma development.
Collapse
Affiliation(s)
- Somchai Pinlaor
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
de la Rosa G, Peralta-Videa JR, Gardea-Torresdey JL. Utilization of ICP/OES for the determination of trace metal binding to different humic fractions. JOURNAL OF HAZARDOUS MATERIALS 2003; 97:207-218. [PMID: 12573839 DOI: 10.1016/s0304-3894(02)00262-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, the use of inductively coupled plasma/optical emission spectrometry (ICP/OES) to determine multi-metal binding to three biomasses, Sphagnum peat moss, humin and humic acids is reported. All the investigations were performed under part per billion (ppb) concentrations. Batch pH profile experiments were performed using multi-metal solutions of Cd(II), Cu(II), Pb(II), Ni(II), Cr(III) and Cr(VI). The results showed that at pH 2 and 3, the metal affinity of the three biomasses exposed to the multi-metal solution that included Cr(III) presented the following order: Cu(II), Pb(II)>Ni(II)>Cr(III)>Cd(II). On the other hand, when Cr(VI) was in the heavy metal mixture, Sphagnum peat moss and humin showed the following affinity: Cu(II), Pb(II)>Ni(II)>Cr(VI)>Cd(II); however, the affinity of the humic acids was: Cu(II)>Pb(II), Cr(VI)>Ni(II)>Cd(II). The results demonstrated that pH values of 4 and 5 were the most favorable for the heavy metal binding process. At pH 5, all the metals, except for Cr(VI), were bound between 90 and 100% to the three biomasses. However, the binding capacity of humic acids decreased at pH 6 in the presence of Cr(VI). The results showed that the ICP/OES permits the determination of heavy metal binding to organic matter at ppb concentration. These results will be very useful in understanding the role of humic substances in the fate and transport of heavy metals, and thus could provide information to develop new methodologies for the removal of low concentrations of toxic heavy metals from contaminated waters.
Collapse
Affiliation(s)
- G de la Rosa
- Environmental Science and Engineering Ph.D. Program, Chemistry Department, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | |
Collapse
|
41
|
Kawanishi S, Hiraku Y, Murata M, Oikawa S. The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med 2002; 32:822-32. [PMID: 11978484 DOI: 10.1016/s0891-5849(02)00779-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We reviewed the mechanism of oxidative DNA damage with reference to metal carcinogenesis and metal-mediated chemical carcinogenesis. On the basis of the finding that chromium (VI) induced oxidative DNA damage in the presence of hydrogen peroxide (H2O2), we proposed the hypothesis that endogenous reactive oxygen species play a role in metal carcinogenesis. Since then, we have reported that various metal compounds, such as cobalt, nickel, and ferric nitrilotriacetate, directly cause site-specific DNA damage in the presence of H2O2. We also found that carcinogenic metals could cause DNA damage through indirect mechanisms. Certain nickel compounds induced oxidative DNA damage in rat lungs through inflammation. Endogenous metals, copper and iron, catalyzed ROS generation from various organic carcinogens, resulting in oxidative DNA damage. Polynuclear compounds, such as 4-aminobiphenyl and heterocyclic amines, appear to induce cancer mainly through DNA adduct formation, although their N-hydroxy and nitroso metabolites can also cause oxidative DNA damage. On the other hand, mononuclear compounds, such as benzene metabolites, caffeic acid, and o-toluidine, should express their carcionogenicity through oxidative DNA damage. Metabolites of certain carcinogens efficiently caused oxidative DNA damage by forming NADH-dependent redox cycles. These findings suggest that metal-mediated oxidative DNA damage plays important roles in chemical carcinogenesis.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Department of Hygiene, Mie University School of Medicine, Edobashi, Tsu, Japan.
| | | | | | | |
Collapse
|
42
|
Woźniak K, Błasiak J. Free radicals-mediated induction of oxidized DNA bases and DNA-protein cross-links by nickel chloride. Mutat Res 2002; 514:233-43. [PMID: 11815261 DOI: 10.1016/s1383-5718(01)00344-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using the comet assay, we showed that nickel chloride at 250-1000 microM induced DNA damage in human lymphocytes, measured as the change in comet tail moment, which increased with nickel concentration up to 500 microM and then decreased. Observed increase might follow from the induction of strand breaks or/and alkali-labile sites (ALS) by nickel, whereas decrease from its induction of DNA-DNA and/or DNA-protein cross-links. Proteinase K caused an increase in the tail moment, suggesting that nickel chloride at 1000 microM might cross-link DNA with nuclear proteins. Lymphocytes exposed to NiCl(2) and treated with enzymes recognizing oxidized and alkylated bases: endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), displayed greater extent of DNA damage than those not treated with these enzymes, indicating the induction of oxidized and alkylated bases by nickel. The incubation of lymphocytes with spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and PBN decreased the extent of DNA damage, which might follow from the production of free radicals by nickel. The pre-treatment with Vitamin C at 10 microM and Vitamin E at 25 microM decreased the tail moment of the cells exposed to NiCl(2) at the concentrations of the metal causing strand breaks or/and ALS. The results obtained suggest that free radicals may be involved in the formation of strand breaks or/and ALS in DNA as well as DNA-protein cross-links induced by NiCl(2). Nickel chloride can also alkylate DNA bases. Our results support thesis on multiple, free radicals-based genotoxicity pathways of nickel.
Collapse
Affiliation(s)
- Katarzyna Woźniak
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | | |
Collapse
|