1
|
Balzerani F, Blasco T, Pérez-Burillo S, Valcarcel LV, Hassoun S, Planes FJ. Extending PROXIMAL to predict degradation pathways of phenolic compounds in the human gut microbiota. NPJ Syst Biol Appl 2024; 10:56. [PMID: 38802371 PMCID: PMC11130242 DOI: 10.1038/s41540-024-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Despite significant advances in reconstructing genome-scale metabolic networks, the understanding of cellular metabolism remains incomplete for many organisms. A promising approach for elucidating cellular metabolism is analysing the full scope of enzyme promiscuity, which exploits the capacity of enzymes to bind to non-annotated substrates and generate novel reactions. To guide time-consuming costly experimentation, different computational methods have been proposed for exploring enzyme promiscuity. One relevant algorithm is PROXIMAL, which strongly relies on KEGG to define generic reaction rules and link specific molecular substructures with associated chemical transformations. Here, we present a completely new pipeline, PROXIMAL2, which overcomes the dependency on KEGG data. In addition, PROXIMAL2 introduces two relevant improvements with respect to the former version: i) correct treatment of multi-step reactions and ii) tracking of electric charges in the transformations. We compare PROXIMAL and PROXIMAL2 in recovering annotated products from substrates in KEGG reactions, finding a highly significant improvement in the level of accuracy. We then applied PROXIMAL2 to predict degradation reactions of phenolic compounds in the human gut microbiota. The results were compared to RetroPath RL, a different and relevant enzyme promiscuity method. We found a significant overlap between these two methods but also complementary results, which open new research directions into this relevant question in nutrition.
Collapse
Affiliation(s)
- Francesco Balzerani
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Telmo Blasco
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Sergio Pérez-Burillo
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Luis V Valcarcel
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
- University of Navarra, Biomedical Engineering Center, Campus Universitario, 31009, Pamplona, Navarra, Spain
- University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Campus Universitario, 31080, Pamplona, Spain
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, MA, 02155, USA.
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Francisco J Planes
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.
- University of Navarra, Biomedical Engineering Center, Campus Universitario, 31009, Pamplona, Navarra, Spain.
- University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Campus Universitario, 31080, Pamplona, Spain.
| |
Collapse
|
2
|
Maimaitiyiming M, Yang H, Li H, Xu C, Li S, Zhou L, Zhang X, Wang Y. The association of obesity-related dietary patterns and main food groups derived by reduced-rank regression with cardiovascular diseases incidence and all-cause mortality: findings from 116,711 adults. Eur J Nutr 2023; 62:2605-2619. [PMID: 37219593 DOI: 10.1007/s00394-023-03177-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Research about using reduced-rank regression (RRR) to simultaneously study the effects of both individual and combined consumption of foods on cardiovascular diseases (CVD) is scarce. METHODS This study included 116,711 CVD-free participants (a median of 11.8 year follow-up) with 2 or more 24-h online dietary assessments. A total of 210 food items were classified into 45 food groups, and the mean amount of each food group was used in RRR to derive dietary patterns (DPs) explaining the maximum shared variation in obesity-related indicators. The associations of DPs and its main food groups (|factor loading| [Formula: see text] 0.2) with the incident CVD and all-cause mortality were examined by Cox model. In cross-sectional analyses, the associations of DP scores with cardiometabolic risk factors (biomarkers) were examined by linear regression. RESULTS The derived DP was characterized by higher intakes of beer and cider, high-sugar beverages, processed meat, red meat, artificial sweetener, and crisps, chips and savory snacks, and lower intakes of olive oil, high fiber breakfast cereals, tea, and vegetable. Compared to the lowest dietary score quintile, those in the highest were associated with higher risks of total CVD (adjusted-HR: 1.45, 95% CI 1.33-1.57) and all-cause mortality (adjusted-HR 1.31, 95% CI 1.18-1.45). We observed consumption alone of these food groups had a consistent but limited health effect on total CVD and all-cause death incidence. These associations were modified by age and sex. Higher DP scores were related to adverse biomarkers profiles. CONCLUSIONS We developed obesity-related DPs prospectively associated with increased risks of CVD and all-cause mortality.
Collapse
Affiliation(s)
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiping Li
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Chenjie Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Shu Li
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihui Zhou
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Xinyu Zhang
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China.
| |
Collapse
|
3
|
Maimaitiyiming M, Yang H, Zhou L, Zhang X, Cai Q, Wang Y. Associations between an obesity-related dietary pattern and incidence of overall and site-specific cancers: a prospective cohort study. BMC Med 2023; 21:251. [PMID: 37424008 DOI: 10.1186/s12916-023-02955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND A dietary pattern (DP) may impact on cancer incidence more strongly than individual foods, but this association remains uncertain. Here, we aimed to broadly explore the associations of an obesity-related DP with overall and 19 site-specific cancers. METHODS This study included 114,289 cancer-free participants with at least two dietary assessments. A total of 210 food items were classified into 47 food groups, and the mean amount of each food group was used in reduced-rank regression to derive the obesity-related DP. Cox regressions were conducted to explore the associations of the obesity-related DP with overall and 19 site-specific cancers. The parallel mediation model was constructed to quantify the mediating roles of potential mediators. RESULTS During a median follow-up period of 9.4 years, 10,145 (8.9%) incident cancer cases were documented. The derived-DP was characterized by a higher intake of beer and cider, processed meat, high sugar beverages, red meat, and artificial sweetener, and a lower intake of fresh vegetables, olive oil, tea, and high fiber breakfast cereals. Observational analysis showed that a higher obesity-related DP Z-score was linearly associated with an increased risk of overall cancer (adjusted hazard ratio (HR) = 1.02, 95% CI: 1.01, 1.04 per 1-SD increase, corrected P < 0.001). For site-specific cancer, positive linear associations for six cancer sites (oral, colorectal, liver, lung, endometrium, and thyroid) and nonlinear associations for six cancer sites (esophagus, malignant melanoma, prostate, kidney, bladder, and multiple myeloma) were observed. The paralleled mediation analysis suggested that the association between the obesity-related DP and overall cancer is mediated by the body mass index (BMI), the waist-to-hip ratio (WHR), C-reactive protein, high-density lipoproteins (HDLs), and triglycerides. CONCLUSIONS The developed obesity-related DP is strongly associated with overall and multiple cancer sites. Our findings highlight the complicated and diverse associations between an obesity-related DP and cancers and provide clues for future research directions.
Collapse
Affiliation(s)
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lihui Zhou
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Xinyu Zhang
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Qiliang Cai
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China.
| |
Collapse
|
4
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Atukeren P. Oxidative Stress Biomarkers in the Diagnosis and Prognosis. Biomark Med 2022. [DOI: 10.2174/9789815040463122010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress describes the state of a cell where there is an imbalance
between free radical formation and antioxidants due to either excess formation of
reactive oxygen species (ROS) or inadequate antioxidant defence. It is very well known
that oxidative stress plays an important role in the pathophysiology of various diseases
through impaired intracellular redox homeostasis. To evaluate and imply the excess
production of ROS, various biomarkers are used and suggested, yet it is also known
that there is a lack of standardization and validation for these methods. It is almost very
difficult to measure ROS directly because of their short half-life, yet it is still possible
with a suitable technique. The most frequently used biomarkers are represented by
oxidized macromolecules such as lipids, proteins, and nucleic acids, which are
modified via ROS, and also the amounts or activities of antioxidant molecules and
enzymes, respectively. There are also various genetic biomarkers measuring the
susceptibility of modification due to oxidative stress. However, the preferred biomarker
would be dependent on the aim of the study and the clinical relevance.
Collapse
Affiliation(s)
- Pınar Atukeren
- Department of Medical Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-
Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
6
|
Prediction of degradation pathways of phenolic compounds in the human gut microbiota through enzyme promiscuity methods. NPJ Syst Biol Appl 2022; 8:24. [PMID: 35831427 PMCID: PMC9279433 DOI: 10.1038/s41540-022-00234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
The relevance of phenolic compounds in the human diet has increased in recent years, particularly due to their role as natural antioxidants and chemopreventive agents in different diseases. In the human body, phenolic compounds are mainly metabolized by the gut microbiota; however, their metabolism is not well represented in public databases and existing reconstructions. In a previous work, using different sources of knowledge, bioinformatic and modelling tools, we developed AGREDA, an extended metabolic network more amenable to analyze the interaction of the human gut microbiota with diet. Despite the substantial improvement achieved by AGREDA, it was not sufficient to represent the diverse metabolic space of phenolic compounds. In this article, we make use of an enzyme promiscuity approach to complete further the metabolism of phenolic compounds in the human gut microbiota. In particular, we apply RetroPath RL, a previously developed approach based on Monte Carlo Tree Search strategy reinforcement learning, in order to predict the degradation pathways of compounds present in Phenol-Explorer, the largest database of phenolic compounds in the literature. Reactions predicted by RetroPath RL were integrated with AGREDA, leading to a more complete version of the human gut microbiota metabolic network. We assess the impact of our improvements in the metabolic processing of various foods, finding previously undetected connections with output microbial metabolites. By means of untargeted metabolomics data, we present in vitro experimental validation for output microbial metabolites released in the fermentation of lentils with feces of children representing different clinical conditions.
Collapse
|
7
|
Production of Demineralized Antibacterial, Antifungal and Antioxidant Peptides from Bovine Hemoglobin Using an Optimized Multiple-Step System: Electrodialysis with Bipolar Membrane. MEMBRANES 2022; 12:membranes12050512. [PMID: 35629838 PMCID: PMC9143934 DOI: 10.3390/membranes12050512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022]
Abstract
Numerous studies have shown that bovine hemoglobin, a protein from slaughterhouse waste, has important biological potential after conventional enzymatic hydrolysis. However, the active peptides could not be considered pure since they contained mineral salts. Therefore, an optimized multi-step process of electrodialysis with bipolar membranes (EDBM) was carried out to produce discolored and demineralized peptides without the addition of chemical agents. The aim of this study was to test the antibacterial, antifungal and antioxidant activities of discolored and demineralized bovine hemoglobin hydrolysates recovered by EDBM and to compare them with raw and discolored hydrolysates derived from conventional hydrolysis. The results demonstrate that discolored–demineralized hydrolysates recovered from EDBM had significant antimicrobial activity against many bacterial (gram-positive and gram-negative) and fungal (molds and yeast) strains. Concerning antibacterial activity, lower MIC values for hydrolysates were registered against Staphylococcus aureus, Kocuria rhizophila and Listeria monocytogenes. For antifungal activity, lower MIC values for hydrolysates were registered against Paecilomyces spp., Rhodotorula mucilaginosa and Mucor racemosus. Hemoglobin hydrolysates showed fungicidal mechanisms towards these fungal strains since the MFC/MIC ratio was ≤4. The hydrolysates also showed a potent antioxidant effect in four different antioxidant tests. Consequently, they can be considered promising natural, low-salt food preservatives. To the best of our knowledge, no previous studies have identified the biological properties of discolored and demineralized bovine hemoglobin hydrolysates.
Collapse
|
8
|
Gholamalizadeh M, Behrad Nasab M, Ahmadzadeh M, Doaei S, Jonoush M, Shekari S, Afsharfar M, Hosseinzadeh P, Abbastorki S, Akbari ME, Hashemi M, Omidi S, Vahid F, Mosavi Jarrahi A, Lavasani A. The association among calorie, macronutrient, and micronutrient intake with colorectal cancer: A case-control study. Food Sci Nutr 2022; 10:1527-1536. [PMID: 35592289 PMCID: PMC9094451 DOI: 10.1002/fsn3.2775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022] Open
Abstract
The risk of colorectal cancer (CRC) can be influenced by dietary components. This study aims to investigate the association between dietary intake and CRC in Iranian adults. This hospital‐based case–control study was performed on 160 patients with CRC and 320 healthy people. General and pathological data were collected through face‐to‐face interviews. A validated food frequency questionnaire (FFQ) was used to assess the intake of calories, macronutrients, and micronutrients. The case group had a significantly higher intake of calories, carbohydrates, vitamin A, vitamin K, fluoride, and molybdenum and a lower intake of vitamin E, vitamin B1, beta carotene, biotin, folate, magnesium, selenium, manganese, and fiber (all p < .001). CRC was positively associated with the intake of carbohydrate (OR: 1.01, CI% 1.03–1.01, p = .001), and vitamin A (OR: 1.009, CI 95% 1.006–1.01, p = .001) and negatively associated with intake of fiber (OR: 0.67, CI 95% 0.59–0.76, p = .001), beta carotene (OR: 0.99, CI 95% 0.99–0.99, p = .001), vitamin E (OR: 0.27, CI 95% 0.15–0.47, p = .001), folate (OR: 0.98 CI 95% 0.97–0.98, p = .001), and biotin (OR: 0.83, CI 95% 0.77–0.90, p = .001). The associations remained significant after adjusting for age and sex. Further adjustments for physical activity, alcohol consumption, and smoking did not change the results. The results identified that the risk of colorectal cancer can be influenced by dietary intake. Further longitudinal studies are needed to confirm these findings and to identify the underlying mechanisms of the effects of dietary components on the risk of colorectal cancer.
Collapse
Affiliation(s)
| | - Mojgan Behrad Nasab
- Department of Physical Education & Sport Sciences Faculty of Sport Science Central Tehran Branch Islamic Azad University Tehran Iran
| | - Mina Ahmadzadeh
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeid Doaei
- Cancer Research Center Shahid Beheshti University of Medical Sciences Tehran Iran.,School of Health, Research Center of Health and Environment Guilan University of Medical Sciences Rasht Iran
| | - Mona Jonoush
- Department of Nutrition School of Medicine Mashahd University of Medical Sciences Mashahad Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch Islamic Azad University Tehran Iran
| | - Maryam Afsharfar
- Department of Nutrition School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Payam Hosseinzadeh
- Gastrointestinal and liver Diseases Research Center (GLDRC), Iran University of Medical Sciences Tehran Iran
| | - Saheb Abbastorki
- Department of Nutrition Faculty of Nutrition Sciences Shiraz University of Medical Sciences Shiraz Iran
| | | | - Maryam Hashemi
- Department of Pathology Firoozgar General Hospital Iran University of Medical Sciences Tehran Iran
| | - Saeed Omidi
- Department of Health Education and Promotion School of Health Research Center of Health and Environment Guilan University of Medical Sciences Rasht Iran
| | - Farhad Vahid
- Nutrition and Health Research Group Department of Population Health Luxembourg Institute of Health Strassen Luxembourg
| | | | - Ali Lavasani
- Department of Pathology Firoozgar General Hospital Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021; 27:233. [PMID: 35011465 PMCID: PMC8746501 DOI: 10.3390/molecules27010233] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Inflammation is a natural protective mechanism that occurs when the body's tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators' activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer's disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, Taibah University, Madinah 41477, Saudi Arabia;
| | - Samia Qasem Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Albaha 65527, Saudi Arabia;
| | - Abdullah S Alruwaili
- Department of Clinical Laboratory, College of Applied Medical Science, Northern Border University, P.O. Box 1321, Arar 9280, Saudi Arabia;
| | - Md. Sohel Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| |
Collapse
|
10
|
de Barros TT, Venâncio VDP, Hernandes LC, Greggi Antunes LM, Hillesheim E, Salomão RG, Mathias MG, Coelho-Landell CA, Toffano RBD, Almada MORDV, Camelo- JS, Moco S, Ued FDV, Kaput J, Monteiro JP. DNA damage is inversely associated to blood levels of DHA and EPA fatty acids in Brazilian children and adolescents. Food Funct 2021; 11:5115-5121. [PMID: 32432238 DOI: 10.1039/c9fo02551k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the association between DNA damage and blood levels of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), retinol, beta-carotene and riboflavin in Brazilian children and adolescents. Subjects (n = 140) were healthy boys and girls aged 9 to 13 years in Ribeirão Preto (SP, Brazil). Data collection included anthropometry, assessment of energy intake and blood sampling. DNA damage was evaluated by single-cell gel electrophoresis (comet assay). Principal component analysis (PCA) was used to verify associations between blood concentrations of vitamins, polyunsaturated fatty acids and DNA damage. Multiple regression analyses, k-means cluster, and analysis of covariance (ANCOVA), adjusted for confounding variables such as age, sex, energy intake, body mass index and total cholesterol (when needed), were applied to confirm the associations. PCA explained 69.4% of the inverse relationships between DNA damage and blood levels of DHA, EPA, retinol, and beta-carotene. Results were confirmed by ANCOVA and multiple regression analyses for DHA and EPA. In conclusion, omega-3-fatty acids were inversely associated with DNA damage in Brazilian children and adolescents and may be a protective factor against the development of future diseases.
Collapse
Affiliation(s)
- Tamiris Trevisan de Barros
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Vinicius de Paula Venâncio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lívia Cristina Hernandes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Elaine Hillesheim
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Roberta Garcia Salomão
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Mariana Giaretta Mathias
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Carolina Almeida Coelho-Landell
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Roseli Borges Donegá Toffano
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Maria Olimpia Ribeiro do Vale Almada
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - José Simon Camelo-
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Sofia Moco
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Fábio da Veiga Ued
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jim Kaput
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Jacqueline Pontes Monteiro
- Department of Pediatrics and Department of Health Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
Mancini A, Guidi F, Bruno C, Angelini F, Vergani E, Lanza P, Mordente A, Meucci E, Silvestrini A. Can plasma antioxidants prevent DNA damage in oxidative stress condition induced by growth hormone deficiency? A pilot study. PLoS One 2021; 16:e0248971. [PMID: 33793606 PMCID: PMC8016303 DOI: 10.1371/journal.pone.0248971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Adult growth hormone deficiency (GHD), a condition characterized by increased oxidative stress, is related to augmented cardiovascular, metabolic and oncological risk. A case-control observational study has been performed to evaluate DNA oxidative damage analysing the production of thymidine-glycol in lymphocytes and its correlation with plasma antioxidant levels, evaluated as Total Antioxidant Capacity (TAC). GHD was diagnosed using GHRH 50μg iv+arginine 0,5 g/Kg test, with peak GH response <9 μg/L when BMI was <30 kg/m2 or <4 μg/L when BMI was >30 kg/m2. Three groups were identified: total GHD (n = 16), partial GHD (n = 11), and controls (n = 12). Thymidine-glycol, TAC and IGF-1 have been determined respectively in lymphocytes, plasma and serum samples. When considering thymidine-glycol, we found a significant difference between total vs partial GHD and controls. Unexpectedly thymidine-glycol was lower in total GHD, also accompanied with a significant increase in plasmatic TAC. Our results showed that in adult GHD condition, the production of antioxidant species, in response to increased oxidative stress, could exert a protective effect on thymidine-glycol formation, and consequently on DNA intracellular damages. This pilot study could be inserted in the complex scenario of oxidative damage of GHD, a subtle, yet poorly defined condition, worthy of further insights.
Collapse
Affiliation(s)
- Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Guidi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmine Bruno
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Flavia Angelini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Edoardo Vergani
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Lanza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alvaro Mordente
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, Cliniche intensivologiche e peri-operatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisabetta Meucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, Cliniche intensivologiche e peri-operatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Silvestrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, Cliniche intensivologiche e peri-operatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
The Aqueous Extract of Dacryodes edulis (Burseraceae) Leaves Inhibits Cell Proliferation Induced by Estradiol on the Uterus and Vagina of Ovariectomized Female Wistar Rats. Adv Pharmacol Pharm Sci 2020; 2020:8869281. [PMID: 33274337 PMCID: PMC7700024 DOI: 10.1155/2020/8869281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Proliferation is a cellular process strongly linked to the genesis of cancer. Natural substances with antiproliferative activities are currently potential alternatives in the treatment of cancers. Dacryodes edulis, for instance, is a medicinal plant traditionally used in the treatment of cancer. Scientific studies have reported the antioxidant activity of this plant. In addition, the presence of prostate cancer chemopreventive polyphenols was reported in D. edulis extracts. Therefore, this study was aimed to evaluate the effects of the aqueous extract of D. edulis leaves on cell proliferation induced by estradiol in ovariectomized female Wistar rats. In this regard, ovariectomized (OVX) rats were cotreated with estradiol valerate (E2V) (0.75 mg/kg) and the aqueous extract of D. edulis leaves. Control groups received either the vehicle (sham-operated animals and the OVX control), E2V (0.75 mg/kg) only, or E2V (0.75 mg/kg) and tamoxifen (10 mg/kg). Treatments were administered orally for 3 consecutive days, and animals were sacrificed thereafter. Epithelial heights of the uterus and vagina were assessed. Uterine levels of total cholesterol and estradiol were determined as well. Results showed that the aqueous extract of D. edulis leaves reversed the effects of estradiol as it reduced uterine weight (p < 0.05), uterine (p < 0.05), and vaginal (p < 0.001) epithelium heights. This antiproliferative effect of D. edulis was associated with reduced tissue (uterine) levels of estradiol (p < 0.001). These results suggest that the aqueous extract of D. edulis leaves could be a potential alternative treatment for proliferation-related diseases.
Collapse
|
13
|
Jabłońska-Wawrzycka A, Rogala P, Czerwonka G, Michałkiewicz S, Hodorowicz M, Kowalczyk P. Ruthenium(IV) Complexes as Potential Inhibitors of Bacterial Biofilm Formation. Molecules 2020; 25:molecules25214938. [PMID: 33114511 PMCID: PMC7662803 DOI: 10.3390/molecules25214938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
With increasing antimicrobial resistance there is an urgent need for new strategies to control harmful biofilms. In this study, we have investigated the possibility of utilizing ruthenium(IV) complexes (H3O)2(HL1)2[RuCl6]·2Cl·2EtOH (1) and [RuCl4(CH3CN)2](L32)·H2O (2) (where L1-2-hydroxymethylbenzimadazole, L32-1,4-dihydroquinoxaline-2,3-dione) as effective inhibitors for biofilms formation. The biological activities of the compounds were explored using E. coli, S. aureus, P. aeruginosa PAO1, and P. aeruginosa LES B58. The new chloride ruthenium complexes were characterized by single-crystal X-ray diffraction analysis, Hirshfeld surface analysis, FT-IR, UV-Vis, magnetic and electrochemical (CV, DPV) measurements, and solution conductivity. In the obtained complexes, the ruthenium(IV) ions possess an octahedral environment. The intermolecular classical and rare weak hydrogen bonds, and π···π stacking interactions significantly contribute to structure stabilization, leading to the formation of a supramolecular assembly. The microbiological tests have shown complex 1 exhibited a slightly higher anti-biofilm activity than that of compound 2. Interestingly, electrochemical studies have allowed us to determine the relationship between the oxidizing properties of complexes and their biological activity. Probably the mechanism of action of 1 and 2 is associated with generating a cellular response similar to oxidative stress in bacterial cells.
Collapse
Affiliation(s)
- Agnieszka Jabłońska-Wawrzycka
- Institute of Chemistry, Jan Kochanowski University in Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland; (P.R.); (S.M.)
- Correspondence: or
| | - Patrycja Rogala
- Institute of Chemistry, Jan Kochanowski University in Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland; (P.R.); (S.M.)
| | - Grzegorz Czerwonka
- Institute of Biology, Jan Kochanowski University in Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland;
| | - Sławomir Michałkiewicz
- Institute of Chemistry, Jan Kochanowski University in Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland; (P.R.); (S.M.)
| | - Maciej Hodorowicz
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Kraków, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka Str., 05-110 Jabłonna, Poland;
| |
Collapse
|
14
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Misztal T, Kowalczyk P, Młotkowska P, Marciniak E. The Effect of Allopregnanolone on Enzymatic Activity of the DNA Base Excision Repair Pathway in the Sheep Hippocampus and Amygdala under Natural and Stressful Conditions. Int J Mol Sci 2020; 21:E7762. [PMID: 33092287 PMCID: PMC7589085 DOI: 10.3390/ijms21207762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/24/2023] Open
Abstract
The neurosteroid allopregnanolone (AL) has many beneficial functions in the brain. This study tested the hypothesis that AL administered for three days into the third brain ventricle would affect the enzymatic activity of the DNA base excision repair (BER) pathway in the hippocampal CA1 and CA3 fields and the central amygdala in luteal-phase sheep under both natural and stressful conditions. Acute stressful stimuli, including isolation and partial movement restriction, were used on the last day of infusion. The results showed that stressful stimuli increased N-methylpurine DNA glycosylase (MPG), thymine DNA glycosylase (TDG), 8-oxoguanine glycosylase (OGG1), and AP-endonuclease 1 (APE1) mRNA expression, as well as repair activities for 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC), and 8-oxoguanine (8-oxoG) compared to controls. The stimulated events were lower in stressed and AL-treated sheep compared to sheep that were only stressed (except MPG mRNA expression in the CA1 and amygdala, as well as TDG mRNA expression in the CA1). AL alone reduced mRNA expression of all DNA repair enzymes (except TDG in the amygdala) relative to controls and other groups. DNA repair activities varied depending on the tissue-AL alone stimulated the excision of εA in the amygdala, εC in the CA3 and amygdala, and 8-oxoG in all tissues studied compared to controls. However, the excision efficiency of lesioned bases in the AL group was lower than in the stressed and stressed and AL-treated groups, with the exception of εA in the amygdala. In conclusion, the presented modulating effect of AL on the synthesis of BER pathway enzymes and their repair capacity, both under natural and stressful conditions, indicates another functional role of this neurosteroid in brain structures.
Collapse
Affiliation(s)
- Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (P.K.); (P.M.); (E.M.)
| | | | | | | |
Collapse
|
16
|
Hemmendinger M, Wild P, Shoman Y, Graille M, Bergamaschi E, Hopf N, Guseva Canu I. Reference ranges of oxidative stress biomarkers selected for non-invasive biological surveillance of nanotechnology workers: Study protocol and meta-analysis results for 8-OHdG in exhaled breath condensate. Toxicol Lett 2020; 327:41-47. [PMID: 32234358 DOI: 10.1016/j.toxlet.2020.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
In the field of engineered nanomaterials (ENMs) and other airborne particulate exposure biomonitoring, circulating oxidative stress biomarkers appear promising. These biomarkers could be monitored in different biological matrices. Exhaled breath condensate (EBC) enables their measurements in the respiratory tract, without affecting airway function or creating inflammation. The 8-hydroxy-2-deoxyguanosine (8-OHdG) was found increased in the EBC of ENM-exposed workers. Our objectives were to assess the reference range of 8-OHdG in the EBC and to identify determinants of its inter- and intra-individual variability. The meta-analysis was stratified by analytical method (chemical versus immunochemical analysis) and resulted in a between-study variability over 99 % of the total variability. The between-study variability completely dominated the within-studies variability. By using a mixed model with study ID as a random effect rather than a meta-regression, only smoking was evidenced as a potential determinant of 8-OHdG inter-individual variability, and only when immunochemical analysis was used. To our knowledge, this is the first meta-analysis aimed at estimating reference values for 8-OHdG in the EBC. The estimated values should be considered preliminary, as they are based on a limited number of studies, mostly of moderate to low quality of evidence. Further research is necessary to standardize EBC sampling, storage and analytical methods. Such a standardization would enable a more accurate estimation of the reference ranges of the 8-OHdG and potentially other biomarkers measurable in the EBC, which are essential for a meaningful interpretation of the biomonitoring results.
Collapse
Affiliation(s)
- M Hemmendinger
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| | - P Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland; Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy, France
| | - Y Shoman
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - M Graille
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - E Bergamaschi
- Laboratory of Toxicology and Industrial Epidemiology, Department of Public Health and Pediatrics, University of Turin, Italy
| | - N Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - I Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| |
Collapse
|
17
|
Odetti LM, López González EC, Romito ML, Simoniello MF, Poletta GL. Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110312. [PMID: 32109584 DOI: 10.1016/j.ecoenv.2020.110312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Agricultural expansion and the consequent use of pesticides lead to the loss and fragmentation of natural habitats of several wild species. Then, many species are inevitably exposed to a wide amount of pesticide formulations. Glyphosate (GLY)-based formulations are the most used herbicide, whereas two of the most employed insecticides are chlorpyrifos (CPF) and cypermethrin (CYP). The aim of this study was to evaluate genotoxicity, oxidative damage, and the modulation of antioxidants defenses in peripheral blood of Caiman latirostris after embryonic exposure to pesticide formulations and their mixtures. Pesticides concentrations employed were equivalent to those recommended in agricultural practices for application in soybean crops and a half of them: GLY: 2% and 1%; CYP: 0.12% and 0.06%; CPF: 0.8% and 0.4%. Two similar experiments (E1 and E2) were carried out in consecutive years, where C. latirostris eggs were exposed to pesticide formulations separately and in different mixtures through application on the incubation material. After hatching, blood samples were taken and genotoxicity and oxidative stress was evaluated through the micronucleus (MN) test, the modified comet assay, the lipid peroxidation (LPO) levels and the activities of catalase (CAT) and superoxide dismutase (SOD) antioxidant enzymes. The results indicated the presence of DNA damage, oxidation of purines and pyrimidines, and increased frequency of micronucleus (FMN) in the case of GLY, CYP, and CPF formulations exposure, as well as in all the mixtures tested, with respect to the control groups. Specifically, the results observed for the mixtures would indicate independent action or antagonism of the components for DNA damage and base oxidation (purines and pyrimidines) and a possible potentiation interaction for the FMN in two binary mixtures. However, there were not differences regarding lipid peroxidation, the activity of antioxidant enzymes and growth parameters. This study proved that the use of pesticide formulations at concentrations used in the field generate deleterious genetic effects on this species, then, exposure to them could threaten its survival and health status.
Collapse
Affiliation(s)
- L M Odetti
- Cát. Toxicol., Farmacol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), CABA, Argentina
| | - E C López González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), CABA, Argentina; Lab. de Ecología Molecular Aplicada (LEMA) - Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral-UNL/CONICET), R.P. Kreder 2805 (3080), Esperanza, Santa Fe, Argentina; Proyecto Yacaré - Lab. Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MMA), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| | - M L Romito
- Proyecto Yacaré - Lab. Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MMA), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| | - M F Simoniello
- Cát. Toxicol., Farmacol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina
| | - G L Poletta
- Cát. Toxicol., Farmacol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), CABA, Argentina; Proyecto Yacaré - Lab. Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MMA), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina.
| |
Collapse
|
18
|
Farid A, Kamel D, Abdelwahab Montaser S, Mohamed Ahmed M, El Amir M, El Amir A. Assessment of antioxidant, immune enhancement, and antimutagenic efficacy of fennel seed extracts in irradiated human blood cultures. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1728963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Dina Kamel
- Radiation Protection Department, Nuclear Power Plant Authority (NPPA), Cairo, Egypt
| | - Sherien Abdelwahab Montaser
- Radiation Biology Dept., National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud Mohamed Ahmed
- Radiation Biology Dept., National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mona El Amir
- Internal Medicine Department, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Giza, Egypt
| | - Azza El Amir
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
19
|
Farid A, Kamel D, Abdelwahab Montaser S, Mohamed Ahmed M, El Amir M, El Amir A. Synergetic role of senna and fennel extracts as antioxidant, anti-inflammatory and anti-mutagenic agents in irradiated human blood lymphocyte cultures. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1723948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Dina Kamel
- Radiation Protection Department, Nuclear Power Plant Authority (NPPA), Nasr City, Cairo, Egypt
| | - Sherien Abdelwahab Montaser
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mahmoud Mohamed Ahmed
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mona El Amir
- Internal Medicine Department, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Giza, Egypt
| | - Azza El Amir
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
The prevention of radiation-induced DNA damage and apoptosis in human intestinal epithelial cells by salvianic acid A. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Serum prolidase activity, total oxidant/antioxidant, and nitric oxide levels in patients with esophageal squamous cell carcinoma. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 27:206-211. [PMID: 32082854 DOI: 10.5606/tgkdc.dergisi.2019.16888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/01/2018] [Indexed: 01/14/2023]
Abstract
Background This study aims to assess the prolidase activity, nitric oxide levels, and oxidative status in patients with esophageal squamous cell carcinoma. Methods The study included 30 patients with esophageal squamous cell carcinoma (11 males, 19 females; mean age 61±3 years; range, 28 to 77 years) and 30 healthy controls (10 males, 20 females; mean age 58±5 years; range, 31 to 73 years). Serum prolidase activity, total antioxidant capacity, total oxidant status, and nitric oxide levels were measured. In addition, the oxidative stress index was calculated. Results Prominently elevated serum prolidase activity, oxidative stress index values, total oxidant status, and nitric oxide levels were detected in the patient group (p<0.05). Lower total antioxidant capacity levels were observed in the patient group (p<0.05). Conclusion Increased oxidant status with increased nitric oxide levels and prolidase activity were found in esophageal squamous cell carcinoma patients. Impairment of antioxidant mechanism with increased prolidase activity and nitric oxide levels may have a crucial role in the etiopathogenesis of esophageal squamous cell carcinoma.
Collapse
|
22
|
Abstract
Flavonoids are not essential nutrients in that their absence from the diet does not produce deficiency conditions in animals and man. However, many have important similarities to pharmacological agents used in the treatment of disease. Their role as dietary components in disease prevention is less clear. Many potentially anti-carcinogenic and anti-atherogenic effects observed in cell cultures will not be of nutritional relevance unless flavonoids gain access to appropriate cellular sites. The bioavailability of flavonoids will depend on numerous factors including molecular structure, the amount consumed, the food matrix, degree of bioconversion in the gut and tissues, the nutrient status of the host and genetic factors. Moreover, extensive and rapid intestinal and hepatic metabolism of flavonoids suggests that the body may treat them as xenobiotic and potentially toxic compounds requiring rapid elimination. Consequently, in addition to potential health benefits, possible adverse effects of flavonoids in the diet also need to be considered when assessing their roles in the prevention of degenerative diseases.
Collapse
Affiliation(s)
- Janet Kyle
- Molecular Nutrition Group, Rowett Research Institute, Aberdeen, AB21 9SB, Scotland, UK
| | - Garry Duthie
- Molecular Nutrition Group, Rowett Research Institute, Aberdeen, AB21 9SB, Scotland, UK
| |
Collapse
|
23
|
Zhang J, Chen Q, Du D, Wu T, Wen J, Wu M, Zhang Y, Yan W, Zhou S, Li Y, Jin Y, Luo A, Wang S. Can ovarian aging be delayed by pharmacological strategies? Aging (Albany NY) 2019; 11:817-832. [PMID: 30674710 PMCID: PMC6366956 DOI: 10.18632/aging.101784] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Aging has been regarded as a treatable condition, and delaying aging could prevent some diseases. Ovarian aging, a special type of organ senescence, is the earliest-aging organ, as ovaries exhibit an accelerated rate of aging with characteristics of gradual declines in ovarian follicle quantity and quality since birth, compared to other organs. Ovarian aging is considered as the pacemaker of female body aging, which drives the aging of multiple organs of the body. Hence, anti-ovarian aging has become a research topic broadly interesting to both biomedical scientists and pharmaceutical industry. A marked progress has been made in exploration of possible anti-ovarian agents or approaches, such as calorie restriction mimetics, antioxidants, autophagy inducers etc., over the past years. This review is attempted to discuss recent advances in the area of anti-ovarian aging pharmacology and to offer new insights into our better understanding of molecular mechanisms underlying ovarian aging, which might be informative for future prevention and treatment of ovarian aging and its related diseases.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dingfu Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Xotlanihua-Gervacio MDC, Guerrero-Flores MC, Herrera-Moreno JF, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, Sordo M, Rojas-García AE. Micronucleus frequency is correlated with antioxidant enzyme levels in workers occupationally exposed to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31558-31568. [PMID: 30206828 DOI: 10.1007/s11356-018-3130-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress can cause DNA damage leading to nuclear anomalies such as micronuclei (MN). Antioxidant enzymes involved in protection against intracellular oxidative stress include glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT). Pesticide exposure induces oxidative stress and alters antioxidant defense mechanisms, including detoxification and scavenger enzymes. The aim of this study was to evaluate MN frequency in workers occupationally exposed to pesticides and their relationship with antioxidant enzyme activities. A cross-sectional study was conducted in 201 individuals, some of whom were dedicated to the spraying of pesticides. The cytokinesis-block micronucleus (CBMN) assay was conducted, and the activities of GPx, GR, SOD, and CAT were determined. The geometric mean (GM) of MN was 5.4 (1-26 MN). The GM for the antioxidant enzymes was 198.68 U/mL for GPx, 38.96 U/g Hb for GR, 94.78 U/mL for SOD, and 69.77 U/g Hb for CAT. There was a lower MN frequency in males than that in females, and a higher nuclear index. In addition, age affected MN frequency. There was a negative correlation between MN frequency and GPx activity, but a positive one between MN frequency and GR activity. These findings suggest the involvement of GPx in MN frequency.
Collapse
Affiliation(s)
- Maria Del Carmen Xotlanihua-Gervacio
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
- Posgrado en Ciencias Biológico Agropecuarias|, Unidad Académica de Agricultura, Km. 9 Carretera Tepic, Compostela, Xalisco, Nayarit, Mexico
| | - Mirna Citlali Guerrero-Flores
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
- Posgrado en Ciencias Biológico Agropecuarias|, Unidad Académica de Agricultura, Km. 9 Carretera Tepic, Compostela, Xalisco, Nayarit, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Monserrat Sordo
- Instituto de Investigaciones Biomédicas, UNAM, P.O. Box 70228, Ciudad Universitaria, 04510, México DF, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico.
| |
Collapse
|
25
|
Thimóteo NSB, Scavuzzi BM, Simão ANC, Dichi I. The impact of cranberry (Vaccinium macrocarpon) and cranberry products on each component of the metabolic syndrome: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41110-017-0048-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Wirth MD, Murphy EA, Hurley TG, Hébert JR. Effect of Cruciferous Vegetable Intake on Oxidative Stress Biomarkers: Differences by Breast Cancer Status. Cancer Invest 2017; 35:277-287. [PMID: 28272911 DOI: 10.1080/07357907.2017.1289218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This post hoc analysis examined cruciferous vegetable intake on urinary oxidative metabolites in postmenopausal women. Intervention participants (n = 69) received cruciferous vegetables (≥14 cups/week) during a 3-week period. First morning urine measured 8-isoprostane and 8-hydroxy-2'-deoxyguanosine. Dietary intake was estimated using 24-h recalls. When stratified by history of breast cancer, those with breast cancer had significantly lower post-intervention urinary 8-hydroxy-2'-deoxyguanosine values in the intervention arm versus. the control arm (1.1 ng/mL vs. 3.2 ng/mL, p = .01) after adjustment for baseline 8-hydroxy-2'-deoxyguanosine. This was not observed in those without breast cancer. Further work is needed to understand the role of breast cancer in these relationships.
Collapse
Affiliation(s)
- Michael D Wirth
- a Department of Epidemiology and Biostatistics , Arnold School of Public Health, University of South Carolina , Columbia , South Carolina , USA.,b Cancer Prevention and Control Program , University of South Carolina , Columbia , South Carolina , USA.,c Connecting Health Innovation, LLC , Columbia , South Carolina , USA
| | - E Angela Murphy
- d Department of Pathology , Microbiology, and Immunology, School of Medicine, University of South Carolina , Columbia , South Carolina , USA
| | - Thomas G Hurley
- c Connecting Health Innovation, LLC , Columbia , South Carolina , USA
| | - James R Hébert
- a Department of Epidemiology and Biostatistics , Arnold School of Public Health, University of South Carolina , Columbia , South Carolina , USA.,b Cancer Prevention and Control Program , University of South Carolina , Columbia , South Carolina , USA.,c Connecting Health Innovation, LLC , Columbia , South Carolina , USA
| |
Collapse
|
27
|
Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 3:228-37. [PMID: 20972369 PMCID: PMC2952083 DOI: 10.4161/oxim.3.4.12858] [Citation(s) in RCA: 628] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects.
Collapse
Affiliation(s)
- Jaouad Bouayed
- Centre de Recherche Public-Gabriel Lippmann; Environment and Agro-Biotechnolgies Department; Nutrition and Toxicology Unit; Belvaux, Luxembourg.
| | - Torsten Bohn
- Centre de Recherche Public-Gabriel Lippmann; Environment and Agro-Biotechnolgies Department; Nutrition and Toxicology Unit; Belvaux, Luxembourg
| |
Collapse
|
28
|
Papuc C, Goran GV, Predescu CN, Nicorescu V. Mechanisms of Oxidative Processes in Meat and Toxicity Induced by Postprandial Degradation Products: A Review. Compr Rev Food Sci Food Saf 2016; 16:96-123. [DOI: 10.1111/1541-4337.12241] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Camelia Papuc
- UASVM of Bucharest; Faculty of Veterinary Medicine; 105 Splaiul Independentei, 5th district 050097 Bucharest Romania
| | - Gheorghe V. Goran
- UASVM of Bucharest; Faculty of Veterinary Medicine; 105 Splaiul Independentei, 5th district 050097 Bucharest Romania
| | - Corina N. Predescu
- UASVM of Bucharest; Faculty of Veterinary Medicine; 105 Splaiul Independentei, 5th district 050097 Bucharest Romania
| | - Valentin Nicorescu
- UASVM of Bucharest; Faculty of Veterinary Medicine; 105 Splaiul Independentei, 5th district 050097 Bucharest Romania
| |
Collapse
|
29
|
Hu M, Hu N, Ding D, Zhao W, Feng Y, Zhang H, Li G, Wang Y. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:441-450. [PMID: 27582010 DOI: 10.1007/s00411-016-0663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Miao Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China.
| | - Weichao Zhao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yongfu Feng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yongdong Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
30
|
Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H, Qin W, Wu H, Chen S. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016; 21:E1374. [PMID: 27754463 PMCID: PMC6274266 DOI: 10.3390/molecules21101374] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which include the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin), attractants (flavonoids and carotenoids), UV screens (flavonoids), signal compounds (salicylic acid, flavonoids) and defense response chemicals (tannins, phytoalexins). From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities. Therefore, it is beneficial to eat such plant foods that have a high antioxidant compound content, which will cut down the incidence of certain chronic diseases, for instance diabetes, cancers and cardiovascular diseases, through the management of oxidative stress. Furthermore, berries and other fruits with low-amylase and high-glucosidase inhibitory activities could be thought of as candidate food items in the control of the early stages of hyperglycemia associated with type 2 diabetes.
Collapse
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Mengshi Xiao
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Jingjing Zhao
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Zhuohao Li
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Xindan Li
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Maozhu Kong
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Liangyu Li
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| |
Collapse
|
31
|
Shi L, Zhang J, Lai Z, Tian Y, Fang L, Wu M, Xiong J, Qin X, Luo A, Wang S. Long-Term Moderate Oxidative Stress Decreased Ovarian Reproductive Function by Reducing Follicle Quality and Progesterone Production. PLoS One 2016; 11:e0162194. [PMID: 27676390 PMCID: PMC5038974 DOI: 10.1371/journal.pone.0162194] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Ovarian aging is a long-term and complex process associated with a decrease in follicular quantity and quality. The damaging effects of reactive oxygen species (ROS) in ovarian aging and ovarian aging-associated disorders have received relatively little attention. Thus, we assessed if the oxidative stress induced by long-term (defined by the Environmental Protection Agency as at least 30 days in duration) moderate ozone inhalation reduced ovarian reserves, decreased ovarian function and induced ovarian aging-associated disorders. The expression of oxidative stress markers and antioxidant enzymes was used to determine the degree of oxidative stress. Ultrastructural changes in ovarian cells were examined via electron microscopy. The ovarian reserve was assessed by measuring multiple parameters, such as the size of the primordial follicle pool and anti-Müllerian hormone (AMH) expression. The estrous cycle, hormone levels and fertility status were investigated to assess ovarian function. To investigate ovarian aging-associated disorders, we utilized bone density and cardiovascular ultrasonography in mice. The levels of oxidized metabolites, such as 8-hydroxy-2´-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE) and nitrotyrosine (NTY), significantly increased in ovarian cells in response to increased oxidative stress. The ultrastructural analysis indicated that lipid droplet formation and the proportion of mitochondria with damaged membranes in granulosa cells were markedly increased in ozone-exposed mice when compared with the control group. Ozone exposure did not change the size of the primordial follicle pool or anti-Müllerian hormone (AMH) expression. The estrogen concentration remained normal; however, progesterone and testosterone levels decreased. The mice exposed to ozone inhalation exhibited a substantial decrease in fertility and fecundity. No differences were revealed by the bone density or cardiovascular ultrasounds. These findings suggest that the decreased female reproductive function caused by long-term moderate oxidative damage may be due to a decrease in follicle quality and progesterone production.
Collapse
Affiliation(s)
- Liangyan Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwen Lai
- Maternal and Child Health Hospital of Zigong, Sichuan, 643000, China
| | - Yong Tian
- The Central Hospital of Enshi Autonomous Prefecture, 158 Wuyang Road, Enshi Autonomous Prefecture, Hubei, 445000, China
| | - Li Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (SW); (AL)
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (SW); (AL)
| |
Collapse
|
32
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Going retro: Oxidative stress biomarkers in modern redox biology. Free Radic Biol Med 2016; 98:2-12. [PMID: 26855421 DOI: 10.1016/j.freeradbiomed.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/23/2022]
Abstract
The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece; Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - J N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - V Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
33
|
Consumption of 5-hydroxymethylfurfural-rich dried fruits is associated with reduction in urinary excretion of 8-hydroxy-2′-deoxyguanosine: a randomized clinical trial. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2575-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Cai L, Wu X, Zhang Y, Li X, Ma S, Li J. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
35
|
Ghribi AM, Sila A, Przybylski R, Nedjar-Arroume N, Makhlouf I, Blecker C, Attia H, Dhulster P, Bougatef A, Besbes S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 2014; 37:1929-40. [PMID: 25325492 DOI: 10.5665/sleep.4244] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. DESIGN Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. MEASUREMENTS AND RESULTS Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. CONCLUSIONS These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI
| | | | - Aniko Szabo
- Department of Population Health, The Medical College of Wisconsin, Milwaukee, WI
| | - Neil Hogg
- Department of Biophysics, The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
37
|
Single nucleotide polymorphisms in noncoding regions of Rad51C do not change the risk of unselected breast cancer but they modulate the level of oxidative stress and the DNA damage characteristics: a case-control study. PLoS One 2014; 9:e110696. [PMID: 25343521 PMCID: PMC4208807 DOI: 10.1371/journal.pone.0110696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023] Open
Abstract
Deleterious and missense mutations of RAD51C have recently been suggested to modulate the individual susceptibility to hereditary breast and ovarian cancer and unselected ovarian cancer, but not unselected breast cancer (BrC). We enrolled 132 unselected BrC females and 189 cancer-free female subjects to investigate whether common single nucleotide polymorphisms (SNPs) in non-coding regions of RAD51C modulate the risk of BrC, and whether they affect the level of oxidative stress and the extent/characteristics of DNA damage. Neither SNPs nor reconstructed haplotypes were found to significantly affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p<0.05). Furthermore, these carriers showed significantly decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand breakage was found (p<0.0005 for the difference). Such effects were found among both the BrC cases and healthy subjects, indicating that they cannot be assumed as causal factors contributing to BrC development.
Collapse
|
38
|
Koureas M, Tsezou A, Tsakalof A, Orfanidou T, Hadjichristodoulou C. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:358-364. [PMID: 25089694 DOI: 10.1016/j.scitotenv.2014.07.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The widespread use of pesticides substances nowadays largely guarantees the protection of crops and people from undesired pests. However, exposure to pesticides was related to a variety of human health effects. The present study was conducted in the region of Thessaly which is characterized by intensive agricultural activities and wide use of pesticides. The study aimed at estimating the oxidative damage to DNA in different subpopulations in Thessaly region (Greece) and investigating its correlation with exposure to pesticides and other potential risk factors. In total, the study involved 80 pesticide sprayers, 85 rural residents and 121 individuals, inhabitants of the city of Larissa. Demographic characteristics, habits, medical history and exposure history of the participants to pesticides were recorded by personal interviews. Blood and urine samples were collected from all participants. For the measurement of exposure to organophosphorus insecticides, dialkylphosphate (DAP) metabolites were quantified in urine, by gas chromatography-mass spectrometry. Genomic DNA was extracted from peripheral blood samples and the oxidation by-product 8-hydroxydeoxyguanosine (8-OHdG) was determined by Enzyme Immuno-Assay. Urinary metabolite concentrations were not associated with 8-OHdG levels but it was found that pesticide sprayers had significantly higher levels of 8-OHdG (p=0.007) in comparison to the control group. Last season's exposure to insecticides and fungicides, expressed as total area treated multiplied by the number of applications, showed a statistically significant association with the risk of having high 8-OHdG levels [RR: 2.19 (95%CI:1.09-4.38) and RR: 2.32 (95% CI:1.16-4.64) respectively]. Additionally, from the subgroups of pesticides examined, seasonal exposure to neonicotinoid insecticides [RR: 2.22 (95% CI:1.07-4.63)] and glufosinate ammonium [RR: 3.26 (95% CI:1.38-7.69)] was found to have the greater impact on 8-OHdG levels. This study produced findings that support the hypothesis that pesticide exposure is involved in the induction of oxidative damage to DNA and identified chemical groups of pesticides which should be given greater attention in future investigations.
Collapse
Affiliation(s)
- Michalis Koureas
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, School of Medicine, Larissa, Greece
| | - Andreas Tsakalof
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece; Department of Chemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Timoklia Orfanidou
- Department of Biomedical Research and Technology, Institute for Research and Technology-Thessaly (I.RE.TE.TH), 51 Papanastasiou Street, Larissa 41222, Greece
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece.
| |
Collapse
|
39
|
|
40
|
Sehitogulları A, Aslan M, Sayır F, Kahraman A, Demir H. Serum paraoxonase-1 enzyme activities and oxidative stress levels in patients with esophageal squamous cell carcinoma. Redox Rep 2014; 19:199-205. [PMID: 24731121 PMCID: PMC6837409 DOI: 10.1179/1351000214y.0000000091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES Oxidative stress is well recognized to play a role in the pathogenesis of many diseases, including cancers. Paraoxonase-1 (PON1) is implicated in the elimination of carcinogenic lipid-soluble radicals produced by lipid peroxidation. Reports on PON1 activities in patients with cancer are conflicting. The aim of this study was to investigate serum antioxidant enzyme activities and oxidative stress levels in patients with esophageal squamous cell carcinoma (ESCC). PATIENTS AND METHODS Thirty-two patients with ESCC and 33 healthy controls were enrolled. Serum malondialdehyde (MDA) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GR), paraoxonase, and arylesterase activities were measured spectrophotometrically. RESULTS Serum paraoxonase, arylesterase, SOD, activities, GSH-Px, and GR activities were significantly lower in patients with ESCC than in controls (all, P < 0.05), whereas serum MDA levels were significantly higher (P < 0.05). Serum MDA levels were significantly correlated with paraoxonase (r = -0.572, P < 0.001) and arylesterase activities (r = -0.597, P < 0.001) in patients with ESCC. CONCLUSIONS This study indicated that ESCC is associated with increased oxidative stress and decreased antioxidant enzyme activities. Decreased serum PON1 enzyme activities may play a role in the progression and/or development of ESCC. Further studies are required to clarify these results.
Collapse
Affiliation(s)
- Abidin Sehitogulları
- Department of Thoracic Surgery, Van Regional Educational and Research Hospital, Van, Turkey
| | - Mehmet Aslan
- Department of Internal MedicineYuzuncu Yil University, Medical Faculty, Van, Turkey
| | - Fuat Sayır
- Medical FacultyDepartment of Thoracic Surgery, Yuzuncu Yıl University, Van, Turkey
| | - Ali Kahraman
- Department of Thoracic Surgery, Van Regional Educational and Research Hospital, Van, Turkey
| | - Halit Demir
- Faculty of ScienceDepartment of Chemistry, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
41
|
Comparison of free radical formation induced by baicalein and pentamethyl-hydroxychromane in human promyelocytic leukemia cells using electron spin resonance. J Food Drug Anal 2014; 22:379-390. [PMID: 28911429 PMCID: PMC9354873 DOI: 10.1016/j.jfda.2014.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/10/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
Baicalein and pentamethyl-hydroxychromane (PMC) have been investigated for use as antioxidants. However, antioxidants may stimulate free radical formation under certain conditions. The aim of our study was to determine whether PMC and baicalein exhibit both pro-oxidant and antioxidant activities in human promyelocytic leukemia (HL-60) cells. In this study, electron spin resonance spectrometry was used to investigate the effects of baicalein and PMC on free radical formation. In HL-60 cells, baicalein and PMC produced hydroxyl and phenoxyl radicals, respectively, but each inhibited radical formation by the other. The PMC pro-oxidant activity required H2O2, whereas baicalein produced hydroxyl radicals during the cell resting state only. The antioxidant effect of baicalein on PMC-induced oxidative stress in HL-60 cells may involve myeloperoxidase inhibition, which produces the myeloperoxidase-protein radical. Our investigation of the antioxidant effects of baicalein on arachidonic acid (AA)-induced oxidative stress in HL-60 cells showed that the baicalein-phenoxyl radical was the primary product, and that either carbon-centered or acyl radicals were the secondary products. However, the antioxidant effects of PMC on AA-induced oxidative stress produced only nonradical products. In conclusion, we showed that baicalein displayed both pro-oxidant and antioxidant activities in HL-60 cells. PMC exhibited no pro-oxidant activity during the cells’ resting state but produced the PMC-phenoxyl radical in the presence of H2O2. The reaction of baicalein with AA in HL-60 cells produced baicalein-derived phenoxyl radicals that may initiate various pro-oxidative reactions. However, PMC does not produce radicals when it acts as an antioxidant. Thus, PMC is more beneficial as an antioxidant than baicalein.
Collapse
|
42
|
Kaur R, Kaur J, Mahajan J, Kumar R, Arora S. Oxidative stress--implications, source and its prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1599-1613. [PMID: 24170504 DOI: 10.1007/s11356-013-2251-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
Oxidative stress has been a major predicament of present day living. It has been the product of imbalance between the processes involved in free radical generation and their neutralization by enzymatic and non-enzymatic defence mechanisms. The oxidative stress has been contributed by numerous factors including heavy metals, organic compound-rich industrial effluents, air pollutants and changing lifestyle pattern focussing mainly on alcohol consumption, dietary habits, sun exposure, nuclear emissions, etc. The most common outcome of oxidative stress is the increased damage of lipid, DNA and proteins that resulted in the development of different pathologies. Among these pathologies, cancer is the most devastating and linked to multiple mutations arising due to oxidative DNA and protein damage that ultimately affect the integrity of the genome. The chemopreventive agents particularly nutraceuticals are found to be effective in reducing cancer incidences as these components have immense antioxidative, antimutagenic and antiproliferative potentials and are an important part of our dietary components. These secondary metabolites, due to their unique chemical structure, facilitate cell-to-cell communication, repair DNA damage by the downregulation of transcription factors and inhibit the activity of protein kinases and cytochrome P450-dependent mixed function oxidases. These phytochemicals, therefore, are most appropriate in combating oxidative stress-related disorders due to their tendency to exert better protective effect without having any distinct side effect.
Collapse
Affiliation(s)
- Rajbir Kaur
- Department of Botany, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib, Ropar, 140118, Punjab, India.
| | - Jasmit Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Jyoti Mahajan
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rakesh Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
43
|
Song B, Pan S, Tang C, Li D, Rusling JF. Voltammetric microwell array for oxidized guanosine in intact ds-DNA. Anal Chem 2013; 85:11061-7. [PMID: 24164630 PMCID: PMC3856883 DOI: 10.1021/ac402736q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidative stress in humans causes damage to biomolecules by generating reactive oxygen species (ROS). DNA can be oxidatively damaged by ROS, which may lead to carcinogenesis. Here we report a microfluidic electrochemical array designed to rapidly detect oxidation in intact DNA in replicate measurements. Sensor arrays were fabricated by wet-chemistry patterning of gold compact discs. The eight-sensor array is incorporated into a 60 μL microfluidic channel connected to a pump and sample valve. The array features 7 nm thick osmium bipyridyl poly(vinylpyridine) chloride [Os(bpy)2(PVP)10Cl](+) films assembled layer-by-layer with polyions onto the gold sensors. 8-Hydroxy-7,8-hydro-2'-deoxyguanosine (8-oxodG) is selectively oxidized by [Os(bpy)2(PVP)10Cl](+) in intact ds-DNA to provide catalytic square wave voltammograms (SWV). The device is easy-to-use, fast, inexpensive, reusable, and can detect one 8-oxodG per 6600 nucleobases. The mass detection limit is 150-fold lower than a previously reported dip-and-read voltammetric sensor for oxidized DNA. Fast assays (<1 min) and moderate sample consumption (15 pmol DNA) suggest potential for research and clinical applications. Practical use is illustrated by detecting DNA oxidation from cigarette smoke and ash extracts in dispersions with NADPH and Cu(2+).
Collapse
Affiliation(s)
- Boya Song
- Department of Chemistry, University of Connecticut , Storrs, CT 06269, United States
| | | | | | | | | |
Collapse
|
44
|
Pandurangan SB, Paul AS, Savarimuthu I, Ali AA. Antinociceptive, Immunomodulatory and Antipyretic Activity of Nymphayol Isolated from Nymphaea stellata (Willd.) Flowers. Biomol Ther (Seoul) 2013; 21:391-7. [PMID: 24244827 PMCID: PMC3825203 DOI: 10.4062/biomolther.2013.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/22/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022] Open
Abstract
In the present study, we aimed to analyze the antinociceptive, immunomodulatory and antipyretic activities of nymphayol were investigated in wistar rats and mice. Antinociceptive effect was evaluated by acetic acid induced writhing, formalin induced paw licking and hot-plate tests. Immunomodulatory activity was assessed by neutrophil adhesion test, humoral response to sheep red blood cells, delayed-type hypersensitivity, phagocytic activity and cyclophosphamide induced myelosuppression. Antipyretic activity was evaluated by yeast induced hyperthermia in rats. Nymphayol produced signifi cant (p<0.05) antinociceptive activity in acetic acid induced writhing response and late phase of the formalin induced paw licking response. Pre-treatment with nymphayol (50 mg/kg, oral) evoked a signifi cant increase in neutrophil adhesion to nylon fi bres. The augmentation of humoral immune response to sheep red blood cells by nymphayol (50 mg/kg) was evidenced by increase in antibody titres in rats. Oral administration of nymphayol (50 mg/kg) to rats potentiated the delayed-type hypersensitivity reaction induced by sheep red blood cells. Treatment with nymphayol showed a signifi cant (p<0.05) reduction in pyrexia in rats. The results suggest that nymphayol possesses potent anti-nociceptive, immunomodulatory and antipyretic activities.
Collapse
Affiliation(s)
- Subash-Babu Pandurangan
- Molecular Biology Research Lab, Department of Food science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, KSA ; Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, India
| | | | | | | |
Collapse
|
45
|
Abdul-Hamid M, Moustafa N. Amelioration of alloxan-induced diabetic keratopathy by beta-carotene. ACTA ACUST UNITED AC 2013; 66:49-59. [PMID: 24129090 DOI: 10.1016/j.etp.2013.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 07/22/2013] [Accepted: 08/30/2013] [Indexed: 12/25/2022]
Abstract
This study was undertaken to assess the anti-keratopathy activity of β-carotene in experimentally-induced diabetic animal model. The rats were divided into four groups as following: G1, normal control group; G2, β-carotene control group (50 mg/kg b.wt.); G3, diabetic group which was injected intraperitoneally with a single dose (100 mg/kg b. wt) of alloxan (ALX) and G4, diabetic rats treated with β-carotene which was injected with ALX as G3, and then received a daily oral dose of β-carotene (50 mg/kg b.wt.) for 3 months. ALX injection caused elevated levels of serum glucose in diabetic group. Moreover, histopathology revealed relatively thick corneal epithelium, ill-defined Bowman's membrane, widely spaced stromal layers and relatively thick Descemet's membrane. Electron microscopic studies showed vacuolated cytoplasm, partial loss of hemi-desmosomes and disorganized collagen fibrils with focal lysis of stromal layer. Oral gavage of β-carotene to diabetic rats for 3 months significantly decreased serum glucose level and ameliorated histopathological, immunohistochemical and ultrastructural results. Consequently, β-carotene exerted anti-keratopathy effects and ameliorated the corneal changes in diabetic rats via its hypoglycemic and antioxidant mechanisms.
Collapse
Affiliation(s)
- Manal Abdul-Hamid
- Department of Zoology, Faculty of Science, Beni-Suef University, Egypt.
| | | |
Collapse
|
46
|
Onaran Y, Kafali H, Duvan Cİ, Keskin E, Çelik H, Erel O. Relationship between oxidant and antioxidant activity in hyperemesis gravidarum. J Matern Fetal Neonatal Med 2013; 27:825-8. [DOI: 10.3109/14767058.2013.842549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Nafees S, Ali N, Rashid S, Hasan SK, Sultana S. Chemopreventive Effect of Bauhinia Purpurea Against Chemically Induced Hepatocarcinogenesis via Amelioration of Oxidative Damage, Cell Proliferation and Induction of Apoptosis in Wistar Rats. Toxicol Int 2013; 20:117-25. [PMID: 24082504 PMCID: PMC3783677 DOI: 10.4103/0971-6580.117252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives: In the present study we have evaluated the chemopreventive efficacy of Bauhinia purpurea against Diethylnitrosamine (DEN) initiated and 2 Acetylaminofluorine (2-AAF) promoted hepatocarcinogenesis in Wistar rats. Materials and Methods: Efficacy of Bauhinia purpurea against 2-AAF-induced hepatotoxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities (reduced hepatic GSH, glutathione peroxidase, glutathione reductase, catalase, and quinone reductase), histopathological changes and expressions of early tumor markers viz., ornithine decarboxylase activity (ODC) and proliferating cell nuclear antigen (PCNA) and also expressions of p53, Bax, Bcl-2, and caspase-3 were evaluated. Results: Oral pretreatment with B. purpurea significantly decreased the levels of serum toxicity markers, elevated antioxidant defense enzyme activities, suppressed the expression of ODC and PCNA and P53 along with the induction of apoptosis in the pretreatment groups. Tumor incidences are reduced by pretreatment of B. purpurea. Histopathological findings revealed that B. purpurea-pretreated groups showed marked recovery. Conclusion: The results support the protective effect of B. purpurea against chemically induced liver cancer and acts possibily by virtue of its antioxidant, antiproliferative, and apoptotic activities.
Collapse
Affiliation(s)
- Sana Nafees
- Department of Medical Elementology and Toxicology, Faculty of Science, Section of Molecular Carcinogenesis and Chemoprevention, Jamia Hamdard, New Delhi, India
| | | | | | | | | |
Collapse
|
48
|
Sharma NK. Modulation of radiation-induced and mitomycin C-induced chromosome damage by apigenin in human lymphocytes in vitro. JOURNAL OF RADIATION RESEARCH 2013; 54:789-797. [PMID: 23764456 PMCID: PMC3766282 DOI: 10.1093/jrr/rrs117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Apigenin (APG), a flavone, is known to exhibit antioxidant, antimutagenic and antitumorigenic activity, both in vivo and in vitro. The aim of this study is to investigate the modulatory effects of APG on human lymphocytes after irradiation with gamma rays (3 Gy) or treatment with the antineoplastic agent, mitomycin C (MMC), in vitro. Cytogenetic biomarkers such as chromosome aberrations (CAs), sister chromatid exchanges (SCEs) and cytochalasin-B blocked micronuclei (CBMN), were studied in blood lymphocytes treated with radiation, or antineoplastic agent (MMC), and APG. Whole blood lymphocytes were cultured in vitro using a standard protocol. No significant differences were found in the frequency of CAs or micronuclei (MN) in human peripheral blood lymphocytes irradiated with gamma rays (3 Gy) and then post-treated with APG. There was an increase in the frequency of SCEs per cell in APG-treated samples compared with the controls. Lymphocytes treated with MMC in the presence of APG exhibited a significant decrease (P < 0.01) in the frequency of SCEs compared with MMC treatment alone. The data for the MN test indicated that APG treatment significantly reduced (P < 0.01) the frequency of MMC-induced MN.
Collapse
Affiliation(s)
- Narinder K Sharma
- Genetic Toxicology and Chromosome Studies Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
49
|
Kadiiska MB, Basu S, Brot N, Cooper C, Saari Csallany A, Davies MJ, George MM, Murray DM, Jackson Roberts L, Shigenaga MK, Sohal RS, Stocker R, Van Thiel DH, Wiswedel I, Hatch GE, Mason RP. Biomarkers of oxidative stress study V: ozone exposure of rats and its effect on lipids, proteins, and DNA in plasma and urine. Free Radic Biol Med 2013; 61:408-15. [PMID: 23608465 PMCID: PMC3968235 DOI: 10.1016/j.freeradbiomed.2013.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
Ozone exposure effect on free radical-catalyzed oxidation products of lipids, proteins, and DNA in the plasma and urine of rats was studied as a continuation of the international Biomarker of Oxidative Stress Study (BOSS) sponsored by NIEHS/NIH. The goal was to identify a biomarker for ozone-induced oxidative stress and to assess whether inconsistent results often reported in the literature might be due to the limitations of the available methods for measuring the various types of oxidative products. The time- and dose-dependent effects of ozone exposure on rat plasma lipid hydroperoxides, malondialdehyde, F2-isoprostanes, protein carbonyls, methionine oxidation, and tyrosine- and phenylalanine oxidation products, as well as urinary malondialdehyde and F2-isoprostanes were investigated with various techniques. The criterion used to recognize a marker in the model of ozone exposure was that a significant effect could be identified and measured in a biological fluid seen at both doses at more than one time point. No statistically significant differences between the experimental and the control groups at either ozone dose and time point studied could be identified in this study. Tissue samples were not included. Despite all the work accomplished in the BOSS study of ozone, no available product of oxidation in biological fluid has yet met the required criteria of being a biomarker. The current negative findings as a consequence of ozone exposure are of great importance, because they document that in complex systems, as the present in vivo experiment, the assays used may not provide meaningful data of ozone oxidation, especially in human studies.
Collapse
Affiliation(s)
- Maria B Kadiiska
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Samar Basu
- Faculty of Medicine, Uppsala University, Uppsala, Sweden; Biochemistry, Molecular Biology and Nutrition Department, University of Auvergne, Clermont-Ferrand, France
| | - Nathan Brot
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Christopher Cooper
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - A Saari Csallany
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Michael J Davies
- The Heart Research Institute, University of Sydney, Sydney, Australia
| | | | - Dennis M Murray
- Northwest Life Science Specialties, LLC., Vancouver, WA, USA
| | - L Jackson Roberts
- Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, USA
| | - Mark K Shigenaga
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | | | - Gary E Hatch
- United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Ronald P Mason
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
50
|
Mice do not habituate to metabolism cage housing--a three week study of male BALB/c mice. PLoS One 2013; 8:e58460. [PMID: 23505511 PMCID: PMC3591308 DOI: 10.1371/journal.pone.0058460] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
The metabolism cage is a barren, non-enriched, environment, combining a number of recognized environmental stressors. We investigated the ability of male BALB/c mice to acclimatize to this form of housing. For three weeks markers of acute and oxidative stress, as well as clinical signs of abnormality were monitored. Forced swim tests were conducted to determine whether the animals experienced behavioral despair and the serotonergic integrity was tested using an 8-OH-DPAT challenge. The metabolism cage housed mice excreted approximately tenfold higher amounts of corticosterone metabolites in feces throughout the study when compared to controls. Urinary biomarkers confirmed that these mice suffered from elevated levels of oxidative stress, and increased creatinine excretions indicated increased muscle catabolism. Changes in the core body temperature (stress-induced hyperthermia) and the fur state of the mice also indicated impaired well-being in the metabolism cage housed mice. However, monitoring body weight and feed intake was found misleading in assessing the wellbeing of mice over a longer time course, and the forced swim test was found poorly suited for studying chronic stress in mice in the present setup. In conclusion, the mice were found not to acclimatize to the metabolism cages whereby concern for animal welfare would dictate that mice should be housed in this way for as short periods as possible. The elevated degree of HPA axis activity, oxidative stress, and increased overall metabolism warrant caution when interpreting data obtained from metabolism cage housed mice, as their condition cannot be considered representative of a normal physiology.
Collapse
|